- -

Linear chaos for the Quick-Thinking-Driver model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Linear chaos for the Quick-Thinking-Driver model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Conejero, J. Alberto es_ES
dc.contributor.author Murillo Arcila, Marina es_ES
dc.contributor.author Seoane-Sepúlveda, Juan B es_ES
dc.date.accessioned 2017-06-13T17:46:05Z
dc.date.available 2017-06-13T17:46:05Z
dc.date.issued 2016-04
dc.identifier.issn 0037-1912
dc.identifier.uri http://hdl.handle.net/10251/82775
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s00233-015-9704-6 es_ES
dc.description.abstract In recent years, the topic of car-following has experimented an increased importance in traffic engineering and safety research. This has become a very interesting topic because of the development of driverless cars (Google driverless cars, http://en.wikipedia.org/wiki/Google_driverless_car).Driving models which describe the interaction between adjacent vehicles in the same lane have a big interest in simulation modeling, such as the Quick-Thinking-Driver model. A non-linear version of it can be given using the logistic map, and then chaos appears. We show that an infinite-dimensional version of the linear model presents a chaotic behaviour using the same approach as for studying chaos of death models of cell growth. es_ES
dc.description.sponsorship The authors were supported by a grant from the FPU program of MEC and MEC Project MTM2013-47093-P. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Semigroup Forum es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Death model es_ES
dc.subject Birth-and-death problem es_ES
dc.subject Car-following es_ES
dc.subject Quick-Thinking-Driver es_ES
dc.subject Devaney chaos es_ES
dc.subject Distributional chaos es_ES
dc.subject C-0-semigroups es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Linear chaos for the Quick-Thinking-Driver model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00233-015-9704-6
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-47093-P/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Conejero, JA.; Murillo Arcila, M.; Seoane-Sepúlveda, JB. (2016). Linear chaos for the Quick-Thinking-Driver model. Semigroup Forum. 92(2):486-493. https://doi.org/10.1007/s00233-015-9704-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00233-015-9704-6 es_ES
dc.description.upvformatpinicio 486 es_ES
dc.description.upvformatpfin 493 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 92 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 325581 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Aroza, J., Peris, A.: Chaotic behaviour of birth-and-death models with proliferation. J. Differ. Equ. Appl. 18(4), 647–655 (2012) es_ES
dc.description.references Banasiak, J., Lachowicz, M.: Chaos for a class of linear kinetic models. C. R. Acad. Sci. Paris Série II 329, 439–444 (2001) es_ES
dc.description.references Banasiak, J., Lachowicz, M.: Topological chaos for birth-and-death-type models with proliferation. Math. Models Methods Appl. Sci. 12(6), 755–775 (2002) es_ES
dc.description.references Banasiak, J., Lachowicz, M., Moszyński, M.: Topological chaos: when topology meets medicine. Appl. Math. Lett. 16(3), 303–308 (2003) es_ES
dc.description.references Banasiak, J., Moszyński, M.: A generalization of Desch–Schappacher–Webb criteria for chaos. Discret. Contin. Dyn. Syst. 12(5), 959–972 (2005) es_ES
dc.description.references Banasiak, J., Moszyński, M.: Dynamics of birth-and-death processes with proliferation–stability and chaos. Discret. Contin. Dyn. Syst. 29(1), 67–79 (2011) es_ES
dc.description.references Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am. Math. Mon. 99(4), 332–334 (1992) es_ES
dc.description.references Barrachina, X., Conejero, J.A.: Devaney chaos and distributional chaos in the solution of certain partial differential equations. Abstr. Appl. Anal. 457,019, 11 (2012) es_ES
dc.description.references Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A.: Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 373(1), 83–93 (2011) es_ES
dc.description.references Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. Part F 2(4), 181–196 (1999) es_ES
dc.description.references Brzeźniak, Z., Dawidowicz, A.L.: On periodic solutions to the von Foerster–Lasota equation. Semigroup Forum 78, 118–137 (2009) es_ES
dc.description.references Chandler, R.E., Herman, R., Montroll, E.W.: Traffic dynamics: studies in car following. Op. Res. 6, 165–184 (1958) es_ES
dc.description.references Chung, C.C., Gartner, N.: Acceleration noise as a measure of effectiveness in the operation of traffic control systems. Operations Research Center. Massachusetts Institute of Technology. Cambridge (1973) es_ES
dc.description.references CNN (2014) Driverless car tech gets serious at CES. http://edition.cnn.com/2014/01/09/tech/innovation/self-driving-cars-ces/ . Accessed 7 Apr 2014 es_ES
dc.description.references Conejero, J.A., Rodenas, F., Trujillo, M.: Chaos for the hyperbolic bioheat equation. Discret. Contin. Dyn. Syst. 35(2), 653–668 (2015) es_ES
dc.description.references DARPA Grand Challenge. http://en.wikipedia.org/wiki/2005_DARPA_Grand_Challenge#2005_Grand_Challenge es_ES
dc.description.references de Laubenfels, R., Emamirad, H., Protopopescu, V.: Linear chaos and approximation. J. Approx. Theory 105(1), 176–187 (2000) es_ES
dc.description.references Desch, W., Schappacher, W., Webb, G.F.: Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dyn. Syst. 17(4), 793–819 (1997) es_ES
dc.description.references El Mourchid, S.: The imaginary point spectrum and hypercyclicity. Semigroup Forum 73(2), 313–316 (2006) es_ES
dc.description.references El Mourchid, S., Metafune, G., Rhandi, A., Voigt, J.: On the chaotic behaviour of size structured cell populations. J. Math. Anal. Appl. 339(2), 918–924 (2008) es_ES
dc.description.references El Mourchid, S., Rhandi, A., Vogt, H., Voigt, J.: A sharp condition for the chaotic behaviour of a size structured cell population. Differ. Integral Equ. 22(7–8), 797–800 (2009) es_ES
dc.description.references Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York, 2000. With contributions by Brendle S., Campiti M., Hahn T., Metafune G., Nickel G., Pallara D., Perazzoli C., Rhandi A., Romanelli S., and Schnaubelt R es_ES
dc.description.references Godefroy, G., Shapiro, J.H.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98(2), 229–269 (1991) es_ES
dc.description.references Greenshields, B.D.: The photographic method of studying traffic behavior. In: Proceedings of the 13th Annual Meeting of the Highway Research Board, pp. 382–399 (1934) es_ES
dc.description.references Greenshields, B.D.: A study of traffic capacity. In: Proceedings of the 14th Annual Meeting of the Highway Research Board, pp. 448–477 (1935) es_ES
dc.description.references Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear Chaos. Universitext. Springer, London (2011) es_ES
dc.description.references Herman, R., Montroll, E.W., Potts, R.B., Rothery, R.W.: Traffic dynamics: analysis of stability in car following. Op. Res. 7, 86–106 (1959) es_ES
dc.description.references Helly, W.: Simulation of Bottleneckes in Single-Lane Traffic Flow. Research Laboratories, General Motors. Elsevier, New York (1953) es_ES
dc.description.references Li, T.: Nonlinear dynamics of traffic jams. Phys. D 207(1–2), 41–51 (2005) es_ES
dc.description.references Lo, S.C., Cho, H.J.: Chaos and control of discrete dynamic traffic model. J. Franklin Inst. 342(7), 839–851 (2005) es_ES
dc.description.references Martínez-Giménez, F., Oprocha, P., Peris, A.: Distributional chaos for backward shifts. J. Math. Anal. Appl. 351(2), 607–615 (2009) es_ES
dc.description.references Pipes, L.A.: An operational analysis of traffic dynamics. J. Appl. Phys. 24, 274–281 (1953) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem