Mostrar el registro sencillo del ítem
dc.contributor.author | Kohli, J.K. | es_ES |
dc.contributor.author | Singh, D. | es_ES |
dc.contributor.author | Kumar, Rajesh | es_ES |
dc.date.accessioned | 2017-09-05T11:45:59Z | |
dc.date.available | 2017-09-05T11:45:59Z | |
dc.date.issued | 2008-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/86440 | |
dc.description.abstract | [EN] Two new classes of functions, called ‘almost z-supercontinuous functions’ and ’almost Dδ-supercontinuous functions’ are introduced. The class of almost z-supercontinuous functions properly includes the class of z-supercontinuous functions (Indian J. Pure Appl. Math. 33(7), (2002), 1097-1108) as well as the class of almost clopen maps due to Ekici (Acta. Math. Hungar. 107(3), (2005), 193-206) and is properly contained in the class of almost Dδ-supercontinuous functions which in turn constitutes a proper subclass of the class of almost strongly θ-continuous functions due to Noiri and Kang (Indian J. Pure Appl. Math. 15(1), (1984), 1-8) and which in its turn include all δ-continuous functions of Noiri (J. Korean Math. Soc. 16 (1980), 161-166). Characterizations and basic properties of almost z-supercontinuous functions and almost Dδ-supercontinuous functions are discussed and their place in the hierarchy of variants of continuity is elaborated. Moreover, properties of almost strongly θ-continuous functions are investigated and sufficient conditions for almost strongly θ-continuous functions to have u θ-closed (θ-closed) graph are formulated. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | (almost) z-supercontinuous function | es_ES |
dc.subject | (almost) Dδ-supercontinuous function | es_ES |
dc.subject | (almost) strongly θ-continuous function | es_ES |
dc.subject | Almost continuous function | es_ES |
dc.subject | δ-continuous function | es_ES |
dc.subject | faintly continuous function | es_ES |
dc.subject | uθ-closed graph | es_ES |
dc.subject | θ-closed graph | es_ES |
dc.subject | uθ-limit point; θ-limit po | es_ES |
dc.title | Generalizations of Z-supercontinuous functions and Dδ-supercontinuous functions | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-09-05T11:03:54Z | |
dc.identifier.doi | 10.4995/agt.2008.1804 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Kohli, J.; Singh, D.; Kumar, R. (2008). Generalizations of Z-supercontinuous functions and Dδ-supercontinuous functions. Applied General Topology. 9(2):239-251. https://doi.org/10.4995/agt.2008.1804 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2008.1804 | es_ES |
dc.description.upvformatpinicio | 239 | es_ES |
dc.description.upvformatpfin | 251 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 |