- -

Application of Artificial Neural Network for Reducing Random Coincidences in PET

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of Artificial Neural Network for Reducing Random Coincidences in PET

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Oliver, J,F. es_ES
dc.contributor.author Fuster García, Elíes es_ES
dc.contributor.author Cabello, J. es_ES
dc.contributor.author Tortajada Velert, Salvador es_ES
dc.contributor.author Rafecas Lopez, Maria Magdalena es_ES
dc.date.accessioned 2017-06-29T06:48:15Z
dc.date.available 2017-06-29T06:48:15Z
dc.date.issued 2013-10
dc.identifier.issn 0018-9499
dc.identifier.uri http://hdl.handle.net/10251/84048
dc.description.abstract Positron Emission Tomography (PET) is based on the detection in coincidence of the two photons created in a positron annihilation. In conventional PET, this coincidence identification is usually carried out through a coincidence electronic unit. An accidental coincidence occurs when two photons arising from different annihilations are classified as a coincidence. Accidental coincidences are one of the main sources of image degradation in PET. Some novel systems allow coincidences to be selected post-acquisition in software, or in real time through a digital coincidence engine in an FPGA. These approaches provide the user with extra flexibility in the sorting process and allow the application of alternative coincidence sorting procedures. In this work a novel sorting procedure based on Artificial Neural Network (ANN) techniques has been developed. It has been compared to a conventional coincidence sorting algorithm based on a time coincidence window. The data have been obtained from Monte-Carlo simulations. A small animal PET scanner has been implemented to this end. The efficiency (the ratio of correct identifications) can be selected for both methods. In one case by changing the actual value of the coincidence window used, and in the other by changing a threshold at the output of the neural network. At matched efficiencies, the ANN-based method always produces a sorted output with a smaller random fraction. In addition, two differential trends are found: the conventional method presents a maximum achievable efficiency, while the ANN-based method is able to increase the efficiency up to unity, the ideal value, at the cost of increasing the random fraction. Images reconstructed using ANN sorted data (no compensation for randoms) present better contrast, and those image features which are more affected by randoms are enhanced. For the image quality phantom used in the paper, the ANN method decreases the spillover ratio by a factor of 18%. es_ES
dc.description.sponsorship This work was supported by RD12/0036/0020 Red Tematica de Investigacion Coperativa en Cancer (RTICC) 2012; Ministerio de Ciencia e Innovacion through a JAE-Doc contract associated to CSIC and FSE co-financed; also under projects TEC-2007-61047 and FPA-2010-14891. en_EN
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers (IEEE) es_ES
dc.relation.ispartof IEEE Transactions on Nuclear Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Artificial neural network es_ES
dc.subject Image reconstruction es_ES
dc.subject Positron emission tomography es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Application of Artificial Neural Network for Reducing Random Coincidences in PET es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TNS.2013.2274702
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RD12%2F0036%2F0020/ES/Cáncer/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//TEC2007-61047/ES/IMPROVING IMAGE QUALITY IN POSITRON EMISSION TOMOGRAPHY/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FPA2010-14891/ES/Calidad de imagen y cuantificación en tomografía por emisión de positrones/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.description.bibliographicCitation Oliver, J.; Fuster García, E.; Cabello, J.; Tortajada Velert, S.; Rafecas Lopez, MM. (2013). Application of Artificial Neural Network for Reducing Random Coincidences in PET. IEEE Transactions on Nuclear Science. 60(5):3399-3409. https://doi.org/10.1109/TNS.2013.2274702 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1109/TNS.2013.2274702 es_ES
dc.description.upvformatpinicio 3399 es_ES
dc.description.upvformatpfin 3409 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 60 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 251918 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem