- -

RGmatch: matching genomic regions to proximal genes in omics data integration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

RGmatch: matching genomic regions to proximal genes in omics data integration

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Furió Tarí, Pedro es_ES
dc.contributor.author Conesa, Ana es_ES
dc.contributor.author Tarazona Campos, Sonia es_ES
dc.date.accessioned 2017-04-27T14:00:30Z
dc.date.available 2017-04-27T14:00:30Z
dc.date.issued 2016
dc.identifier.issn 1471-2105
dc.identifier.uri http://hdl.handle.net/10251/80136
dc.description © The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. es_ES
dc.description.abstract [EN] Background: The integrative analysis of multiple genomics data often requires that genome coordinates-based signals have to be associated with proximal genes. The relative location of a genomic region with respect to the gene (gene area) is important for functional data interpretation; hence algorithms that match regions to genes should be able to deliver insight into this information. Results: In this work we review the tools that are publicly available for making region-to-gene associations. We also present a novel method, RGmatch, a flexible and easy-to-use Python tool that computes associations either at the gene, transcript, or exon level, applying a set of rules to annotate each region-gene association with the region location within the gene. RGmatch can be applied to any organism as long as genome annotation is available. Furthermore, we qualitatively and quantitatively compare RGmatch to other tools. Conclusions: RGmatch simplifies the association of a genomic region with its closest gene. At the same time, it is a powerful tool because the rules used to annotate these associations are very easy to modify according to the researcher’s specific interests. Some important differences between RGmatch and other similar tools already in existence are RGmatch’s flexibility, its wide range of user options, compatibility with any annotatable organism, and its comprehensive and user-friendly output. es_ES
dc.description.sponsorship The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under the grant agreement 306000 and the MINECO (Economy and Competitiveness Ministry) BIO2012-40244 grant. en_EN
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof BMC Bioinformatics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Associations es_ES
dc.subject Gene es_ES
dc.subject Genomic region es_ES
dc.subject Peak es_ES
dc.subject Omics integration es_ES
dc.subject NGS es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title RGmatch: matching genomic regions to proximal genes in omics data integration es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12859-016-1293-1
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/306000/EU/User-driven Development of Statistical Methods for Experimental Planning, Data Gathering, and Integrative Analysis of Next Generation Sequencing, Proteomics and Metabolomics data/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2012-40244/ES/DESARROLLO DE RECURSOS COMPUTACIONALES PARA LA CARACTERIZACION Y ANOTACION FUNCIONAL DE ARN NO CODIFICANTE./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.description.bibliographicCitation Furió Tarí, P.; Conesa, A.; Tarazona Campos, S. (2016). RGmatch: matching genomic regions to proximal genes in omics data integration. BMC Bioinformatics. 17((Suppl 15)). https://doi.org/10.1186/s12859-016-1293-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/s12859-016-1293-1 es_ES
dc.description.upvformatpinicio 1293 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue (Suppl 15) es_ES
dc.relation.senia 321386 es_ES
dc.identifier.pmid 26817711 en_EN
dc.identifier.pmcid PMC5133492 en_EN
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Shu W, Chen H, Bo X, Wang S. Genome-wide analysis of the relationships between DNaseI HS, histone modifications and gene expression reveals distinct modes of chromatin domains. Nucleic Acids Res. 2011;39:7428–43. es_ES
dc.description.references Song L, Zhang Z, Grasfeder LL, Boyle AP, Giresi PG, Lee B-K, et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res. 2011;21:1757–67. es_ES
dc.description.references He HH, Meyer CA, Chen MW, Jordan VC, Brown M, Liu XS. Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res. 2012;22:1015–25. es_ES
dc.description.references Natarajan A, Yardimci GG, Sheffield NC, Crawford GE, Ohler U. Predicting cell-type-specific gene expression from regions of open chromatin. Genome Res. 2012;22:1711–22. es_ES
dc.description.references Wang Y-M, Zhou P, Wang L-Y, Li Z-H, Zhang Y-N, Zhang Y-X. Correlation between DNase I hypersensitive site distribution and gene expression in HeLa S3 cells. PLoS One. 2012;7:e42414. es_ES
dc.description.references Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89. es_ES
dc.description.references Mclean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28:495–501. es_ES
dc.description.references Ji H, Jiang H, Ma W, Johnson DS, Myers RM, Wong WH, Ji H, Jiang H, Ma W, Johnson DS, Myers RM, Wong WH. An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol. 2008;26:1293–300. es_ES
dc.description.references Wang B, Cunningham JM, Yang X. Seq2pathway: an R/Bioconductor package for pathway analysis of next-generation sequencing data. Bioinformatics. 2015;31:3043. es_ES
dc.description.references Yu G, Wang L-G, He Q-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics. 2015;31:2382–3. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem