- -

Low order modes in microcavities based on silicon colloids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Low order modes in microcavities based on silicon colloids

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Xifre Perez, Elisabet es_ES
dc.contributor.author Fenollosa Esteve, Roberto es_ES
dc.contributor.author Meseguer Rico, Francisco Javier es_ES
dc.date.accessioned 2017-07-03T10:29:06Z
dc.date.available 2017-07-03T10:29:06Z
dc.date.issued 2011-02-14
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/84333
dc.description.abstract [EN] Silicon colloids based microcavities, with sphere size between 1 and 3 micrometers, have been synthesized and optically characterized. Due to both the small cavity volume and the high refractive index of silicon we are able to tune resonances with extremely low mode index, whose electric field distribution resembles those of electronic orbitals. The value of some parameters such as quality factor Q, effective mode volume, and evanescent field have been calculated for several modes. This calculation indicates silicon colloids can be a serious strategy for developing optical microcavities where may coexist both optical modes with large evanescent fields useful for sensing applications, as well as modes with high Q/V ratio values, of the order of 10(9)(lambda/n)(-3). (C) 2011 Optical Society of America es_ES
dc.description.sponsorship The authors acknowledge financial support from projects Apoyo a la investigacion 2009 from Universidad Politecnica de Valencia, no reg. 4325, FIS2009-07812, Consolider 2007-0046 Nanolight, PROMETEO/2010/043. E. Xifre-Perez acknowledges the financial support from the program Juan de la Cierva (Spanish Ministerio de Educacion y Ciencia). Finally, we thank Prof. J. Garcia de Abajo for providing us with the MESME theoretical program we have used in the calculation of electric field distribution of the Mie modes.
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Electric field distributions es_ES
dc.subject Electronic orbitals es_ES
dc.subject Evanescent fields es_ES
dc.subject High refractive index es_ES
dc.subject Low order es_ES
dc.subject Mode index es_ES
dc.subject Mode volume es_ES
dc.subject Optical microcavities es_ES
dc.subject Optical modes es_ES
dc.subject Quality factor Q es_ES
dc.subject Sensing applications es_ES
dc.subject Small cavities es_ES
dc.subject Colloids es_ES
dc.subject Electric fields es_ES
dc.subject Microcavities es_ES
dc.subject Refractive index es_ES
dc.subject Spheres es_ES
dc.subject Colloid chemistry es_ES
dc.title Low order modes in microcavities based on silicon colloids es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.19.003455
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-2009-4325/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2009-07812/ES/Coloides De Silicio. Sintesis, Caracterizacion Y Aplicaciones Tecnologicas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F043/ES/TRANSMISIÓN Y LOCALIZACIÓN DE ONDAS EN METAMATERIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00046/ES/NanoLight.es - Light Control on the Nanoscale/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.description.bibliographicCitation Xifre Perez, E.; Fenollosa Esteve, R.; Meseguer Rico, FJ. (2011). Low order modes in microcavities based on silicon colloids. Optics Express. 19(4):3455-3463. https://doi.org/10.1364/OE.19.003455 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1364/OE.19.003455 es_ES
dc.description.upvformatpinicio 3455 es_ES
dc.description.upvformatpfin 3463 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 211258 es_ES
dc.identifier.pmid 21369168
dc.contributor.funder Universitat Politècnica de València
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Muller, D. A. (2005). A sound barrier for silicon? Nature Materials, 4(9), 645-647. doi:10.1038/nmat1466 es_ES
dc.description.references Song, B.-S., Noda, S., Asano, T., & Akahane, Y. (2005). Ultra-high-Q photonic double-heterostructure nanocavity. Nature Materials, 4(3), 207-210. doi:10.1038/nmat1320 es_ES
dc.description.references Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S. W., … van Driel, H. M. (2000). Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 405(6785), 437-440. doi:10.1038/35013024 es_ES
dc.description.references Song, B.-S. (2003). Photonic Devices Based on In-Plane Hetero Photonic Crystals. Science, 300(5625), 1537-1537. doi:10.1126/science.1083066 es_ES
dc.description.references Ashkin, A., & Dziedzic, J. M. (1977). Observation of Resonances in the Radiation Pressure on Dielectric Spheres. Physical Review Letters, 38(23), 1351-1354. doi:10.1103/physrevlett.38.1351 es_ES
dc.description.references Ashkin, A., & Dziedzic, J. M. (1981). Observation of optical resonances of dielectric spheres by light scattering. Applied Optics, 20(10), 1803. doi:10.1364/ao.20.001803 es_ES
dc.description.references Painter, O. (1999). Two-Dimensional Photonic Band-Gap Defect Mode Laser. Science, 284(5421), 1819-1821. doi:10.1126/science.284.5421.1819 es_ES
dc.description.references Armani, D. K., Kippenberg, T. J., Spillane, S. M., & Vahala, K. J. (2003). Ultra-high-Q toroid microcavity on a chip. Nature, 421(6926), 925-928. doi:10.1038/nature01371 es_ES
dc.description.references Inoue, K., Sasaki, H., Ishida, K., Sugimoto, Y., Ikeda, N., Tanaka, Y., … Asakawa, K. (2004). InAs quantum-dot laser utilizing GaAs photonic-crystal line-defect waveguide. Optics Express, 12(22), 5502. doi:10.1364/opex.12.005502 es_ES
dc.description.references Fenollosa, R., Meseguer, F., & Tymczenko, M. (2008). Silicon Colloids: From Microcavities to Photonic Sponges. Advanced Materials, 20(1), 95-98. doi:10.1002/adma.200701589 es_ES
dc.description.references Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69. doi:10.1016/0021-9797(68)90272-5 es_ES
dc.description.references Conwell, P. R., Barber, P. W., & Rushforth, C. K. (1984). Resonant spectra of dielectric spheres. Journal of the Optical Society of America A, 1(1), 62. doi:10.1364/josaa.1.000062 es_ES
dc.description.references Ng, J., Chan, C. T., Sheng, P., & Lin, Z. (2005). Strong optical force induced by morphology-dependent resonances. Optics Letters, 30(15), 1956. doi:10.1364/ol.30.001956 es_ES
dc.description.references Vahala, K. J. (2003). Optical microcavities. Nature, 424(6950), 839-846. doi:10.1038/nature01939 es_ES
dc.description.references García de Abajo, F. J. (1999). Interaction of Radiation and Fast Electrons with Clusters of Dielectrics: A Multiple Scattering Approach. Physical Review Letters, 82(13), 2776-2779. doi:10.1103/physrevlett.82.2776 es_ES
dc.description.references Xifré-Pérez, E., García de Abajo, F. J., Fenollosa, R., & Meseguer, F. (2009). Photonic Binding in Silicon-Colloid Microcavities. Physical Review Letters, 103(10). doi:10.1103/physrevlett.103.103902 es_ES
dc.description.references Tanaka, Y., Asano, T., & Noda, S. (2008). Design of Photonic Crystal Nanocavity With $Q$-Factor of ${{\sim}10^{9}}$. Journal of Lightwave Technology, 26(11), 1532-1539. doi:10.1109/jlt.2008.923648 es_ES
dc.description.references Takahashi, Y., Tanaka, Y., Hagino, H., Sugiya, T., Sato, Y., Asano, T., & Noda, S. (2009). Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration. Optics Express, 17(20), 18093. doi:10.1364/oe.17.018093 es_ES
dc.description.references Kippenberg, T. J., Spillane, S. M., & Vahala, K. J. (2004). Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Applied Physics Letters, 85(25), 6113-6115. doi:10.1063/1.1833556 es_ES
dc.description.references Braginsky, V. B., Gorodetsky, M. L., & Ilchenko, V. S. (1989). Quality-factor and nonlinear properties of optical whispering-gallery modes. Physics Letters A, 137(7-8), 393-397. doi:10.1016/0375-9601(89)90912-2 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem