Abstract:
|
[EN] Two scientific schools have been in coexistence from the beginning of genetics, one of them searching for factors of inheritance and the other one applying biometrical models to study the relationships between relatives. ...[+]
[EN] Two scientific schools have been in coexistence from the beginning of genetics, one of them searching for factors of inheritance and the other one applying biometrical models to study the relationships between relatives. With the development of molecular genetics, the possibilities of detecting genes having a noticeable effect in traits augmented. Some genes with large or medium effects were localized in animals, although the most common result was to detect markers linked to these genes, allowing the possibility of assisting selection programs with markers. When a large amount of simple and inexpensive markers were available, the SNPs, new possibilities were opened since they did not need the presence of genes of large or medium effect controlling a trait, because the whole genome was scanned. Using a large amount of SNPs permits having a prediction of the breeding value at birth accurate enough to be used in some cases, like dairy cattle, to halve its generation interval. In other animal breeding programs, the implementation of genomic selection is less clear and the way in which it can be useful should be carefully studied. The need for large populations for associating phenotypic data and markers, plus the need for repeating the process continuously, complicates its application in some cases. The implementation of the information provided by the SNPs in current genetic programs has led to the development of complex statistical tools, joining the efforts of the two schools, factorial and biometrical, that nowadays work closely related. (C) 2014 Elsevier B.V. All rights reserved.
[-]
|