- -

Assesment of a 4-input artificial neural network for ETo etimation through data set scanning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assesment of a 4-input artificial neural network for ETo etimation through data set scanning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martí Pérez, Pau Carles es_ES
dc.contributor.author Manzano Juarez, Juan es_ES
dc.contributor.author Royuela, Alvaro es_ES
dc.date.accessioned 2017-03-06T11:16:37Z
dc.date.available 2017-03-06T11:16:37Z
dc.date.issued 2011-05
dc.identifier.issn 0342-7188
dc.identifier.uri http://hdl.handle.net/10251/78513
dc.description.abstract Evapotranspiration is a complex and non-linear phenomenon that depends on the interaction of several climatic parameters. As an alternative to traditional techniques, artificial neural networks (ANNs) are highly appropriate for the modeling of non-linear processes. In general, in the most common ANN applications, the available climatic series are usually split up into 3 data sets: one for training, one for cross-validating, and one for testing. Up to now, the studies regarding ANN-models for reference evapotranspiration estimation and forecasting consider usually only a single chronological assignment of data for the definition of these 3 data sets. In these cases, the ANN performance can only be referred to this specific data set assignment. This paper analyzes the performance of a simple ANN model, a temperature-based 4-input ANN, taking into consideration a complete scan of the possible training, cross-validation, and test set configurations using 'leave one out' procedures. The results of a comparative analysis between both methodologies show that the performance results achieved with the traditional methodology can be misleading when evaluating the real ability of a model, as they are referred to the single specific data set assignment assumed. © 2010 Springer-Verlag. es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Irrigation Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject ANN application es_ES
dc.subject Artificial Neural Network es_ES
dc.subject Artificial neural networks es_ES
dc.subject Climatic parameters es_ES
dc.subject Comparative analysis es_ES
dc.subject Cross validation es_ES
dc.subject Data sets es_ES
dc.subject Leave one out es_ES
dc.subject Non-linear phenomena es_ES
dc.subject Nonlinear process es_ES
dc.subject Reference evapotranspiration es_ES
dc.subject Test sets es_ES
dc.subject Traditional methodologies es_ES
dc.subject Traditional techniques es_ES
dc.subject Evapotranspiration es_ES
dc.subject Water supply es_ES
dc.subject Neural networks es_ES
dc.subject Data set es_ES
dc.subject Estimation method es_ES
dc.subject Model test es_ES
dc.subject Model validation es_ES
dc.subject Numerical model es_ES
dc.subject Performance assessment es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Assesment of a 4-input artificial neural network for ETo etimation through data set scanning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00271-010-0224-6
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro Valenciano de Estudios sobre el Riego - Centre Valencià d'Estudis sobre el Reg es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Martí Pérez, PC.; Manzano Juarez, J.; Royuela, A. (2011). Assesment of a 4-input artificial neural network for ETo etimation through data set scanning. Irrigation Science. 29(3):181-195. doi:10.1007/s00271-010-0224-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00271-010-0224-6 es_ES
dc.description.upvformatpinicio 181 es_ES
dc.description.upvformatpfin 195 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 208958 es_ES
dc.identifier.eissn 1432-1319
dc.description.references Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing water requirements. FAO irrigation and drainage, paper 56. FAO, Rome es_ES
dc.description.references Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford es_ES
dc.description.references Camargo AP, Sentelhas PC (1997) Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no Estado de São Paulo, Brazil. Revista Brasileira de agrometeorologia 5(1):89–97 es_ES
dc.description.references Campolo M, Andreussi P, Sodalt A (1999) River flood forecasting with a neural network model. Water Resour Res 35(4):1191–1197 es_ES
dc.description.references Chinh LV, Hiramatsu K, Harada M, Mori M (2009) Estimation of water levels in a main drainage canal in a flat low-lying agricultural area using artificial neural network models. Agric Wat Manag 96(9):1332–1338 es_ES
dc.description.references Cigizoglu HK (2003) Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrol Sci J 48(3):349–361 es_ES
dc.description.references Cigizoglu HK (2004) Estimation and forecasting of daily suspended sediment data by multilayer perceptions. Adv Water Resour 27(2):185–195 es_ES
dc.description.references French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol 137(1–4):1–31 es_ES
dc.description.references Hagan MT, Menhaj MB (1994) Training multilayer Networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993 es_ES
dc.description.references Hagan MT, Delmuth H, Beale M (1996) Neural network design. PWS Publishing Company, MA, Boston es_ES
dc.description.references Haykin S (1999) Neural networks. A comprehensive foundation. Prentice Hall International Inc., New Jersey es_ES
dc.description.references Imrie CE, Durucan S, Korre A (2000) River flow prediction using artificial neural networks: generalization beyond the calibration range. J Hydrol 233(1–4):138–153 es_ES
dc.description.references Jain A, Srinivasulu S (2006) Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. J Hydrol 317(1–4):291–306 es_ES
dc.description.references Jain SK, Das A, Srivastava DK (1999) Application of ANN for reservoir inflow prediction and operation. J Water Resour Plan Manage 125(5):263–271 es_ES
dc.description.references Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351(3–4):299–317 es_ES
dc.description.references Kişi Ö (2004) River flow modelling using artificial neural networks. J Hydrol Eng 9(1):60–63 es_ES
dc.description.references Kişi Ö (2006a) Evapotranspiration estimation using feed-forward neural networks. Nord Hydrol 37(3):247–260 es_ES
dc.description.references Kişi Ö (2006b) Generalized regression neural networks for evapotranspiration modelling. Hydrol Sci J 51(6):1092–1105 es_ES
dc.description.references Kişi Ö (2007) Evapotranspiration modelling from climatic data using a neural network computing technique. Hydrol Process 21:1925–1934 es_ES
dc.description.references Kişi Ö (2008) The potential of different ANN techniques in evapotranspiration modelling. Hydrol Process 22:1449–1460 es_ES
dc.description.references Kişi Ö (2009) Modelling monthly evaporation using two different neural computing techniques. Irrig Sci 27(5):417–430 es_ES
dc.description.references Kişi Ö, Cimen Ö (2009) Evapotranspiration modelling using support vector machines. Hydrol Sci J 54(5):918–928 es_ES
dc.description.references Kişi Ö, Öztürk Ö (2007) Adaptive Neurofuzzy computing technique for evapotranspiration estimation. J Irrig Drain Eng 133(4):368–379 es_ES
dc.description.references Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO (2002) Estimating evapotranspiration using artificial neural network. J Irrig Drain Eng 128(4):224–233 es_ES
dc.description.references Kumar M, Bandyopadhyay A, Raghuwanshi NS, Singh R (2008) Comparative study of conventional and artificial neural network-based ETo estimation models. Irrig Sci 26(6):531–545 es_ES
dc.description.references Landeras G, Ortiz-Barredo A, López JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric Wat Manag 95(5):553–565 es_ES
dc.description.references Landeras G, Ortiz-Barredo A, López JJ (2009) Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. J Irrig Drain Eng 135(3):323–334 es_ES
dc.description.references Martí P, Gasque M (2010) Ancillary data supply strategies for improvement of temperature-based ETo ANN models. Agric Wat Manag 97(7):939–955 es_ES
dc.description.references Martí P, Royuela A, Manzano J, Palau G (2008a) Applicability of a 4-input ANN model for ETo prediction in coastal and inland locations. In: Villacampa Esteve Y, Brebbia CA, Prats Rico D (eds) Sustainable irrigation. Management, technologies and policies II. Proceedings, 11–13 June 2008 at Alicante. WIT Press, Spain, pp 167–176 es_ES
dc.description.references Martí P, Royuela A, Manzano J, Palau G (2008b) Improvement of temperature based ANN models for ETo prediction in coastal locations by means of preliminary models and exogenous data. Eighth international conference on hybrid intelligent systems 2008 proceedings, pp 344–349. IEEE Xplore es_ES
dc.description.references Martí P, Gasque M, Royuela A (2010a) Discussion of ‘Forecasting weekly evapotranspiration with ARIMA and artificial neural network models’. J Irrig Drain Eng 136(6):435–438 es_ES
dc.description.references Martí P, Provenzano G, Royuela A, Palau G (2010b) Integrated emitter local loss prediction using artificial neural networks. J Irrig Drain Eng 136(1):11–22 es_ES
dc.description.references Martí P, Royuela A, Manzano J, Palau G (2010c) Generalization of ETo ANN models through data supplanting. J Irrig Drain Eng 136(3):161–174 es_ES
dc.description.references Matlab (2007) Users’ manual version 7.4.0 R2007a. The MathWorks Inc., Natick, Mass es_ES
dc.description.references Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci J 41(3):399–417 es_ES
dc.description.references Odhiambo LO, Yoder RE, Yoder DC, Hines JW (2001) Optimization of fuzzy evapotranspiration model through neural training with input-output examples. Trans ASAE 44(6):1625–1633 es_ES
dc.description.references Pulido-Calvo I, Gutiérrez-Estrada JC (2009) Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosystems Eng 102(2):202–218 es_ES
dc.description.references Pulido-Calvo I, Portela MM (2007) Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. J Hydrol 332(1–2):1–15 es_ES
dc.description.references Pulido-Calvo I, Roldán J, López-Luque R, Gutiérrez-Estrada JC (2003) Demand forecasting for irrigation water distribution system. J Irrig Drain Eng 129(6):422–431 es_ES
dc.description.references Pulido-Calvo I, Montesinos P, Roldán J, Ruiz-Navarro F (2007) Linear regression and neural approaches to water demand forecasting in irrigation districts with telemetry systems. Biosystems Eng 97(2):283–293 es_ES
dc.description.references Rahimi A (2008a) Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig Sci 26(3):253–259 es_ES
dc.description.references Rahimi A (2008b) Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semiarid environment. Irrig Sci 27(1):35–39 es_ES
dc.description.references Sarangi A, Singh M, Bhattacharya AK, Singh AK (2006) Subsurface drainage performance study using SALTMOD and ANN models. Agric Wat Manag 84(3):240–248 es_ES
dc.description.references Sharma V, Negi SC, Rudra RP, Yang S (2003) Neural networks for predicting nitrate-nitrogen in drainage water. Agric Wat Manag 63(3):169–183 es_ES
dc.description.references Shayya WH, Sablani SS (1998) An artificial neural network for non-iterative calculation of the friction factor in pipeline flow. Comp Electron Agric 21(3):219–228 es_ES
dc.description.references Shukla MB, Kok R, Prasher SO, Clark G, Lacroix R (1996) Use of artificial neural network in transient drainage design. Trans ASAE 39(1):119–124 es_ES
dc.description.references Silva AF (2002) Previsão da evapotranspiração de referencia utilizando redes neurais. Dissertação de Mestrado, Univ. Federal de Viçosa. Viçosa, Minas Gerais, Brazil es_ES
dc.description.references Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129(3):214–218 es_ES
dc.description.references Thirumalaiah K, Deo MC (1998) River stage forecasting using artificial neural networks. J Hydrol Eng 3(1):26–32 es_ES
dc.description.references Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. J Irrig Drain Eng 131(4):316–323 es_ES
dc.description.references Trajkovic S, Kolakovic S (2009) Estimating reference evapotranspiration using limited weather data. J Irrig Drain Eng 135(4):443–449 es_ES
dc.description.references Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting of reference evapotranspiration by artificial neural networks. J Irrig Drain Eng 129(6):454–457 es_ES
dc.description.references Willmott CJ (1981) On the validation model. Phys Geogr 2(2):184–194 es_ES
dc.description.references Yang CC, Prasher SO, Lacroix R (1996) Application of artificial neural network to land drainage engineering. Trans ASAE 39(2):525–533 es_ES
dc.description.references Yang CC, Lacroix R, Prasher SO (1998) The use of backpropagation neural networks for the simulation and analysis of time series data in subsurface systems. Trans ASAE 41(4):1181–1187 es_ES
dc.description.references Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133(2):83–89 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem