Mostrar el registro sencillo del ítem
dc.contributor.author | Martí Pérez, Pau Carles | es_ES |
dc.contributor.author | Manzano Juarez, Juan | es_ES |
dc.contributor.author | Royuela, Alvaro | es_ES |
dc.date.accessioned | 2017-03-06T11:16:37Z | |
dc.date.available | 2017-03-06T11:16:37Z | |
dc.date.issued | 2011-05 | |
dc.identifier.issn | 0342-7188 | |
dc.identifier.uri | http://hdl.handle.net/10251/78513 | |
dc.description.abstract | Evapotranspiration is a complex and non-linear phenomenon that depends on the interaction of several climatic parameters. As an alternative to traditional techniques, artificial neural networks (ANNs) are highly appropriate for the modeling of non-linear processes. In general, in the most common ANN applications, the available climatic series are usually split up into 3 data sets: one for training, one for cross-validating, and one for testing. Up to now, the studies regarding ANN-models for reference evapotranspiration estimation and forecasting consider usually only a single chronological assignment of data for the definition of these 3 data sets. In these cases, the ANN performance can only be referred to this specific data set assignment. This paper analyzes the performance of a simple ANN model, a temperature-based 4-input ANN, taking into consideration a complete scan of the possible training, cross-validation, and test set configurations using 'leave one out' procedures. The results of a comparative analysis between both methodologies show that the performance results achieved with the traditional methodology can be misleading when evaluating the real ability of a model, as they are referred to the single specific data set assignment assumed. © 2010 Springer-Verlag. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Irrigation Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | ANN application | es_ES |
dc.subject | Artificial Neural Network | es_ES |
dc.subject | Artificial neural networks | es_ES |
dc.subject | Climatic parameters | es_ES |
dc.subject | Comparative analysis | es_ES |
dc.subject | Cross validation | es_ES |
dc.subject | Data sets | es_ES |
dc.subject | Leave one out | es_ES |
dc.subject | Non-linear phenomena | es_ES |
dc.subject | Nonlinear process | es_ES |
dc.subject | Reference evapotranspiration | es_ES |
dc.subject | Test sets | es_ES |
dc.subject | Traditional methodologies | es_ES |
dc.subject | Traditional techniques | es_ES |
dc.subject | Evapotranspiration | es_ES |
dc.subject | Water supply | es_ES |
dc.subject | Neural networks | es_ES |
dc.subject | Data set | es_ES |
dc.subject | Estimation method | es_ES |
dc.subject | Model test | es_ES |
dc.subject | Model validation | es_ES |
dc.subject | Numerical model | es_ES |
dc.subject | Performance assessment | es_ES |
dc.subject.classification | INGENIERIA AGROFORESTAL | es_ES |
dc.title | Assesment of a 4-input artificial neural network for ETo etimation through data set scanning | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00271-010-0224-6 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro Valenciano de Estudios sobre el Riego - Centre Valencià d'Estudis sobre el Reg | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Martí Pérez, PC.; Manzano Juarez, J.; Royuela, A. (2011). Assesment of a 4-input artificial neural network for ETo etimation through data set scanning. Irrigation Science. 29(3):181-195. doi:10.1007/s00271-010-0224-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00271-010-0224-6 | es_ES |
dc.description.upvformatpinicio | 181 | es_ES |
dc.description.upvformatpfin | 195 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 208958 | es_ES |
dc.identifier.eissn | 1432-1319 | |
dc.description.references | Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing water requirements. FAO irrigation and drainage, paper 56. FAO, Rome | es_ES |
dc.description.references | Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford | es_ES |
dc.description.references | Camargo AP, Sentelhas PC (1997) Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no Estado de São Paulo, Brazil. Revista Brasileira de agrometeorologia 5(1):89–97 | es_ES |
dc.description.references | Campolo M, Andreussi P, Sodalt A (1999) River flood forecasting with a neural network model. Water Resour Res 35(4):1191–1197 | es_ES |
dc.description.references | Chinh LV, Hiramatsu K, Harada M, Mori M (2009) Estimation of water levels in a main drainage canal in a flat low-lying agricultural area using artificial neural network models. Agric Wat Manag 96(9):1332–1338 | es_ES |
dc.description.references | Cigizoglu HK (2003) Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrol Sci J 48(3):349–361 | es_ES |
dc.description.references | Cigizoglu HK (2004) Estimation and forecasting of daily suspended sediment data by multilayer perceptions. Adv Water Resour 27(2):185–195 | es_ES |
dc.description.references | French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol 137(1–4):1–31 | es_ES |
dc.description.references | Hagan MT, Menhaj MB (1994) Training multilayer Networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993 | es_ES |
dc.description.references | Hagan MT, Delmuth H, Beale M (1996) Neural network design. PWS Publishing Company, MA, Boston | es_ES |
dc.description.references | Haykin S (1999) Neural networks. A comprehensive foundation. Prentice Hall International Inc., New Jersey | es_ES |
dc.description.references | Imrie CE, Durucan S, Korre A (2000) River flow prediction using artificial neural networks: generalization beyond the calibration range. J Hydrol 233(1–4):138–153 | es_ES |
dc.description.references | Jain A, Srinivasulu S (2006) Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. J Hydrol 317(1–4):291–306 | es_ES |
dc.description.references | Jain SK, Das A, Srivastava DK (1999) Application of ANN for reservoir inflow prediction and operation. J Water Resour Plan Manage 125(5):263–271 | es_ES |
dc.description.references | Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351(3–4):299–317 | es_ES |
dc.description.references | Kişi Ö (2004) River flow modelling using artificial neural networks. J Hydrol Eng 9(1):60–63 | es_ES |
dc.description.references | Kişi Ö (2006a) Evapotranspiration estimation using feed-forward neural networks. Nord Hydrol 37(3):247–260 | es_ES |
dc.description.references | Kişi Ö (2006b) Generalized regression neural networks for evapotranspiration modelling. Hydrol Sci J 51(6):1092–1105 | es_ES |
dc.description.references | Kişi Ö (2007) Evapotranspiration modelling from climatic data using a neural network computing technique. Hydrol Process 21:1925–1934 | es_ES |
dc.description.references | Kişi Ö (2008) The potential of different ANN techniques in evapotranspiration modelling. Hydrol Process 22:1449–1460 | es_ES |
dc.description.references | Kişi Ö (2009) Modelling monthly evaporation using two different neural computing techniques. Irrig Sci 27(5):417–430 | es_ES |
dc.description.references | Kişi Ö, Cimen Ö (2009) Evapotranspiration modelling using support vector machines. Hydrol Sci J 54(5):918–928 | es_ES |
dc.description.references | Kişi Ö, Öztürk Ö (2007) Adaptive Neurofuzzy computing technique for evapotranspiration estimation. J Irrig Drain Eng 133(4):368–379 | es_ES |
dc.description.references | Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO (2002) Estimating evapotranspiration using artificial neural network. J Irrig Drain Eng 128(4):224–233 | es_ES |
dc.description.references | Kumar M, Bandyopadhyay A, Raghuwanshi NS, Singh R (2008) Comparative study of conventional and artificial neural network-based ETo estimation models. Irrig Sci 26(6):531–545 | es_ES |
dc.description.references | Landeras G, Ortiz-Barredo A, López JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric Wat Manag 95(5):553–565 | es_ES |
dc.description.references | Landeras G, Ortiz-Barredo A, López JJ (2009) Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. J Irrig Drain Eng 135(3):323–334 | es_ES |
dc.description.references | Martí P, Gasque M (2010) Ancillary data supply strategies for improvement of temperature-based ETo ANN models. Agric Wat Manag 97(7):939–955 | es_ES |
dc.description.references | Martí P, Royuela A, Manzano J, Palau G (2008a) Applicability of a 4-input ANN model for ETo prediction in coastal and inland locations. In: Villacampa Esteve Y, Brebbia CA, Prats Rico D (eds) Sustainable irrigation. Management, technologies and policies II. Proceedings, 11–13 June 2008 at Alicante. WIT Press, Spain, pp 167–176 | es_ES |
dc.description.references | Martí P, Royuela A, Manzano J, Palau G (2008b) Improvement of temperature based ANN models for ETo prediction in coastal locations by means of preliminary models and exogenous data. Eighth international conference on hybrid intelligent systems 2008 proceedings, pp 344–349. IEEE Xplore | es_ES |
dc.description.references | Martí P, Gasque M, Royuela A (2010a) Discussion of ‘Forecasting weekly evapotranspiration with ARIMA and artificial neural network models’. J Irrig Drain Eng 136(6):435–438 | es_ES |
dc.description.references | Martí P, Provenzano G, Royuela A, Palau G (2010b) Integrated emitter local loss prediction using artificial neural networks. J Irrig Drain Eng 136(1):11–22 | es_ES |
dc.description.references | Martí P, Royuela A, Manzano J, Palau G (2010c) Generalization of ETo ANN models through data supplanting. J Irrig Drain Eng 136(3):161–174 | es_ES |
dc.description.references | Matlab (2007) Users’ manual version 7.4.0 R2007a. The MathWorks Inc., Natick, Mass | es_ES |
dc.description.references | Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci J 41(3):399–417 | es_ES |
dc.description.references | Odhiambo LO, Yoder RE, Yoder DC, Hines JW (2001) Optimization of fuzzy evapotranspiration model through neural training with input-output examples. Trans ASAE 44(6):1625–1633 | es_ES |
dc.description.references | Pulido-Calvo I, Gutiérrez-Estrada JC (2009) Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosystems Eng 102(2):202–218 | es_ES |
dc.description.references | Pulido-Calvo I, Portela MM (2007) Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. J Hydrol 332(1–2):1–15 | es_ES |
dc.description.references | Pulido-Calvo I, Roldán J, López-Luque R, Gutiérrez-Estrada JC (2003) Demand forecasting for irrigation water distribution system. J Irrig Drain Eng 129(6):422–431 | es_ES |
dc.description.references | Pulido-Calvo I, Montesinos P, Roldán J, Ruiz-Navarro F (2007) Linear regression and neural approaches to water demand forecasting in irrigation districts with telemetry systems. Biosystems Eng 97(2):283–293 | es_ES |
dc.description.references | Rahimi A (2008a) Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig Sci 26(3):253–259 | es_ES |
dc.description.references | Rahimi A (2008b) Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semiarid environment. Irrig Sci 27(1):35–39 | es_ES |
dc.description.references | Sarangi A, Singh M, Bhattacharya AK, Singh AK (2006) Subsurface drainage performance study using SALTMOD and ANN models. Agric Wat Manag 84(3):240–248 | es_ES |
dc.description.references | Sharma V, Negi SC, Rudra RP, Yang S (2003) Neural networks for predicting nitrate-nitrogen in drainage water. Agric Wat Manag 63(3):169–183 | es_ES |
dc.description.references | Shayya WH, Sablani SS (1998) An artificial neural network for non-iterative calculation of the friction factor in pipeline flow. Comp Electron Agric 21(3):219–228 | es_ES |
dc.description.references | Shukla MB, Kok R, Prasher SO, Clark G, Lacroix R (1996) Use of artificial neural network in transient drainage design. Trans ASAE 39(1):119–124 | es_ES |
dc.description.references | Silva AF (2002) Previsão da evapotranspiração de referencia utilizando redes neurais. Dissertação de Mestrado, Univ. Federal de Viçosa. Viçosa, Minas Gerais, Brazil | es_ES |
dc.description.references | Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129(3):214–218 | es_ES |
dc.description.references | Thirumalaiah K, Deo MC (1998) River stage forecasting using artificial neural networks. J Hydrol Eng 3(1):26–32 | es_ES |
dc.description.references | Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. J Irrig Drain Eng 131(4):316–323 | es_ES |
dc.description.references | Trajkovic S, Kolakovic S (2009) Estimating reference evapotranspiration using limited weather data. J Irrig Drain Eng 135(4):443–449 | es_ES |
dc.description.references | Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting of reference evapotranspiration by artificial neural networks. J Irrig Drain Eng 129(6):454–457 | es_ES |
dc.description.references | Willmott CJ (1981) On the validation model. Phys Geogr 2(2):184–194 | es_ES |
dc.description.references | Yang CC, Prasher SO, Lacroix R (1996) Application of artificial neural network to land drainage engineering. Trans ASAE 39(2):525–533 | es_ES |
dc.description.references | Yang CC, Lacroix R, Prasher SO (1998) The use of backpropagation neural networks for the simulation and analysis of time series data in subsurface systems. Trans ASAE 41(4):1181–1187 | es_ES |
dc.description.references | Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133(2):83–89 | es_ES |