- -

Classification of separately continuous mappings with values in o-metrizable spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Classification of separately continuous mappings with values in o-metrizable spaces

Show full item record

Karlova, O. (2012). Classification of separately continuous mappings with values in o-metrizable spaces. Applied General Topology. 13(2):167-178. doi:10.4995/agt.2012.1627.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/87284

Files in this item

Item Metadata

Title: Classification of separately continuous mappings with values in o-metrizable spaces
Author: Karlova, Olena
Issued date:
Abstract:
[EN] We prove that every vertically nearly separately continuous mapping defined on a product of a strong PP-space and a topological space and with values in a strongly o-metrizable space with a special stratification, is ...[+]
Subjects: Separately continuous mapping , Strong PP- space , Baire classification , Lebesgue classification
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2012.1627
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2012.1627
Type: Artículo

References

T. Banakh, (Metrically) quarter-stratifiable spaces and their applications, Math. Stud. 18, no. 1 (2002), 10–28.

K. Kuratowski, Quelques probémes concernant les espaces métriques non-séparables, Fund. Math. 25 (1935), 534–545.

H. Lebesgue, Sur l'approximation des fonctions, Bull. Sci. Math. 22 (1898), 278–287. [+]
T. Banakh, (Metrically) quarter-stratifiable spaces and their applications, Math. Stud. 18, no. 1 (2002), 10–28.

K. Kuratowski, Quelques probémes concernant les espaces métriques non-séparables, Fund. Math. 25 (1935), 534–545.

H. Lebesgue, Sur l'approximation des fonctions, Bull. Sci. Math. 22 (1898), 278–287.

D. Montgomery, Non-separable metric spaces, Fund. Math. 25 (1935), 527–533.

V. Mykhaylyuk, Baire classification of separately continuous functions and Namioka property, Ukr. Math. Bull. 5, no. 2 (2008), 203–218 (in Ukrainian).

W. Rudin, Lebesgue first theorem, Math. Analysis and Applications, Part B. Edited by Nachbin. Adv. in Math. Supplem. Studies 78. Academic Press (1981), 741–747.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record