- -

Range-preserving AE(0)-spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Range-preserving AE(0)-spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Comfort, W.W. es_ES
dc.contributor.author Hager, A.W. es_ES
dc.date.accessioned 2017-09-19T06:58:06Z
dc.date.available 2017-09-19T06:58:06Z
dc.date.issued 2013-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/87460
dc.description.abstract [EN] All spaces here are Tychonoff spaces. The class AE(0) consists of those spaces which are absolute extensors for compact zero-dimensional spaces. We define and study here the subclass AE(0)rp, consisting of those spaces for which extensions of continuous functions can be chosen to have the same range. We prove these results. If each point of T 2 AE(0) is a G-point of T , then T 2 AE(0)rp. These are equivalent: (a) T 2 AE(0)rp; (b) every compact subspace of T is metrizable; (c) every compact subspace of T is dyadic; and (d) every subspace of T is AE(0). Thus in particular, every metrizable space is an AE(0)rp-space. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Absolute extensor es_ES
dc.subject Retraction es_ES
dc.subject Zero-dimensional space es_ES
dc.subject Range- preserving function es_ES
dc.subject Dugundji space es_ES
dc.subject Dyadic space es_ES
dc.subject Countable chain condition es_ES
dc.title Range-preserving AE(0)-spaces es_ES
dc.type Artículo es_ES
dc.date.updated 2017-09-19T06:40:37Z
dc.identifier.doi 10.4995/agt.2013.1614
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Comfort, W.; Hager, A. (2013). Range-preserving AE(0)-spaces. Applied General Topology. 14(1):33-40. https://doi.org/10.4995/agt.2013.1614 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2013.1614 es_ES
dc.description.upvformatpinicio 33 es_ES
dc.description.upvformatpfin 40 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.description.references A. B laszczyk, Compactness, in: Encyclopedia of General Topology (K. Hart, J. Nagata, and J. Vaughan, eds.), pp. 169–173. Elsevier, Amsterdam, 2004. es_ES
dc.description.references B. Efimov, Dyadic bicompacta, Soviet Math. Doklady 4 (1963), 496–500, Russian original in: Doklady Akad. Nauk SSSR 149 (1963), 1011-1014. es_ES
dc.description.references R. Engelking, Cartesian products and dyadic spaces, Fund. Math. 57 (1965), 287–304. es_ES
dc.description.references Ryszard Engelking, General Topology, Heldermann Verlag, Berlin, 1989. es_ES
dc.description.references R. Haydon, On a problem of Pelczynski: Milutin spaces, Dugunjdi spaces, and AE(0 − dim), Studia Math. 52 (1974), 23–31. es_ES
dc.description.references Hoffmann, B. (1979). A surjective characterization of Dugundji spaces. Proceedings of the American Mathematical Society, 76(1), 151-151. doi:10.1090/s0002-9939-1979-0534408-x es_ES
dc.description.references Isbell, J. (1964). Uniform Spaces. Mathematical Surveys and Monographs. doi:10.1090/surv/012 es_ES
dc.description.references W. Sierpinski, Sur les projections des ensembles complémentaire aux ensembles (a), Fund. Math. 11 (1928), 117–122. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem