Alvear-Alvear, Ó.; Zamora-Mero, WJ.; Tavares De Araujo Cesariny Calafate, CM.; Cano Escribá, JC.; Manzoni, P. (2016). An Architecture Offering Mobile Pollution Sensing with High Spatial Resolution. Journal of Sensors. 2016:1-13. https://doi.org/10.1155/2016/1458147
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/78509
Título:
|
An Architecture Offering Mobile Pollution Sensing with High Spatial Resolution
|
Autor:
|
Alvear-Alvear, Óscar
Zamora-Mero, Willian Jesus
Tavares de Araujo Cesariny Calafate, Carlos Miguel
Cano Escribá, Juan Carlos
Manzoni, Pietro
|
Entidad UPV:
|
Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
|
Fecha difusión:
|
|
Resumen:
|
Mobile sensing is becoming the best option to monitor our environment due to its ease of use, high flexibility, and low price. In this paper, we present a mobile sensing architecture able to monitor different pollutants ...[+]
Mobile sensing is becoming the best option to monitor our environment due to its ease of use, high flexibility, and low price. In this paper, we present a mobile sensing architecture able to monitor different pollutants using low-end sensors. Although the proposed solution can be deployed everywhere, it becomes especially meaningful in crowded cities where pollution values are often high, being of great concern to both population and authorities. Our architecture is composed of three different modules: a mobile sensor for monitoring environment pollutants, an Android-based device for transferring the gathered data to a central server, and a central processing server for analyzing the pollution distribution. Moreover, we analyze different issues related to the monitoring process: (i) filtering captured data to reduce the variability of consecutive measurements; (ii) converting the sensor output to actual pollution levels; (iii) reducing the temporal variations produced by mobile sensing process; and (iv) applying interpolation techniques for creating detailed pollution maps. In addition, we study the best strategy to use mobile sensors by first determining the influence of sensor orientation on the captured values and then analyzing the influence of time and space sampling in the interpolation process.
[-]
|
Palabras clave:
|
Mobile Pollution Sensing
,
Kriging
,
Interpolation
,
Android
,
Ozone
|
Derechos de uso:
|
Reconocimiento (by)
|
Fuente:
|
Journal of Sensors. (issn:
1687-725X
)
|
DOI:
|
10.1155/2016/1458147
|
Editorial:
|
Hindawi Publishing Corporation
|
Versión del editor:
|
https://www.hindawi.com/journals/js/2016/1458147/
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/MINECO//TEC2014-52690-R/ES/INTEGRACION DEL SMARTPHONE Y EL VEHICULO PARA CONECTAR CONDUCTORES, SENSORES Y ENTORNO A TRAVES DE UNA ARQUITECTURA DE SERVICIOS FUNCIONALES/
|
Descripción:
|
© 2016 Oscar Alvear et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
|
Agradecimientos:
|
This work was partially supported by the "Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a Retos de la Sociedad, Proyecto I+D+I TEC2014-52690-R," the "Universidad Laica Eloy Alfaro de Manabi," and the ...[+]
This work was partially supported by the "Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a Retos de la Sociedad, Proyecto I+D+I TEC2014-52690-R," the "Universidad Laica Eloy Alfaro de Manabi," and the "Programa de Becas SENESCYT de la Republica del Ecuador."
[-]
|
Tipo:
|
Artículo
|