- -

A quantitative analysis of coupled oscillations using mobile accelerometer sensors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A quantitative analysis of coupled oscillations using mobile accelerometer sensors

Mostrar el registro completo del ítem

Castro Palacio, JC.; Velazquez Abad, L.; Gimenez Palomares, F.; Monsoriu Serra, JA. (2013). A quantitative analysis of coupled oscillations using mobile accelerometer sensors. European Journal of Physics. 34(3):737-744. doi:10.1088/0143-0807/34/3/737

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/74546

Ficheros en el ítem

Metadatos del ítem

Título: A quantitative analysis of coupled oscillations using mobile accelerometer sensors
Autor: Castro Palacio, Juan Carlos Velazquez Abad, Luisberis Gimenez Palomares, Fernando Monsoriu Serra, Juan Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
In this paper, smartphone acceleration sensors were used to perform a quantitative analysis of mechanical coupled oscillations. Symmetric and asymmetric normal modes were studied separately in the first two experiments. ...[+]
Palabras clave: PENDULUMS
Derechos de uso: Cerrado
Fuente:
European Journal of Physics. (issn: 0143-0807 )
DOI: 10.1088/0143-0807/34/3/737
Editorial:
European Physical Society
Versión del editor: http://dx.doi.org/10.1088/0143-0807/34/3/737
Agradecimientos:
The authors would like to thank the Institute of Education Sciences, Universitat Politecnica de Valencia (Spain), for the support of the Teaching Innovation Group, MoMa. We would also like to thank Dr Juan Angel Sans for ...[+]
Tipo: Artículo

References

Krumm, P., & Leubner, C. (1988). How to introduce the language of quantum mechanics through a classical coupled oscillator system. European Journal of Physics, 9(1), 41-46. doi:10.1088/0143-0807/9/1/007

Lai, H. M. (1984). On the recurrence phenomenon of a resonant spring pendulum. American Journal of Physics, 52(3), 219-223. doi:10.1119/1.13696

Karioris, F. G., & Mendelson, K. S. (1992). A novel coupled oscillation demonstration. American Journal of Physics, 60(6), 508-513. doi:10.1119/1.16864 [+]
Krumm, P., & Leubner, C. (1988). How to introduce the language of quantum mechanics through a classical coupled oscillator system. European Journal of Physics, 9(1), 41-46. doi:10.1088/0143-0807/9/1/007

Lai, H. M. (1984). On the recurrence phenomenon of a resonant spring pendulum. American Journal of Physics, 52(3), 219-223. doi:10.1119/1.13696

Karioris, F. G., & Mendelson, K. S. (1992). A novel coupled oscillation demonstration. American Journal of Physics, 60(6), 508-513. doi:10.1119/1.16864

Greczylo, T., & Debowska, E. (2002). Using a digital video camera to examine coupled oscillations. European Journal of Physics, 23(4), 441-447. doi:10.1088/0143-0807/23/4/308

Maianti, M., Pagliara, S., Galimberti, G., & Parmigiani, F. (2009). Mechanics of two pendulums coupled by a stressed spring. American Journal of Physics, 77(9), 834-838. doi:10.1119/1.3147211

Li, A., Zeng, J., Yang, H., & Xiao, J. (2011). A laboratory experiment on coupled non-identical pendulums. European Journal of Physics, 32(5), 1251-1257. doi:10.1088/0143-0807/32/5/013

Norris, T., Diamond, B., & Ayars, E. (2006). Magnetically coupled rotors. American Journal of Physics, 74(9), 806-808. doi:10.1119/1.2209247

Bobillo-Ares, N. C., & Fernandez-Nunez, J. (1995). Two-dimensional harmonic oscillator on an air table. European Journal of Physics, 16(5), 223-227. doi:10.1088/0143-0807/16/5/006

Spencer, R. L., & Robertson, R. D. (2001). Mode detuning in systems of weakly coupled oscillators. American Journal of Physics, 69(11), 1191-1197. doi:10.1119/1.1397458

Moloney, M. J. (2008). Coupled oscillations in suspended magnets. American Journal of Physics, 76(2), 125-128. doi:10.1119/1.2820394

Donoso, G., Ladera, C. L., & Martín, P. (2010). Magnetically coupled magnet–spring oscillators. European Journal of Physics, 31(3), 433-452. doi:10.1088/0143-0807/31/3/002

Arane, T., Musalem, A. K. R., & Fridman, M. (2009). Coupling between two singing wineglasses. American Journal of Physics, 77(11), 1066-1067. doi:10.1119/1.3119175

Monsoriu, J. A., Giménez, M. H., Riera, J., & Vidaurre, A. (2005). Measuring coupled oscillations using an automated video analysis technique based on image recognition. European Journal of Physics, 26(6), 1149-1155. doi:10.1088/0143-0807/26/6/023

Vogt, P., & Kuhn, J. (2012). Analyzing simple pendulum phenomena with a smartphone acceleration sensor. The Physics Teacher, 50(7), 439-440. doi:10.1119/1.4752056

Kuhn, J., & Vogt, P. (2012). Analyzing spring pendulum phenomena with a smart-phone acceleration sensor. The Physics Teacher, 50(8), 504-505. doi:10.1119/1.4758162

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2(2), 164-168. doi:10.1090/qam/10666

Marquardt, D. W. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441. doi:10.1137/0111030

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem