- -

Identification of Dominant Excitation Patterns and Sources of Atrial Fibrillation by Causality Analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of Dominant Excitation Patterns and Sources of Atrial Fibrillation by Causality Analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodrigo Bort, Miguel es_ES
dc.contributor.author Climent, A.M. es_ES
dc.contributor.author Liberos Mascarell, Alejandro es_ES
dc.contributor.author Calvo, D. es_ES
dc.contributor.author Fernandez-Aviles, F. es_ES
dc.contributor.author Berenfeld, O. es_ES
dc.contributor.author Atienza, F. es_ES
dc.contributor.author Guillem, M.S es_ES
dc.date.accessioned 2017-09-08T11:55:01Z
dc.date.available 2017-09-08T11:55:01Z
dc.date.issued 2016-08
dc.identifier.issn 0090-6964
dc.identifier.uri http://hdl.handle.net/10251/86830
dc.description.abstract Burden of atrial fibrillation (AF) can be reduced by ablation of sources of electrical impulses driving AF but driver identification is still challenging. This study presents a new methodology based on causality analysis that allows identifying the hierarchically dominant areas driving AF. Identification of dominant propagation patterns was achieved by computing causal relations between intracardiac multi-electrode catheter recordings of four paroxysmal AF patients during sinus rhythm, pacing and AF. In addition, realistic mathematical models of the atria during AF were used to validate the methodology both in the presence and absence of dominant frequency (DF) gradients. During electrical pacing, sources of propagation patterns detected by causality analysis were consistent with the location of the stimulating catheter. During AF, propagation patterns presented temporal variability, but a dominant direction accounted for significantly more propagations than other directions (49 +/- 15% vs. 14 +/- 13% or less, p < 0.01). Both in patients with a DF gradient and in mathematical models, causal maps allowed the identification of sites responsible for maintenance of AF. Causal maps allowed the identification of atrial dominant sites. In particular, causality analysis resulted in stable dominant cause-effect propagation directions during AF and could serve as a guide for performing ablation procedures in AF patients. es_ES
dc.description.sponsorship FA served on the advisory board of Medtronic and has received research funding from St. Jude Medical Spain. OB received research support from Medtronic and St. Jude Medical. He is a Scientific Officer of Rhythm Solutions, Inc. and a consultant to Acutus Medical, inc. The other authors have no conflict of interest. None of the companies disclosed financed the research described in this manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Annals of Biomedical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hierarchical pattern es_ES
dc.subject Granger causality es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Dominant pattern es_ES
dc.subject Ablation es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Identification of Dominant Excitation Patterns and Sources of Atrial Fibrillation by Causality Analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10439-015-1534-x
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2013%2F021/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/692023/EU/Linking excellence in biomedical knowledge and computational intelligence research for personalized management of CVD within PHC/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI13%2F01882/ES/Estudio preclínico de la implantación de parches de tejido cardiaco bioartificial electromecánicamente entrenados en un modelo de infarto de miocardio porcino/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PLE2009-0152/ES/INVESTIGACION TRASLACIONAL PARA EL DESARROLLO DE UN BANCO DE MATRICES DE ORGANOS Y DE ORGANOS Y TEJIDOS BIOARTIFICIALES AUTOLOGOS PARA TRASPLANTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI13-00903/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI14%2F00857/ES/Caracterización No-invasiva de los Mecanismos de Mantenimiento de la Fibrilación Auricular. Estudio PERSONALIZE-AF/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Rodrigo Bort, M.; Climent, A.; Liberos Mascarell, A.; Calvo, D.; Fernandez-Aviles, F.; Berenfeld, O.; Atienza, F.... (2016). Identification of Dominant Excitation Patterns and Sources of Atrial Fibrillation by Causality Analysis. Annals of Biomedical Engineering. 44(8):2364-2376. https://doi.org/10.1007/s10439-015-1534-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s10439-015-1534-x es_ES
dc.description.upvformatpinicio 2364 es_ES
dc.description.upvformatpfin 2376 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 324200 es_ES
dc.identifier.pmid 26850022 en_EN
dc.identifier.pmcid PMC5568434 en_EN
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Medtronic, Estados Unidos es_ES
dc.contributor.funder Centro Nacional de Investigaciones Cardiovasculares es_ES
dc.contributor.funder St. Jude Medical es_ES
dc.contributor.funder Sociedad Española de Cardiología es_ES
dc.description.references Atienza, F., J. Almendral, J. Jalife, S. Zlochiver, R. Ploutz-Snyder, E. G. Torrecilla, A. Arenal, J. Kalifa, F. Fernández-Avilés, and O. Berenfeld. Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm. 6:33–40, 2009. es_ES
dc.description.references Atienza, F., J. Almendral, J. Moreno, R. Vaidyanathan, A. Talkachou, J. Kalifa, A. Arenal, J. P. Villacastín, E. G. Torrecilla, A. Sánchez, R. Ploutz-Snyder, J. Jalife, and O. Berenfeld. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans evidence for a reentrant mechanism. Circulation 114:2434–2442, 2006. es_ES
dc.description.references Atienza, F., J. Almendral, J. M. Ormaetxe, A. Moya, J. D. Martínez-Alday, A. Hernández-Madrid, E. Castellanos, F. Arribas, M. Á. Arias, L. Tercedor, R. Peinado, M. F. Arcocha, M. Ortiz, N. Martínez-Alzamora, A. Arenal, F. Fernández-Avilés, and J. Jalife. Comparison of radiofrequency catheter ablation of drivers and circumferential pulmonary vein isolation in atrial fibrillation. A noninferiority randomized multicenter RADAR-AF Trial. J. Am. Coll. Cardiol. 64:2455–2467, 2014. es_ES
dc.description.references Atienza, F., D. Calvo, J. Almendral, S. Zlochiver, K. R. Grzeda, N. Martínez-Alzamora, E. González-Torrecilla, A. Arenal, F. Fernández-Avilés, and O. Berenfeld. Mechanisms of fractionated electrograms formation in the posterior left atrium during paroxysmal atrial fibrillation in humans. J. Am. Coll. Cardiol. 57:1081–1092, 2011. es_ES
dc.description.references Benharash, P., E. Buch, P. Frank, M. Share, R. Tung, K. Shivkumar, and R. Mandapati. Quantitative analysis of localized sources identified by focal impulse and rotor modulation mapping in atrial fibrillation. Circ. Arrhythm. Electrophysiol. 8:554–561, 2015. es_ES
dc.description.references Chao, T. F., H. M. Tsao, Y. J. Lin, C. F. Tsai, W. S. Lin, S. L. Chang, L. W. Lo, Y. F. Hu, T. C. Tuan, K. Suenari, C. H. Li, B. Hartono, H. Y. Chang, K. Ambrose, T. J. Wu, and S. A. Chen. Clinical outcome of catheter ablation in patients with nonparoxysmal atrial fibrillation: Results of 3-year follow-up. Circ. Arrhythm. Electrophysiol. 5:514–520, 2012. es_ES
dc.description.references Cuculich, P. S., Y. Wang, B. D. Lindsay, M. N. Faddis, R. B. Schuessler, R. J. Damiano, L. Li, and Y. Rudy. Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation. 5(122):1364–1372, 2010. es_ES
dc.description.references Dössel, O., M. W. Krueger, F. M. Weber, M. Wilhelms, and G. Seemann. Computational modeling of the human atrial anatomy and electrophysiology. Med. Biol. Eng. Comput. 50:773–799, 2012. es_ES
dc.description.references Freiwald, W. A., P. Valdes, J. Bosch, R. Biscay, J. C. Jimenez, L. M. Rodriguez, V. Rodriguez, A. K. Kreiter, and W. Singer. Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex. J. Neurosci. Methods 94:105–119, 1999. es_ES
dc.description.references Gerstenfeld, E. P., A. V. Sahakian, and S. Swiryn. Evidence for transient linking of atrial excitation during atrial fibrillation in humans. Circulation. 86:375–382, 1992. es_ES
dc.description.references Granger, C. W. J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 3:424–438, 1969. es_ES
dc.description.references Guillem, M. S., A. M. Climent, J. Millet, A. Arenal, F. Fernández-Avilés, J. Jalife, F. Atienza, and O. Berenfeld. Noninvasive localization of maximal frequency sites of atrial fibrillation by body surface potential mapping. Circ. Arrhythm. Electrophysiol. 6:294–301, 2013. es_ES
dc.description.references Haïssaguerre, M., P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, and J. Clémenty. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339:659–666, 1998. es_ES
dc.description.references Hsu, L. F., P. Jaïs, D. Keane, J. M. Wharton, I. Deisenhofer, M. Hocini, D. C. Shah, P. Sanders, C. Scavée, R. Weerasooriya, J. Clémenty, and M. Haïssaguerre. Atrial fibrillation originating from persistent left superior vena cava. Circulation. 109:828–832, 2004. es_ES
dc.description.references Ideker, R. E., and J. M. Rogers. Human ventricular fibrillation: wandering wavelets, mother rotors, or both? Circulation. 114:530–532, 2006. es_ES
dc.description.references Jalife, J. Déjà vu in the theories of atrial fibrillation dynamics. Cardiovasc. Res. 89:766–775, 2011. es_ES
dc.description.references Jalife, J., D. Filgueiras Rama, and O. Berenfeld. Letter by Jalife et al. Regarding Article, “Quantitative Analysis of Localized Sources Identified by Focal Impulse and Rotor Modulation Mapping in Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 8:1296–1298, 2015. es_ES
dc.description.references Kalifa, J., K. Tanaka, A. V. Zaitsev, M. Warren, R. Vaidyanathan, D. Auerbach, S. Pandit, K. L. Vikstrom, R. Ploutz-Snyder, A. Talkachou, F. Atienza, G. Guiraudon, J. Jalife, and O. Berenfeld. Mechanisms of wave fractionation at boundaries of high-frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation. Circulation. 113:626–633, 2006. es_ES
dc.description.references Nademanee, K., J. McKenzie, E. Kosar, M. Schwab, B. Sunsaneewitayakul, T. Vasavakul, C. Khunnawat, and T. Ngarmukos. A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J. Am. Coll. Cardiol. 43:2044–2053, 2004. es_ES
dc.description.references Narayan, S. M., D. E. Krummen, P. Clopton, K. Shivkumar, and J. M. Miller. Direct Or Coincidental Elimination of Stable Rotors or Focal Sources May Explain Successful Atrial Fibrillation Ablation: On-Treatment Analysis of the CONFIRM (CONventional ablation for AF with or without Focal Impulse and Rotor Modulation) Trial. J. Am. Coll. Cardiol. 62:137–147, 2013. es_ES
dc.description.references Ng, J., D. Gordon, R. S. Passman, B. P. Knight, R. Arora, and J. J. Goldberger. Electrogram morphology recurrence patterns during atrial fibrillation. Heart Rhythm. 11:2027–2034, 2014. es_ES
dc.description.references Providência, R., P. D. Lambiase, N. Srinivasan, G. Ganesha Babu, K. Bronis, S. Ahsan, F. Z. Khan, A. W. Chow, E. Rowland, M. Lowe, and O. R. Segal. Is there still a role for CFAE ablation in addition to pulmonary vein isolation in patients with paroxysmal and persistent atrial fibrillation? A meta-analysis of 1415 patients. Circ. Arrhythm. Electrophysiol. 8:1017–1029, 2015. es_ES
dc.description.references Richter, U., L. Faes, A. Cristoforetti, M. Masè, F. Ravelli, M. Stridh, and L. Sörnmo. A novel approach to propagation pattern analysis in intracardiac atrial fibrillation signals. Ann. Biomed. Eng. 39:310–323, 2011. es_ES
dc.description.references Rodrigo, M., M. S. Guillem, A. M. Climent, J. Pedrón-Torrecilla, A. Liberos, J. Millet, F. Fernández-Avilés, F. Atienza, and O. Berenfeld. Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: a clinical-computational study. Heart Rhythm. 11:1584–1591, 2014. es_ES
dc.description.references Sanders, P., O. Berenfeld, M. Hocini, P. Jaïs, R. Vaidyanathan, L. F. Hsu, S. Garrigue, Y. Takahashi, M. Rotter, F. Sacher, C. Scavée, R. Ploutz-Snyder, J. Jalife, and M. Haïssaguerre. Spectral analysis identifies sites of high frequency activity maintaining atrial fibrillation in humans. Circulation. 112:789–797, 2005. es_ES
dc.description.references Zlochiver, S., M. Yamazaki, J. Kalifa, and O. Berenfeld. Rotor meandering contributes to irregularity in electrograms during atrial fibrillation. Heart Rhythm. 5:846–854, 2008. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem