Mostrar el registro sencillo del ítem
dc.contributor.author | Furió Tarí, Pedro | es_ES |
dc.contributor.author | Conesa, Ana | es_ES |
dc.contributor.author | Tarazona Campos, Sonia | es_ES |
dc.date.accessioned | 2017-04-27T14:00:30Z | |
dc.date.available | 2017-04-27T14:00:30Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1471-2105 | |
dc.identifier.uri | http://hdl.handle.net/10251/80136 | |
dc.description | © The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. | es_ES |
dc.description.abstract | [EN] Background: The integrative analysis of multiple genomics data often requires that genome coordinates-based signals have to be associated with proximal genes. The relative location of a genomic region with respect to the gene (gene area) is important for functional data interpretation; hence algorithms that match regions to genes should be able to deliver insight into this information. Results: In this work we review the tools that are publicly available for making region-to-gene associations. We also present a novel method, RGmatch, a flexible and easy-to-use Python tool that computes associations either at the gene, transcript, or exon level, applying a set of rules to annotate each region-gene association with the region location within the gene. RGmatch can be applied to any organism as long as genome annotation is available. Furthermore, we qualitatively and quantitatively compare RGmatch to other tools. Conclusions: RGmatch simplifies the association of a genomic region with its closest gene. At the same time, it is a powerful tool because the rules used to annotate these associations are very easy to modify according to the researcher’s specific interests. Some important differences between RGmatch and other similar tools already in existence are RGmatch’s flexibility, its wide range of user options, compatibility with any annotatable organism, and its comprehensive and user-friendly output. | es_ES |
dc.description.sponsorship | The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under the grant agreement 306000 and the MINECO (Economy and Competitiveness Ministry) BIO2012-40244 grant. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | BioMed Central | es_ES |
dc.relation.ispartof | BMC Bioinformatics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Associations | es_ES |
dc.subject | Gene | es_ES |
dc.subject | Genomic region | es_ES |
dc.subject | Peak | es_ES |
dc.subject | Omics integration | es_ES |
dc.subject | NGS | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | RGmatch: matching genomic regions to proximal genes in omics data integration | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s12859-016-1293-1 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/306000/EU/User-driven Development of Statistical Methods for Experimental Planning, Data Gathering, and Integrative Analysis of Next Generation Sequencing, Proteomics and Metabolomics data/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2012-40244/ES/DESARROLLO DE RECURSOS COMPUTACIONALES PARA LA CARACTERIZACION Y ANOTACION FUNCIONAL DE ARN NO CODIFICANTE./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses | es_ES |
dc.description.bibliographicCitation | Furió Tarí, P.; Conesa, A.; Tarazona Campos, S. (2016). RGmatch: matching genomic regions to proximal genes in omics data integration. BMC Bioinformatics. 17((Suppl 15)). https://doi.org/10.1186/s12859-016-1293-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1186/s12859-016-1293-1 | es_ES |
dc.description.upvformatpinicio | 1293 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | (Suppl 15) | es_ES |
dc.relation.senia | 321386 | es_ES |
dc.identifier.pmid | 26817711 | en_EN |
dc.identifier.pmcid | PMC5133492 | en_EN |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.description.references | Shu W, Chen H, Bo X, Wang S. Genome-wide analysis of the relationships between DNaseI HS, histone modifications and gene expression reveals distinct modes of chromatin domains. Nucleic Acids Res. 2011;39:7428–43. | es_ES |
dc.description.references | Song L, Zhang Z, Grasfeder LL, Boyle AP, Giresi PG, Lee B-K, et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res. 2011;21:1757–67. | es_ES |
dc.description.references | He HH, Meyer CA, Chen MW, Jordan VC, Brown M, Liu XS. Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res. 2012;22:1015–25. | es_ES |
dc.description.references | Natarajan A, Yardimci GG, Sheffield NC, Crawford GE, Ohler U. Predicting cell-type-specific gene expression from regions of open chromatin. Genome Res. 2012;22:1711–22. | es_ES |
dc.description.references | Wang Y-M, Zhou P, Wang L-Y, Li Z-H, Zhang Y-N, Zhang Y-X. Correlation between DNase I hypersensitive site distribution and gene expression in HeLa S3 cells. PLoS One. 2012;7:e42414. | es_ES |
dc.description.references | Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89. | es_ES |
dc.description.references | Mclean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28:495–501. | es_ES |
dc.description.references | Ji H, Jiang H, Ma W, Johnson DS, Myers RM, Wong WH, Ji H, Jiang H, Ma W, Johnson DS, Myers RM, Wong WH. An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol. 2008;26:1293–300. | es_ES |
dc.description.references | Wang B, Cunningham JM, Yang X. Seq2pathway: an R/Bioconductor package for pathway analysis of next-generation sequencing data. Bioinformatics. 2015;31:3043. | es_ES |
dc.description.references | Yu G, Wang L-G, He Q-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics. 2015;31:2382–3. | es_ES |