- -

Z-permutable subgroups of finite groups

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Z-permutable subgroups of finite groups

Show simple item record

Files in this item

dc.contributor.author Heliel, A.A. es_ES
dc.contributor.author Ballester Bolinches, Adolfo es_ES
dc.contributor.author Esteban Romero, Ramón es_ES
dc.contributor.author Almestady, M.O. es_ES
dc.date.accessioned 2017-06-13T15:44:11Z
dc.date.available 2017-06-13T15:44:11Z
dc.date.issued 2016
dc.identifier.issn 0026-9255
dc.identifier.uri http://hdl.handle.net/10251/82773
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s00605-015-0756-1 es_ES
dc.description.abstract Let Z be a complete set of Sylow subgroups of a finite group G, that is, a set composed of a Sylow p-subgroup of G for each p dividing the order of G. A subgroup H of G is called Z-permutable if H permutes with all members of Z. The main goal of this paper is to study the embedding of the Z-permutable subgroups and the influence of Z-permutability on the group structure. es_ES
dc.description.sponsorship This Project was funded by the Deanship of Scientific Research (DSR), at King Abdulaziz University, Jeddah, under grant no. (1/31/RG). The authors, therefore, acknowledge with thanks DSR technical and financial support. The second and the third author have been supported by the research project MTM2010-19938-C03-01 from the Ministerio de Ciencia e Innovacion, Spain, and the second author has also been supported by the National Natural Science Foundation of China (Grant No. 11271085). We also thank E. Vdovin for providing us with a proof of Theorem 9. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Monatshefte für Mathematik es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Finite group es_ES
dc.subject P-soluble group es_ES
dc.subject P-supersoluble es_ES
dc.subject Z-permutable subgroup es_ES
dc.subject Subnormal subgroup es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Z-permutable subgroups of finite groups es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00605-015-0756-1
dc.relation.projectID info:eu-repo/grantAgreement/KAU//1%2F31%2FRG/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-19938-C03-01/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE LOS GRUPOS. APLICACIONES I/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//11271085/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Heliel, A.; Ballester Bolinches, A.; Esteban Romero, R.; Almestady, M. (2016). Z-permutable subgroups of finite groups. Monatshefte für Mathematik. 179(4):523-534. https://doi.org/10.1007/s00605-015-0756-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00605-015-0756-1 es_ES
dc.description.upvformatpinicio 523 es_ES
dc.description.upvformatpfin 534 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 179 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 292554 es_ES
dc.contributor.funder King Abdulaziz University, Arabia Saudí es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Asaad, M., Heliel, A.A.: On permutable subgroups of finite groups. Arch. Math. (Basel) 80, 113–118 (2003). doi: 10.1007/s00013-003-0782-4 es_ES
dc.description.references Ballester-Bolinches, A., Esteban-Romero, R.: On minimal non-supersoluble groups. Rev. Mat. Iberoam. 23(1), 127–142 (2007). doi: 10.4171/RMI/488 es_ES
dc.description.references Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of finite groups, de Gruyter Expositions in Mathematics, vol. 53. Walter de Gruyter, Berlin (2010). doi: 10.1515/9783110220612 es_ES
dc.description.references Deskins, W.E.: On quasinormal subgroups of finite groups. Math. Z. 82, 125–132 (1963). doi: 10.1007/BF01111801 es_ES
dc.description.references Doerk, K.: Eine Bemerkung über das Reduzieren von Hallgruppen in endlichen auflösbaren Gruppen. Arch. Math. (Basel) 60, 505–507 (1993). doi: 10.1007/BF01236072 es_ES
dc.description.references Doerk, K., Hawkes, T.: Finite Soluble Groups, De Gruyter Expositions in Mathematics, vol. 4. Walter de Gruyter, Berlin, New York (1992). doi: 10.1515/9783110870138 es_ES
dc.description.references Hall, P.: On the Sylow systems of a soluble group. Proc. Lond. Math. Soc. 2(43), 316–323 (1937). doi: 10.1112/plms/s2-43.4.316 es_ES
dc.description.references Heliel, A.A., Al-Gafri, T.M.: On conjugate- $${\mathfrak{{Z}}}$$ Z -permutable subgroups of finite groups. J. Algebra Appl. 12(8), 1350060 (2013). doi: 10.1142/S0219498813500606 (14 pages) es_ES
dc.description.references Heliel, A.A., Li, X., Li, Y.: On $${\mathfrak{{Z}}}$$ Z -permutability of minimal subgroups of finite groups. Arch. Math. (Basel) 83, 9–16 (2004). doi: 10.1007/s00013-004-1014-2 es_ES
dc.description.references Huppert, B.: Endliche Gruppen I, Grund. Math. Wiss., vol. 134. Springer, Berlin, Heidelberg, New York (1967) es_ES
dc.description.references Kegel, O.H.: Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z. 78, 205–221 (1962). doi: 10.1007/BF01195169 es_ES
dc.description.references Li, X., Li, Y., Wang, L.: $${\mathfrak{{Z}}}$$ Z -permutable subgroups and $$p$$ p -nilpotency of finite groups II. Israel J. Math. 164, 75–85 (2008). doi: 10.1007/s11856-008-0021-6 es_ES
dc.description.references Li, Y., Heliel, A.A.: On permutable subgroups of finite groups II. Commun. Algebra 33(9), 3353–3358 (2005). doi: 10.1081/AGB-200058541 es_ES
dc.description.references Li, Y., Li, X.: $$\mathfrak{Z}$$ Z -permutable subgroups and $$p$$ p -nilpotence of finite groups. J. Pure Appl. Algebra 202, 72–81 (2005). doi: 10.1016/j.jpaa.2005.01.007 es_ES
dc.description.references Li, Y., Wang, L., Wang, Y.: Finite groups with some $${\mathfrak{{Z}}}$$ Z -permutable subgroups. Glasgow Math. J. 52, 145–150 (2010). doi: 10.1017/S0017089509990231 es_ES
dc.description.references Vdovin, E.P., Revin, D.O.: Theorems of Sylow type. Russ. Math. Surveys 66(5), 829–870 (2011). doi: 10.1070/RM2011v066n05ABEH004762 es_ES
dc.description.references Wang, L.F., Wang, Y.M.: A remark on $${\mathfrak{{Z}}}$$ Z -permutability of finite groups. Acta Math. Sinica 23(11), 1985–1990 (2007). doi: 10.1007/s10114-005-0906-9 es_ES


This item appears in the following Collection(s)

Show simple item record