- -

Pyrethroids levels in paddy field water under Mediterranean conditions: measurements and distribution modelling

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Pyrethroids levels in paddy field water under Mediterranean conditions: measurements and distribution modelling

Show simple item record

Files in this item

dc.contributor.author Aznar, Ramón es_ES
dc.contributor.author Sánchez Brunete, Consuelo es_ES
dc.contributor.author Albero, Beatriz es_ES
dc.contributor.author Moreno-Ramón, Héctor es_ES
dc.contributor.author Tadeo, José L. es_ES
dc.coverage.spatial east=-0.35465240478515625; north=39.34067026099156; name=El Palmar, València, Espanya es_ES
dc.date.accessioned 2017-04-27T06:46:29Z
dc.date.available 2017-04-27T06:46:29Z
dc.date.issued 2017
dc.identifier.issn 1611-2490
dc.identifier.uri http://hdl.handle.net/10251/80079
dc.description.abstract [EN] The cultivation of rice (Oriza sativa L.) under Mediterranean conditions regularly requires the use of treated wastewater due to shortage of freshwater. As a consequence, the intensification of rice production to supply the uprising demand of grain could break the stability between agriculture and environment. In this work, we studied the occurrence and distribution of pyrethroids in surface water and groundwater collected during two periods (flooding and dry soil conditions) in paddy fields located in the Spanish Mediterranean coast. Pyrethroids were detected at concentrations ranging from 14 to 1450 ng L-1 in surface water and from 6 to 833 ng L-1 in groundwater. The results obtained were valuated statistically using principal component analysis, and differences between both sampling campaigns were found, with lower concentrations of the target compounds during the flooding sampling event. Moreover, a geographic information system program was used to represent a model distribution of the obtained results, showing wastewater treatment plants as the main sources of contamination and the decrease of pyrethroids during flooding condition when water flows over the paddy fields. The impact of these compounds on water quality was discussed. es_ES
dc.description.sponsorship Authors wish to thank INIA for the predoctoral fellowship (R. Aznar) and Spanish Ministry of Economy and Competitiveness RTA2014-00012-C03-01 for financial support. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation info:eu-repo/grantAgreement/MINECO//RTA2014-00012-C03-01/ES/Determinación de los niveles y evaluación del comportamiento ambiental de antibióticos y otros contaminantes emergentes en enmiendas orgánicas, en el suelo y en el cultivo tras la aplicación de las enmiendas/ es_ES
dc.relation.ispartof Paddy and Water Environment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Groundwater es_ES
dc.subject Surface water es_ES
dc.subject GIS es_ES
dc.subject Paddy fields es_ES
dc.subject Pyrethroids es_ES
dc.subject WWTPs es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Pyrethroids levels in paddy field water under Mediterranean conditions: measurements and distribution modelling es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10333-016-0550-2
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Aznar, R.; Sánchez Brunete, C.; Albero, B.; Moreno-Ramón, H.; Tadeo, JL. (2017). Pyrethroids levels in paddy field water under Mediterranean conditions: measurements and distribution modelling. Paddy and Water Environment. 15(2):307-316. https://doi.org/10.1007/s10333-016-0550-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10333-016-0550-2 es_ES
dc.description.upvformatpinicio 307 es_ES
dc.description.upvformatpfin 316 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 317739 es_ES
dc.identifier.eissn 1611-2504
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.relation.references Albalawneh A, Chang TK, Chou CS (2015) Impacts on soil quality from long-term irrigation with treated greywater. Paddy Water Environ. doi: 10.1007/s10333-015-0499-6 es_ES
dc.relation.references Aznar R, Moreno-Ramón H, Albero B, Sánchez-Brunete C, Tadeo JL (2016a) Spatio-temporal distribution of pyrethroids in soil in mediterranean paddy fields. J Soils Sediments. doi: 10.1007/s11368-016-1417-2 es_ES
dc.relation.references Aznar R, Albero B, Sánchez-Brunete C, Miguel E, Moreno-Ramón H, Tadeo JL (2016b) Simultaneous determination of multiclass emerging contaminants in aquatic plants by ultrasound-assisted matrix solid-phase dispersion and GC–MS. Environ Sci Pollut Res. doi: 10.1007/s11356-016-6327-8 es_ES
dc.relation.references Campo J, Masia A, Blasco C, Pico Y (2013) Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River Basins. J Hazard Mater 263:146–157 es_ES
dc.relation.references Corcellas C, Eljarrat E, Barceló D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110–116 es_ES
dc.relation.references Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=URISERV:l28139&from=ES Accessed 14 Dec 2015 es_ES
dc.relation.references Duran JJ, García de Domingo A, López-Geta JA, Robledo PA, Soria JM (2005) Los Humedales del Mediterráneo español: modelos geológicos e hidrogeológicos. Instituto Geológico y Minero Español, Madrid España. 160 es_ES
dc.relation.references European Commission (2005) Review report for the active substance Esfenvalerate, 6846/VI/97-final es_ES
dc.relation.references Farnham IM, Singh AK, Stetzenbach KJ, Johannesson KH (2002) Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemometr Intell Lab 60:265–281 es_ES
dc.relation.references Feo ML, Ginebreda A, Eljarrat E, Barcelo D (2010a) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hazard Mater 393:156–162 es_ES
dc.relation.references Feo ML, Eljarrat E, Barcelo D (2010b) A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples. J Chromatogr A 1217:2248–2253 es_ES
dc.relation.references Gimenez-Forcada E (2014) Space/time development of seawater intrusion: a study case in Vinaroz coastal plain (Eastern Spain) using HFE-Diagram, and spatial distribution of hydrochemical facies. J Hydrol 517:617–627 es_ES
dc.relation.references Hendley P, Holmes C, Kay S, Maund SJ, Travis KZ, Zhang MH (2001) Probabilistic risk assessment of cotton pyrethroids: iII. A spatial analysis of the Mississippi, USA, cotton landscape. Environ Toxicol Chem 20:669–678 es_ES
dc.relation.references Hildebrandt A, Lacorte S, Barcelo D (2007) Assessment of priority pesticides, degradation products, and pesticide adjuvants in groundwaters and top soils from agricultural areas of the Ebro river basin. Anal Bioanal Chem 387:1459–1468 es_ES
dc.relation.references Hildebrandt A, Guillamon M, Lacorte S, Tauler R, Barcelo D (2008) Impact of pesticides used in agriculture and vineyards to surface and groundwater quality (North Spain). Water Res 42:3315–3326 es_ES
dc.relation.references Hladik ML, Kuivila KM (2009) Assessing the occurrence and distribution of pyrethroids in water and suspended sediments. J Agric Food Chem 57:9079–9085 es_ES
dc.relation.references Kuivila KM, Hladik ML, Ingersoll CG, Kemble NE, Moran PW, Calhoun DL, Nowell LH, Gilliom RJ (2012) Occurrence and potential sources of pyrethroid insecticides in stream sediments from seven U.S. metropolitan areas. Environ Sci Technol 46:4297–4303 es_ES
dc.relation.references McManus SL, Richards KG, Grant J, Mannix A, Coxon CE (2014) Pesticide occurrence in groundwater and the physical characteristics in association with these detections in Ireland. Environ Monit Assess 186:7819–7836 es_ES
dc.relation.references Money E, Carter GP, Serre ML (2009) Using river distances in the space/time estimation of dissolved oxygen along two impaired river networks in New Jersey. Water Res 43:1948–1958 es_ES
dc.relation.references Monica N, Choi K (2016) Temporal and spatial analysis of water quality in Saemangeum watershed using multivariate statistical techniques. Paddy Water Environ 14:3–17 es_ES
dc.relation.references Moreno-Ramón H, Marqués-Mateu A, Ibáñez-Asensio S, Gisbert JM (2015) Wetland soils under rice management and seawater intrusion: characterization and classification. Spa J Soil Sci 5(2):111–129 es_ES
dc.relation.references Moschet C, Vermeirssen ELM, Seiz R, Pfefferli H, Hollender J (2014) Picogram per liter detections of pyrethroids and organophosphates in surface waters using passive sampling. Water Res 66:411–422 es_ES
dc.relation.references Pistocchi A, Vizcaino P, Hauck M (2009) A GIS model-based screening of potential contamination of soil and water by pyrethroids in Europe. J Environ Manag 90:3410–3421 es_ES
dc.relation.references Rodríguez-Liébana JA, ElGouzi S, Mingorance MD, Castillo A, Peña A (2014) Irrigation of a Mediterranean soil under fields’ conditions with urban wastewater: effect on pesticides behavior. Agric Ecosyst Environ 185:176–185 es_ES
dc.relation.references SANCO-12571 (2013) Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed. European Commission. http://ec.europa.eu/food/plant/pesticides/guidance_documents/docs/qualcontrol_en.pdf . Accessed 4 April 2016 es_ES
dc.relation.references Smiley PC Jr, King KW, Fausey NR (2014) Annual and seasonal differences in pesticides mixtures within channelized agricultural headwater streams in central Ohio. Agric Ecosyst Environ 193:83–95 es_ES
dc.relation.references Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA Natural Resources Conservation Service, Washington. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580 . Accessed 4 April 2016 es_ES
dc.relation.references Solomon KR, Giddings JM, Maund SJ (2001) Probabilistic risk assessment of cotton pyrethroids: i. Distributional analyses of laboratory aquatic toxicity data. Environ Toxicol Chem 20:652–659 es_ES
dc.relation.references Sprecher SW (2008) Installing Monitoring wells in soils. Version 1.0. USDA—NRCS (United States Department of Agriculture)-(Natural Resources Conservation Service). Lincoln. USA. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052914.pdf . Accessed 4 April 2016 es_ES
dc.relation.references Swift MJ, Izac AMN, van Noordwijk M (2015) Biodiversity and ecosystem services in agriculture landscapes-are we asking the right questions? Agric Ecosyst Environ 104:113–134 es_ES
dc.relation.references Weston DP, Holmes RW, You J, Lydy MJ (2005) Aquatic toxicity due to residential use of pyrethroid insecticides. Environ Sci Technol 39:9778–9784 es_ES
dc.relation.references Weston DP, Holmes RW, Lydy MJ (2009) Residential runoff as a source of pyrethroid pesticides to urban creeks. Environ Pollut 157:287–294 es_ES
dc.relation.references Weston DP, Ramil HL, Lydy MJ (2013) Pyrethroid insecticides in municipal wastewater. Environ Toxicol Chem 32:2460–2468 es_ES


This item appears in the following Collection(s)

Show simple item record