Comfort, W.; Raczkowski, S.; Trigos-Arrieta, F. (2006). Making group topologies with, and without, convergent sequences. Applied General Topology. 7(1):109-124. doi:10.4995/agt.2006.1936.
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/82968
Title: | Making group topologies with, and without, convergent sequences | |
Author: | Comfort, W.W. Raczkowski, S.U. Trigos-Arrieta, F.J. | |
Issued date: |
|
|
Abstract: |
[EN] (1) Every infinite, Abelian compact (Hausdorff) group K admits 2|K|- many dense, non-Haar-measurable subgroups of cardinality |K|. When K is nonmetrizable, these may be chosen to be pseudocompact. (2) Every infinite ...[+]
|
|
Subjects: |
|
|
Copyrigths: | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | |
Source: |
|
|
DOI: |
|
|
Publisher: |
|
|
Publisher version: | https://doi.org/10.4995/agt.2006.1936 | |
Thanks: |
The second listed author acknowledges partial support from the University Research Council at CSU Bakersfield. She also wishes to thank Mrs. Mary Connie Comfort for her encouragement, without which this paper would never ...[+]
|
|
Type: |
|