- -

On the generalized asymptotically nonspreading mappings in convex metric spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the generalized asymptotically nonspreading mappings in convex metric spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Phuengrattana, Withun es_ES
dc.date.accessioned 2017-04-19T12:09:48Z
dc.date.available 2017-04-19T12:09:48Z
dc.date.issued 2017-04-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/79819
dc.description.abstract [EN] In this article, we propose a new class of nonlinear mappings, namely, generalized asymptotically nonspreading mapping, and prove the existence of fixed points for such mapping in convex metric spaces. Furthermore, we also obtain the demiclosed principle and a delta-convergence theorem of Mann iteration for generalized asymptotically nonspreading mappings in CAT(0) spaces. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Asymptotically nonspreading mapping es_ES
dc.subject Convex metric spaces es_ES
dc.subject CAT(0) spaces es_ES
dc.subject Demiclosed principle es_ES
dc.title On the generalized asymptotically nonspreading mappings in convex metric spaces es_ES
dc.type Artículo es_ES
dc.date.updated 2017-04-19T11:20:07Z
dc.identifier.doi 10.4995/agt.2017.6578
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Phuengrattana, W. (2017). On the generalized asymptotically nonspreading mappings in convex metric spaces. Applied General Topology. 18(1):117-129. https://doi.org/10.4995/agt.2017.6578 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2017.6578 es_ES
dc.description.upvformatpinicio 117 es_ES
dc.description.upvformatpfin 129 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.description.references Abkar, A., & Eslamian, M. (2012). Fixed point and convergence theorems for different classes of generalized nonexpansive mappings in CAT(0) spaces. Computers & Mathematics with Applications, 64(4), 643-650. doi:10.1016/j.camwa.2011.12.075 es_ES
dc.description.references Bruhat, F., & Tits, J. (1972). Groupes Réductifs Sur Un Corps Local. Publications mathématiques de l’IHÉS, 41(1), 5-251. doi:10.1007/bf02715544 es_ES
dc.description.references Dhompongsa, S., Kaewkhao, A., & Panyanak, B. (2012). On Kirk’s strong convergence theorem for multivalued nonexpansive mappings on CAT(0) spaces. Nonlinear Analysis: Theory, Methods & Applications, 75(2), 459-468. doi:10.1016/j.na.2011.08.046 es_ES
dc.description.references Dhompongsa, S., Kirk, W. A., & Sims, B. (2006). Fixed points of uniformly lipschitzian mappings. Nonlinear Analysis: Theory, Methods & Applications, 65(4), 762-772. doi:10.1016/j.na.2005.09.044 es_ES
dc.description.references Dhompongsa, S., & Panyanak, B. (2008). On <mml:math altimg=«si1.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mo>△</mml:mo></mml:math>-convergence theorems in CAT(0) spaces. Computers & Mathematics with Applications, 56(10), 2572-2579. doi:10.1016/j.camwa.2008.05.036 es_ES
dc.description.references Iemoto, S., & Takahashi, W. (2009). Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space. Nonlinear Analysis: Theory, Methods & Applications, 71(12), e2082-e2089. doi:10.1016/j.na.2009.03.064 es_ES
dc.description.references Khan, S. H., & Abbas, M. (2011). Strong and <mml:math altimg=«si1.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mo>△</mml:mo></mml:math>-convergence of some iterative schemes in CAT(0) spaces. Computers & Mathematics with Applications, 61(1), 109-116. doi:10.1016/j.camwa.2010.10.037 es_ES
dc.description.references Kirk, W. A., & Panyanak, B. (2008). A concept of convergence in geodesic spaces. Nonlinear Analysis: Theory, Methods & Applications, 68(12), 3689-3696. doi:10.1016/j.na.2007.04.011 es_ES
dc.description.references Kohsaka, F., & Takahashi, W. (2008). Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces. Archiv der Mathematik, 91(2), 166-177. doi:10.1007/s00013-008-2545-8 es_ES
dc.description.references Nanjaras, B., Panyanak, B., & Phuengrattana, W. (2010). Fixed point theorems and convergence theorems for Suzuki-generalized nonexpansive mappings in CAT(0) spaces. Nonlinear Analysis: Hybrid Systems, 4(1), 25-31. doi:10.1016/j.nahs.2009.07.003 es_ES
dc.description.references Phuengrattana, W. (2011). Approximating fixed points of Suzuki-generalized nonexpansive mappings. Nonlinear Analysis: Hybrid Systems, 5(3), 583-590. doi:10.1016/j.nahs.2010.12.006 es_ES
dc.description.references Shimizu, T., & Takahashi, W. (1996). Fixed points of multivalued mappings in certain convex metric spaces. Topological Methods in Nonlinear Analysis, 8(1), 197. doi:10.12775/tmna.1996.028 es_ES
dc.description.references Takahashi, W. (1970). A convexity in metric space and nonexpansive mappings. I. Kodai Mathematical Seminar Reports, 22(2), 142-149. doi:10.2996/kmj/1138846111 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem