Mostrar el registro sencillo del ítem
dc.contributor.author | Xifre Perez, Elisabet | es_ES |
dc.contributor.author | Fenollosa Esteve, Roberto | es_ES |
dc.contributor.author | Meseguer Rico, Francisco Javier | es_ES |
dc.date.accessioned | 2017-07-03T10:29:06Z | |
dc.date.available | 2017-07-03T10:29:06Z | |
dc.date.issued | 2011-02-14 | |
dc.identifier.issn | 1094-4087 | |
dc.identifier.uri | http://hdl.handle.net/10251/84333 | |
dc.description.abstract | [EN] Silicon colloids based microcavities, with sphere size between 1 and 3 micrometers, have been synthesized and optically characterized. Due to both the small cavity volume and the high refractive index of silicon we are able to tune resonances with extremely low mode index, whose electric field distribution resembles those of electronic orbitals. The value of some parameters such as quality factor Q, effective mode volume, and evanescent field have been calculated for several modes. This calculation indicates silicon colloids can be a serious strategy for developing optical microcavities where may coexist both optical modes with large evanescent fields useful for sensing applications, as well as modes with high Q/V ratio values, of the order of 10(9)(lambda/n)(-3). (C) 2011 Optical Society of America | es_ES |
dc.description.sponsorship | The authors acknowledge financial support from projects Apoyo a la investigacion 2009 from Universidad Politecnica de Valencia, no reg. 4325, FIS2009-07812, Consolider 2007-0046 Nanolight, PROMETEO/2010/043. E. Xifre-Perez acknowledges the financial support from the program Juan de la Cierva (Spanish Ministerio de Educacion y Ciencia). Finally, we thank Prof. J. Garcia de Abajo for providing us with the MESME theoretical program we have used in the calculation of electric field distribution of the Mie modes. | |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Electric field distributions | es_ES |
dc.subject | Electronic orbitals | es_ES |
dc.subject | Evanescent fields | es_ES |
dc.subject | High refractive index | es_ES |
dc.subject | Low order | es_ES |
dc.subject | Mode index | es_ES |
dc.subject | Mode volume | es_ES |
dc.subject | Optical microcavities | es_ES |
dc.subject | Optical modes | es_ES |
dc.subject | Quality factor Q | es_ES |
dc.subject | Sensing applications | es_ES |
dc.subject | Small cavities | es_ES |
dc.subject | Colloids | es_ES |
dc.subject | Electric fields | es_ES |
dc.subject | Microcavities | es_ES |
dc.subject | Refractive index | es_ES |
dc.subject | Spheres | es_ES |
dc.subject | Colloid chemistry | es_ES |
dc.title | Low order modes in microcavities based on silicon colloids | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.19.003455 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-2009-4325/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FIS2009-07812/ES/Coloides De Silicio. Sintesis, Caracterizacion Y Aplicaciones Tecnologicas/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F043/ES/TRANSMISIÓN Y LOCALIZACIÓN DE ONDAS EN METAMATERIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CSD2007-00046/ES/NanoLight.es - Light Control on the Nanoscale/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica | es_ES |
dc.description.bibliographicCitation | Xifre Perez, E.; Fenollosa Esteve, R.; Meseguer Rico, FJ. (2011). Low order modes in microcavities based on silicon colloids. Optics Express. 19(4):3455-3463. https://doi.org/10.1364/OE.19.003455 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1364/OE.19.003455 | es_ES |
dc.description.upvformatpinicio | 3455 | es_ES |
dc.description.upvformatpfin | 3463 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 211258 | es_ES |
dc.identifier.pmid | 21369168 | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Muller, D. A. (2005). A sound barrier for silicon? Nature Materials, 4(9), 645-647. doi:10.1038/nmat1466 | es_ES |
dc.description.references | Song, B.-S., Noda, S., Asano, T., & Akahane, Y. (2005). Ultra-high-Q photonic double-heterostructure nanocavity. Nature Materials, 4(3), 207-210. doi:10.1038/nmat1320 | es_ES |
dc.description.references | Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S. W., … van Driel, H. M. (2000). Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 405(6785), 437-440. doi:10.1038/35013024 | es_ES |
dc.description.references | Song, B.-S. (2003). Photonic Devices Based on In-Plane Hetero Photonic Crystals. Science, 300(5625), 1537-1537. doi:10.1126/science.1083066 | es_ES |
dc.description.references | Ashkin, A., & Dziedzic, J. M. (1977). Observation of Resonances in the Radiation Pressure on Dielectric Spheres. Physical Review Letters, 38(23), 1351-1354. doi:10.1103/physrevlett.38.1351 | es_ES |
dc.description.references | Ashkin, A., & Dziedzic, J. M. (1981). Observation of optical resonances of dielectric spheres by light scattering. Applied Optics, 20(10), 1803. doi:10.1364/ao.20.001803 | es_ES |
dc.description.references | Painter, O. (1999). Two-Dimensional Photonic Band-Gap Defect Mode Laser. Science, 284(5421), 1819-1821. doi:10.1126/science.284.5421.1819 | es_ES |
dc.description.references | Armani, D. K., Kippenberg, T. J., Spillane, S. M., & Vahala, K. J. (2003). Ultra-high-Q toroid microcavity on a chip. Nature, 421(6926), 925-928. doi:10.1038/nature01371 | es_ES |
dc.description.references | Inoue, K., Sasaki, H., Ishida, K., Sugimoto, Y., Ikeda, N., Tanaka, Y., … Asakawa, K. (2004). InAs quantum-dot laser utilizing GaAs photonic-crystal line-defect waveguide. Optics Express, 12(22), 5502. doi:10.1364/opex.12.005502 | es_ES |
dc.description.references | Fenollosa, R., Meseguer, F., & Tymczenko, M. (2008). Silicon Colloids: From Microcavities to Photonic Sponges. Advanced Materials, 20(1), 95-98. doi:10.1002/adma.200701589 | es_ES |
dc.description.references | Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69. doi:10.1016/0021-9797(68)90272-5 | es_ES |
dc.description.references | Conwell, P. R., Barber, P. W., & Rushforth, C. K. (1984). Resonant spectra of dielectric spheres. Journal of the Optical Society of America A, 1(1), 62. doi:10.1364/josaa.1.000062 | es_ES |
dc.description.references | Ng, J., Chan, C. T., Sheng, P., & Lin, Z. (2005). Strong optical force induced by morphology-dependent resonances. Optics Letters, 30(15), 1956. doi:10.1364/ol.30.001956 | es_ES |
dc.description.references | Vahala, K. J. (2003). Optical microcavities. Nature, 424(6950), 839-846. doi:10.1038/nature01939 | es_ES |
dc.description.references | García de Abajo, F. J. (1999). Interaction of Radiation and Fast Electrons with Clusters of Dielectrics: A Multiple Scattering Approach. Physical Review Letters, 82(13), 2776-2779. doi:10.1103/physrevlett.82.2776 | es_ES |
dc.description.references | Xifré-Pérez, E., García de Abajo, F. J., Fenollosa, R., & Meseguer, F. (2009). Photonic Binding in Silicon-Colloid Microcavities. Physical Review Letters, 103(10). doi:10.1103/physrevlett.103.103902 | es_ES |
dc.description.references | Tanaka, Y., Asano, T., & Noda, S. (2008). Design of Photonic Crystal Nanocavity With $Q$-Factor of ${{\sim}10^{9}}$. Journal of Lightwave Technology, 26(11), 1532-1539. doi:10.1109/jlt.2008.923648 | es_ES |
dc.description.references | Takahashi, Y., Tanaka, Y., Hagino, H., Sugiya, T., Sato, Y., Asano, T., & Noda, S. (2009). Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration. Optics Express, 17(20), 18093. doi:10.1364/oe.17.018093 | es_ES |
dc.description.references | Kippenberg, T. J., Spillane, S. M., & Vahala, K. J. (2004). Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Applied Physics Letters, 85(25), 6113-6115. doi:10.1063/1.1833556 | es_ES |
dc.description.references | Braginsky, V. B., Gorodetsky, M. L., & Ilchenko, V. S. (1989). Quality-factor and nonlinear properties of optical whispering-gallery modes. Physics Letters A, 137(7-8), 393-397. doi:10.1016/0375-9601(89)90912-2 | es_ES |