Mostrar el registro sencillo del ítem
dc.contributor.author | Oliver, J,F. | es_ES |
dc.contributor.author | Fuster García, Elíes | es_ES |
dc.contributor.author | Cabello, J. | es_ES |
dc.contributor.author | Tortajada Velert, Salvador | es_ES |
dc.contributor.author | Rafecas Lopez, Maria Magdalena | es_ES |
dc.date.accessioned | 2017-06-29T06:48:15Z | |
dc.date.available | 2017-06-29T06:48:15Z | |
dc.date.issued | 2013-10 | |
dc.identifier.issn | 0018-9499 | |
dc.identifier.uri | http://hdl.handle.net/10251/84048 | |
dc.description.abstract | Positron Emission Tomography (PET) is based on the detection in coincidence of the two photons created in a positron annihilation. In conventional PET, this coincidence identification is usually carried out through a coincidence electronic unit. An accidental coincidence occurs when two photons arising from different annihilations are classified as a coincidence. Accidental coincidences are one of the main sources of image degradation in PET. Some novel systems allow coincidences to be selected post-acquisition in software, or in real time through a digital coincidence engine in an FPGA. These approaches provide the user with extra flexibility in the sorting process and allow the application of alternative coincidence sorting procedures. In this work a novel sorting procedure based on Artificial Neural Network (ANN) techniques has been developed. It has been compared to a conventional coincidence sorting algorithm based on a time coincidence window. The data have been obtained from Monte-Carlo simulations. A small animal PET scanner has been implemented to this end. The efficiency (the ratio of correct identifications) can be selected for both methods. In one case by changing the actual value of the coincidence window used, and in the other by changing a threshold at the output of the neural network. At matched efficiencies, the ANN-based method always produces a sorted output with a smaller random fraction. In addition, two differential trends are found: the conventional method presents a maximum achievable efficiency, while the ANN-based method is able to increase the efficiency up to unity, the ideal value, at the cost of increasing the random fraction. Images reconstructed using ANN sorted data (no compensation for randoms) present better contrast, and those image features which are more affected by randoms are enhanced. For the image quality phantom used in the paper, the ANN method decreases the spillover ratio by a factor of 18%. | es_ES |
dc.description.sponsorship | This work was supported by RD12/0036/0020 Red Tematica de Investigacion Coperativa en Cancer (RTICC) 2012; Ministerio de Ciencia e Innovacion through a JAE-Doc contract associated to CSIC and FSE co-financed; also under projects TEC-2007-61047 and FPA-2010-14891. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | es_ES |
dc.relation.ispartof | IEEE Transactions on Nuclear Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Artificial neural network | es_ES |
dc.subject | Image reconstruction | es_ES |
dc.subject | Positron emission tomography | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Application of Artificial Neural Network for Reducing Random Coincidences in PET | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/TNS.2013.2274702 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RD12%2F0036%2F0020/ES/Cáncer/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//TEC2007-61047/ES/IMPROVING IMAGE QUALITY IN POSITRON EMISSION TOMOGRAPHY/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FPA2010-14891/ES/Calidad de imagen y cuantificación en tomografía por emisión de positrones/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació | es_ES |
dc.description.bibliographicCitation | Oliver, J.; Fuster García, E.; Cabello, J.; Tortajada Velert, S.; Rafecas Lopez, MM. (2013). Application of Artificial Neural Network for Reducing Random Coincidences in PET. IEEE Transactions on Nuclear Science. 60(5):3399-3409. https://doi.org/10.1109/TNS.2013.2274702 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1109/TNS.2013.2274702 | es_ES |
dc.description.upvformatpinicio | 3399 | es_ES |
dc.description.upvformatpfin | 3409 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 60 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 251918 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |