- -

Comparing the efficiency of five algorithms applied to path planning for industrial robots

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Comparing the efficiency of five algorithms applied to path planning for industrial robots

Show full item record

Rubio Montoya, FJ.; Abu-Dakka, FJM.; Valero Chuliá, FJ.; Mata Amela, V. (2012). Comparing the efficiency of five algorithms applied to path planning for industrial robots. Industrial Robot: An International Journal. 39(6):580-591. doi:10.1108/01439911211268787

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/77972

Files in this item

Item Metadata

Title: Comparing the efficiency of five algorithms applied to path planning for industrial robots
Author: Rubio Montoya, Francisco José ABU-DAKKA, FARES JAWAD MOHD Valero Chuliá, Francisco José Mata Amela, Vicente
UPV Unit: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Issued date:
Abstract:
Purpose The purpose of this paper is to compare the quality and efficiency of five methods for solving the path planning problem of industrial robots in complex environments. Design/methodology/approach In total, ...[+]
Subjects: Programming and algorithm theory , Robots , Kinematics , Industrial robots , Path planning , Collision avoidance , Off-line programming , Multi-arms robot
Copyrigths: Reserva de todos los derechos
Source:
Industrial Robot: An International Journal. (issn: 0143-991X ) (eissn: 1758-5791 )
DOI: 10.1108/01439911211268787
Publisher:
Emerald
Publisher version: http://dx.doi.org/10.1108/01439911211268787
Description: This article is (c) Emerald Group Publishing and permission has been granted for this version to appear here https://riunet.upv.es/. Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited.
Type: Artículo

References

Brooks, R. A. (1983). Solving the find-path problem by good representation of free space. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(2), 190-197. doi:10.1109/tsmc.1983.6313112

Brooks, R.A. and Lozano‐Pérez, T. (1983), “A subdivision algorithm configuration space for findpath with rotation”,International Joint Conference on Artificial Intelligence, pp. 799‐806.

Davidor, Y. (1991), “Genetic algorithms and robotics, a heuristic strategy for optimisation”,World Scientific Series and Automated Systems, Vol. 1. [+]
Brooks, R. A. (1983). Solving the find-path problem by good representation of free space. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(2), 190-197. doi:10.1109/tsmc.1983.6313112

Brooks, R.A. and Lozano‐Pérez, T. (1983), “A subdivision algorithm configuration space for findpath with rotation”,International Joint Conference on Artificial Intelligence, pp. 799‐806.

Davidor, Y. (1991), “Genetic algorithms and robotics, a heuristic strategy for optimisation”,World Scientific Series and Automated Systems, Vol. 1.

Dubowsky, S. and Shiller, Z. (1984), “Optimal dynamic trajectories for robotic manipulators”,Fifth CISM‐IFToMM Symposium on Theory and Practice of Robots and Manipulators, Udine, Italy, pp. 96‐103.

Fares, A.D., Valero, F., Mata, V. and Assad, I.F.I. (2007), “Path planning optimization of industrial robots using genetic algorithm”,Proceedings of 16th International Workshop on Robotics in Alpe‐Adria‐Danube Region, Liubliana, p. 104.

Hsu, D., Kindel, R., Latombe, J.-C., & Rock, S. (2002). Randomized Kinodynamic Motion Planning with Moving Obstacles. The International Journal of Robotics Research, 21(3), 233-255. doi:10.1177/027836402320556421

Isto, P. (1996), “Path planning by multiheuristic search via subgoals”,Proceedings of the 27th International Symposium on Industrial Robots, CEU, pp. 712‐26.

Kavraki, L. E., Svestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566-580. doi:10.1109/70.508439

Khatib, O. (1985), “Real‐time obstacle avoidance for manipulators and mobile robots”,IEEE International Conference on Robotics and Automation, St Louis, MO, USA, pp. 500‐5.

LaValle, S. M., & Hutchinson, S. A. (s. f.). Optimal motion planning for multiple robots having independent goals. Proceedings of IEEE International Conference on Robotics and Automation. doi:10.1109/robot.1996.506594

Lozano-Perez. (1983). Spatial Planning: A Configuration Space Approach. IEEE Transactions on Computers, C-32(2), 108-120. doi:10.1109/tc.1983.1676196

Monteiro, D. C., & Madrid, M. K. (1999). Planning of robot trajectories with genetic algorithms. Proceedings of the First Workshop on Robot Motion and Control. RoMoCo’99 (Cat. No.99EX353). doi:10.1109/romoco.1999.791079

Hart, P., Nilsson, N., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100-107. doi:10.1109/tssc.1968.300136

Ó’Dúnlaing, C., & Yap, C. K. (1985). A «retraction» method for planning the motion of a disc. Journal of Algorithms, 6(1), 104-111. doi:10.1016/0196-6774(85)90021-5

Rubio, F., Valero, F., Sunyer, J., & Mata, V. (2009). Direct step‐by‐step method for industrial robot path planning. Industrial Robot: An International Journal, 36(6), 594-607. doi:10.1108/01439910910994669

Schwartz, J. T., & Sharir, M. (1983). On the «piano movers» problem. II. General techniques for computing topological properties of real algebraic manifolds. Advances in Applied Mathematics, 4(3), 298-351. doi:10.1016/0196-8858(83)90014-3

Valero, F., Mata, V., Cuadrado, J. I., & Ceccarelli, M. (1996). A formulation for path planning of manipulators in complex environments by using adjacent configurations. Advanced Robotics, 11(1), 33-56. doi:10.1163/156855397x00038

Yang, Z.Q., Liu, L.B. and Yang, W.D. (2008), “Flexible inspection path planning based on adaptive genetic algorithm”,Proceedings of Control and Decision Conference, China, pp. 1558‐63.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record