Haboudane, D. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337-352. doi:10.1016/j.rse.2003.12.013
Hardisky, M.A., Klemas, V., Smart, R.M. 1983. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogrametry Engineering and Remote Sensing, 49, 77-83
Hernández-Clemente, R., Navarro-Cerrillo, R. M., Suárez, L., Morales, F., & Zarco-Tejada, P. J. (2011). Assessing structural effects on PRI for stress detection in conifer forests. Remote Sensing of Environment, 115(9), 2360-2375. doi:10.1016/j.rse.2011.04.036
[+]
Haboudane, D. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337-352. doi:10.1016/j.rse.2003.12.013
Hardisky, M.A., Klemas, V., Smart, R.M. 1983. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogrametry Engineering and Remote Sensing, 49, 77-83
Hernández-Clemente, R., Navarro-Cerrillo, R. M., Suárez, L., Morales, F., & Zarco-Tejada, P. J. (2011). Assessing structural effects on PRI for stress detection in conifer forests. Remote Sensing of Environment, 115(9), 2360-2375. doi:10.1016/j.rse.2011.04.036
Herrmann, I., Pimstein, A., Karnieli, A., Cohen, Y., Alchanatis, V., & Bonfil, D. J. (2011). LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sensing of Environment, 115(8), 2141-2151. doi:10.1016/j.rse.2011.04.018
Hilker, T., Coops, N. C., Hall, F. G., Black, T. A., Wulder, M. A., Nesic, Z., & Krishnan, P. (2008). Separating physiologically and directionally induced changes in PRI using BRDF models. Remote Sensing of Environment, 112(6), 2777-2788. doi:10.1016/j.rse.2008.01.011
Hill, M.J., Hanan, N.P., Hoffmann, W., Scholes, R., Prince, S., Ferwerda, J., Lucas, R.M., Baker, I., Arneth, A., Higgings, S.I., Barret, D.J., Disney, M., Hutley, L. 2011. Remote sensing and modeling of savannas: The state of the dis-union. 34th International Symposium on Remote Sensing of Environment. Sydney, 1-6.
HongRui, R., GuangSheng, Z., Feng, Z., XinShi, Z. 2011. Evaluating cellulose absorption index (CAI) for non-photosynthetic biomass estimation in the desert steppe of Inner Mongolia. Chinese Science Bulletin, 57, 1716-1722.
Huete, A. . (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295-309. doi:10.1016/0034-4257(88)90106-x
Kuusk, A. (1995). A fast, invertible canopy reflectance model. Remote Sensing of Environment, 51(3), 342-350. doi:10.1016/0034-4257(94)00059-v
Lee, K.-S., Cohen, W. B., Kennedy, R. E., Maiersperger, T. K., & Gower, S. T. (2004). Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sensing of Environment, 91(3-4), 508-520. doi:10.1016/j.rse.2004.04.010
Li, W., Niu, Z., Liang, X., Li, Z., Huang, N., Gao, S., … Muhammad, S. (2015). Geostatistical modeling using LiDAR-derived prior knowledge with SPOT-6 data to estimate temperate forest canopy cover and above-ground biomass via stratified random sampling. International Journal of Applied Earth Observation and Geoinformation, 41, 88-98. doi:10.1016/j.jag.2015.04.020
Liu, J., Miller, J.R., Haboudane, D., Pattey, E. 2004. Exploring the relationship between red edge parameters and crop variables for precision agriculture. 2004 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Anchorage, 1276-1279.
Mahalanobis, P.C. 1936. On the generalised distance in statistics. Proceedings National Institute of Science, India, 49-55
Nagler, P. L., Inoue, Y., Glenn, E. ., Russ, A. ., & Daughtry, C. S. . (2003). Cellulose absorption index (CAI) to quantify mixed soil–plant litter scenes. Remote Sensing of Environment, 87(2-3), 310-325. doi:10.1016/j.rse.2003.06.001
Pacheco-Labrador, J., González-Cascón, R., Martín, M. P., & Riaño, D. (2014). Understanding the optical responses of leaf nitrogen in Mediterranean Holm oak (Quercus ilex) using field spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 26, 105-118. doi:10.1016/j.jag.2013.05.013
Perez-Priego, O., Guan, J., Rossini, M., Fava, F., Wutzler, T., Moreno, G., … Migliavacca, M. (2015). Sun-induced chlorophyll fluorescence and photochemical reflectance index improve remote-sensing gross primary production estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem. Biogeosciences, 12(21), 6351-6367. doi:10.5194/bg-12-6351-2015
Pinty, B., & Verstraete, M. M. (1992). GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio, 101(1), 15-20. doi:10.1007/bf00031911
Privette, J. ., Myneni, R. ., Knyazikhin, Y., Mukelabai, M., Roberts, G., Tian, Y., … Leblanc, S. . (2002). Early spatial and temporal validation of MODIS LAI product in the Southern Africa Kalahari. Remote Sensing of Environment, 83(1-2), 232-243. doi:10.1016/s0034-4257(02)00075-5
Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119-126. doi:10.1016/0034-4257(94)90134-1
Riano, D., Vaughan, P., Chuvieco, E., Zarco-Tejada, P. J., & Ustin, S. L. (2005). Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: analysis at leaf and canopy level. IEEE Transactions on Geoscience and Remote Sensing, 43(4), 819-826. doi:10.1109/tgrs.2005.843316
Richter, K., Atzberger, C., Hank, T. B., & Mauser, W. (2012). Derivation of biophysical variables from Earth observation data: validation and statistical measures. Journal of Applied Remote Sensing, 6(1), 063557-1. doi:10.1117/1.jrs.6.063557
Rouse, J.W., Hass, R.H., Schell, J.A., Deering, D.W. 1974. Monitoring Vegetation Systems in the Great Plains whit ERTS. Proceeding, 3rd Earth Resource Technology Satellite (ERTS) Symposium, NASA, Washington DC, 1, 48-62
SCHMIDTLEIN, S. (2004). Mapping of continuous floristic gradients in grasslands using hyperspectral imagery. Remote Sensing of Environment, 92(1), 126-138. doi:10.1016/j.rse.2004.05.004
Serrano, L., Peñuelas, J., & Ustin, S. L. (2002). Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data. Remote Sensing of Environment, 81(2-3), 355-364. doi:10.1016/s0034-4257(02)00011-1
SHAPIRO, S. S., & WILK, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3-4), 591-611. doi:10.1093/biomet/52.3-4.591
Smith, G. M., & Milton, E. J. (1999). The use of the empirical line method to calibrate remotely sensed data to reflectance. International Journal of Remote Sensing, 20(13), 2653-2662. doi:10.1080/014311699211994
Wieneke, S., Ahrends, H., Damm, A., Pinto, F., Stadler, A., Rossini, M., & Rascher, U. (2016). Airborne based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: Implications for improved estimates of gross primary productivity. Remote Sensing of Environment, 184, 654-667. doi:10.1016/j.rse.2016.07.025
Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1(6), 80. doi:10.2307/3001968
Yi, Q., Wang, F., Bao, A., & Jiapaer, G. (2014). Leaf and canopy water content estimation in cotton using hyperspectral indices and radiative transfer models. International Journal of Applied Earth Observation and Geoinformation, 33, 67-75. doi:10.1016/j.jag.2014.04.019
Zarco-Tejada, P., Miller, J.R., Mohammed, G.H., Noland, T.L., & Sampson, P.H. 1999. Índices ópticos obtenidos mediante datos hiperespectrales del sensor CASI como indicadores de estrés en zonas forestales. VIII Congreso Nacional de Teledetección. Albacete, 1-5
Zarco-Tejada, P. ., Rueda, C. ., & Ustin, S. . (2003). Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment, 85(1), 109-124. doi:10.1016/s0034-4257(02)00197-9
[-]