Mostrar el registro sencillo del ítem
dc.contributor.author | Comfort, W.W. | es_ES |
dc.contributor.author | Hager, A.W. | es_ES |
dc.date.accessioned | 2017-09-19T06:58:06Z | |
dc.date.available | 2017-09-19T06:58:06Z | |
dc.date.issued | 2013-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/87460 | |
dc.description.abstract | [EN] All spaces here are Tychonoff spaces. The class AE(0) consists of those spaces which are absolute extensors for compact zero-dimensional spaces. We define and study here the subclass AE(0)rp, consisting of those spaces for which extensions of continuous functions can be chosen to have the same range. We prove these results. If each point of T 2 AE(0) is a G-point of T , then T 2 AE(0)rp. These are equivalent: (a) T 2 AE(0)rp; (b) every compact subspace of T is metrizable; (c) every compact subspace of T is dyadic; and (d) every subspace of T is AE(0). Thus in particular, every metrizable space is an AE(0)rp-space. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Absolute extensor | es_ES |
dc.subject | Retraction | es_ES |
dc.subject | Zero-dimensional space | es_ES |
dc.subject | Range- preserving function | es_ES |
dc.subject | Dugundji space | es_ES |
dc.subject | Dyadic space | es_ES |
dc.subject | Countable chain condition | es_ES |
dc.title | Range-preserving AE(0)-spaces | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-09-19T06:40:37Z | |
dc.identifier.doi | 10.4995/agt.2013.1614 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Comfort, W.; Hager, A. (2013). Range-preserving AE(0)-spaces. Applied General Topology. 14(1):33-40. https://doi.org/10.4995/agt.2013.1614 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2013.1614 | es_ES |
dc.description.upvformatpinicio | 33 | es_ES |
dc.description.upvformatpfin | 40 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | A. B laszczyk, Compactness, in: Encyclopedia of General Topology (K. Hart, J. Nagata, and J. Vaughan, eds.), pp. 169–173. Elsevier, Amsterdam, 2004. | es_ES |
dc.description.references | B. Efimov, Dyadic bicompacta, Soviet Math. Doklady 4 (1963), 496–500, Russian original in: Doklady Akad. Nauk SSSR 149 (1963), 1011-1014. | es_ES |
dc.description.references | R. Engelking, Cartesian products and dyadic spaces, Fund. Math. 57 (1965), 287–304. | es_ES |
dc.description.references | Ryszard Engelking, General Topology, Heldermann Verlag, Berlin, 1989. | es_ES |
dc.description.references | R. Haydon, On a problem of Pelczynski: Milutin spaces, Dugunjdi spaces, and AE(0 − dim), Studia Math. 52 (1974), 23–31. | es_ES |
dc.description.references | Hoffmann, B. (1979). A surjective characterization of Dugundji spaces. Proceedings of the American Mathematical Society, 76(1), 151-151. doi:10.1090/s0002-9939-1979-0534408-x | es_ES |
dc.description.references | Isbell, J. (1964). Uniform Spaces. Mathematical Surveys and Monographs. doi:10.1090/surv/012 | es_ES |
dc.description.references | W. Sierpinski, Sur les projections des ensembles complémentaire aux ensembles (a), Fund. Math. 11 (1928), 117–122. | es_ES |