- -

Ultra-compact electro-absorption VO2-Si modulator with TM to TE conversion

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ultra-compact electro-absorption VO2-Si modulator with TM to TE conversion

Mostrar el registro completo del ítem

Sánchez Diana, LD.; Cortés Juan, F.; Rosa Escutia, Á.; Sanchis Kilders, P. (2017). Ultra-compact electro-absorption VO2-Si modulator with TM to TE conversion. Journal of Optics. 19(3):035401-1-035401-6. https://doi.org/10.1088/2040-8986/aa5c06

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/79935

Ficheros en el ítem

Metadatos del ítem

Título: Ultra-compact electro-absorption VO2-Si modulator with TM to TE conversion
Autor: Sánchez Diana, Luis David Cortés Juan, Frederic Rosa Escutia, Álvaro Sanchis Kilders, Pablo
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Fecha difusión:
Resumen:
[EN] An ultra-compact (6 μm length) electro-absorber modulator with transverse magnetic (TM) to transverse-electric (TE) conversion is proposed. The device performance is controlled by means of the semiconductor-to-metal ...[+]
Palabras clave: Integrated optics , Electro-optical modulators , Electro-optical switches , Optical polarization , Phase change materials
Derechos de uso: Cerrado
Fuente:
Journal of Optics. (issn: 2040-8978 )
DOI: 10.1088/2040-8986/aa5c06
Editorial:
IOP Publishing
Versión del editor: http://dx.doi.org/10.1088/2040-8986/aa5c06
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TEC2016-76849-C2-2-R/ES/DESARROLLO DE OXIDOS METALICOS DE TRANSICION CON TECNOLOGIA DE SILICIO PARA APLICACIONES DE CONMUTACION E INTERCONEXION OPTICAS EFICIENTES Y RESPETUOSAS CON EL MEDIO AMBIENTE/
info:eu-repo/grantAgreement/EC/FP7/619456/EU/Silicon CMOS compatible transition metal oxide technology for boosting highly integrated photonic devices with disruptive performance/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F034/ES/Nanomet Plus/
Agradecimientos:
This work was supported by the European Commission under project FP7-ICT-2013-11-619456 SITOGA. Financial support from TEC2016-76849-C2-2-R and NANOMET Conselleria de Educacic, Cultura i Esport -PROMETEOII/2014/034 are ...[+]
Tipo: Artículo

References

Mwakikunga, B. W., Forbes, A., Sideras-Haddad, E., Scriba, M., & Manikandan, E. (2009). Self Assembly and Properties of C:WO3 Nano-Platelets and C:VO2/V2O5 Triangular Capsules Produced by Laser Solution Photolysis. Nanoscale Research Letters, 5(2), 389-397. doi:10.1007/s11671-009-9494-4

Pergament, A., Stefanovich, G., & Velichko, A. (2013). Oxide Electronics and Vanadium Dioxide Perspective: A Review. Journal on Selected Topics in Nano Electronics and Computing, 1(1), 24-43. doi:10.15393/j8.art.2013.3002

Mwakikunga, B. W., Maaza, M., Hillie, K. T., Arendse, C. J., Malwela, T., & Sideras-Haddad, E. (2012). From phonon confinement to phonon splitting in flat single nanostructures: A case of VO2@V2O5 core–shell nano-ribbons. Vibrational Spectroscopy, 61, 105-111. doi:10.1016/j.vibspec.2012.02.007 [+]
Mwakikunga, B. W., Forbes, A., Sideras-Haddad, E., Scriba, M., & Manikandan, E. (2009). Self Assembly and Properties of C:WO3 Nano-Platelets and C:VO2/V2O5 Triangular Capsules Produced by Laser Solution Photolysis. Nanoscale Research Letters, 5(2), 389-397. doi:10.1007/s11671-009-9494-4

Pergament, A., Stefanovich, G., & Velichko, A. (2013). Oxide Electronics and Vanadium Dioxide Perspective: A Review. Journal on Selected Topics in Nano Electronics and Computing, 1(1), 24-43. doi:10.15393/j8.art.2013.3002

Mwakikunga, B. W., Maaza, M., Hillie, K. T., Arendse, C. J., Malwela, T., & Sideras-Haddad, E. (2012). From phonon confinement to phonon splitting in flat single nanostructures: A case of VO2@V2O5 core–shell nano-ribbons. Vibrational Spectroscopy, 61, 105-111. doi:10.1016/j.vibspec.2012.02.007

Van Bilzen, B., Homm, P., Dillemans, L., Su, C.-Y., Menghini, M., Sousa, M., … Locquet, J.-P. (2015). Production of VO2 thin films through post-deposition annealing of V2O3 and VOx films. Thin Solid Films, 591, 143-148. doi:10.1016/j.tsf.2015.08.036

Mwakikunga, B. W., Mudau, A. E., Brink, N., & Willers, C. J. (2011). Flame temperature trends in reacting vanadium and tungsten ethoxide fluid sprays during CO2-laser pyrolysis. Applied Physics B, 105(2), 451-462. doi:10.1007/s00340-011-4709-7

Kruger, B. A., Joushaghani, A., & Poon, J. K. S. (2012). Design of electrically driven hybrid vanadium dioxide (VO_2) plasmonic switches. Optics Express, 20(21), 23598. doi:10.1364/oe.20.023598

Kim, J. T. (2014). CMOS-compatible hybrid plasmonic modulator based on vanadium dioxide insulator-metal phase transition. Optics Letters, 39(13), 3997. doi:10.1364/ol.39.003997

Choe, J.-H., & Kim, J. T. (2015). Design of Vanadium Dioxide-Based Plasmonic Modulator for Both TE and TM Modes. IEEE Photonics Technology Letters, 27(5), 514-517. doi:10.1109/lpt.2014.2384020

Joushaghani, A., Jeong, J., Paradis, S., Alain, D., Stewart Aitchison, J., & Poon, J. K. S. (2015). Wavelength-size hybrid Si-VO_2 waveguide electroabsorption optical switches and photodetectors. Optics Express, 23(3), 3657. doi:10.1364/oe.23.003657

Markov, P., Marvel, R. E., Conley, H. J., Miller, K. J., Haglund, R. F., & Weiss, S. M. (2015). Optically Monitored Electrical Switching in VO2. ACS Photonics, 2(8), 1175-1182. doi:10.1021/acsphotonics.5b00244

Ooi, K. J. A., Bai, P., Chu, H. S., & Ang, L. K. (2013). Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator. Nanophotonics, 2(1). doi:10.1515/nanoph-2012-0028

Chen, S., Yi, X., Ma, H., Wang, H., Tao, X., Chen, M., & Ke, C. (2003). A novel structural VO2micro-optical switch. Optical and Quantum Electronics, 35(15), 1351-1355. doi:10.1023/b:oqel.0000009429.14136.3d

Briggs, R. M., Pryce, I. M., & Atwater, H. A. (2010). Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. Optics Express, 18(11), 11192. doi:10.1364/oe.18.011192

Joushaghani, A., Kruger, B. A., Paradis, S., Alain, D., Stewart Aitchison, J., & Poon, J. K. S. (2013). Sub-volt broadband hybrid plasmonic-vanadium dioxide switches. Applied Physics Letters, 102(6), 061101. doi:10.1063/1.4790834

Ryckman, J. D., Hallman, K. A., Marvel, R. E., Haglund, R. F., & Weiss, S. M. (2013). Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition. Optics Express, 21(9), 10753. doi:10.1364/oe.21.010753

Wang, H., Yi, X., Chen, S., & Fu, X. (2005). Fabrication of vanadium oxide micro-optical switches. Sensors and Actuators A: Physical, 122(1), 108-112. doi:10.1016/j.sna.2005.03.063

Ryckman, J. D., Diez-Blanco, V., Nag, J., Marvel, R. E., Choi, B. K., Haglund, R. F., & Weiss, S. M. (2012). Photothermal optical modulation of ultra-compact hybrid Si-VO_2 ring resonators. Optics Express, 20(12), 13215. doi:10.1364/oe.20.013215

Markov, P., Appavoo, K., Haglund, R. F., & Weiss, S. M. (2015). Hybrid Si-VO_2-Au optical modulator based on near-field plasmonic coupling. Optics Express, 23(5), 6878. doi:10.1364/oe.23.006878

Sánchez, L., Lechago, S., & Sanchis, P. (2015). Ultra-compact TE and TM pass polarizers based on vanadium dioxide on silicon. Optics Letters, 40(7), 1452. doi:10.1364/ol.40.001452

Alam, M. Z., Caspers, J. N., Aitchison, J. S., & Mojahedi, M. (2013). Compact low loss and broadband hybrid plasmonic directional coupler. Optics Express, 21(13), 16029. doi:10.1364/oe.21.016029

Yin, M., Deng, Q., Li, Y., Wang, X., & Li, H. (2015). Ultrashort and Low-Loss Polarization Rotators Utilizing Hybrid Plasmonic-Dielectric Couplers. IEEE Photonics Technology Letters, 27(3), 229-232. doi:10.1109/lpt.2014.2365294

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem