Mostrar el registro sencillo del ítem
dc.contributor.author | Banaschewski, B. | es_ES |
dc.contributor.author | Hager, A.W. | es_ES |
dc.date.accessioned | 2017-09-19T07:00:50Z | |
dc.date.available | 2017-09-19T07:00:50Z | |
dc.date.issued | 2013-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/87463 | |
dc.description.abstract | [EN] The category C is "projective complete"if each object has a projective cover (which is then a maximal cover). This property inherits from C to an epireflective full subcategory R provided the epimorphisms in R are also epi in C. When this condition fails, there still may be some maximal covers in R. The main point of this paper is illustration of this in compact Hausdorff spaces with a class of examples, each providing quite strange epimorphisms and maximal covers. These examples are then dualized to a category of algebras providing likewise strange monics and maximal essential extensions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Epimorphism | es_ES |
dc.subject | Cover | es_ES |
dc.subject | Projective | es_ES |
dc.subject | Essential extension | es_ES |
dc.subject | Compact | es_ES |
dc.subject | Strongly rigid | es_ES |
dc.title | Epimorphisms and maximal covers in categories of compact spaces | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-09-19T06:39:45Z | |
dc.identifier.doi | 10.4995/agt.2013.1616 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Banaschewski, B.; Hager, A. (2013). Epimorphisms and maximal covers in categories of compact spaces. Applied General Topology. 14(1):41-52. https://doi.org/10.4995/agt.2013.1616 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2013.1616 | es_ES |
dc.description.upvformatpinicio | 41 | es_ES |
dc.description.upvformatpfin | 52 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1966) 214–249. | es_ES |
dc.description.references | R. Engelking, General Topology, Heldermann 1989. | es_ES |
dc.description.references | A. Gleason, Projective topological spaces, Ill. J. Math. 2 (1958), 482–489. | es_ES |
dc.description.references | L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag 1976. | es_ES |
dc.description.references | HAGER, A. W. (1989). Minimal Covers of Topological Spaces. Annals of the New York Academy of Sciences, 552(1 Papers on Gen), 44-59. doi:10.1111/j.1749-6632.1989.tb22385.x | es_ES |
dc.description.references | Hager, A. W., & Martinez, J. (1998). Singular Archimedean lattice-ordered groups. Algebra Universalis, 40(2), 119-147. doi:10.1007/s000120050086 | es_ES |
dc.description.references | A. Hager and L. Robertson, Representing and ringifying a Riesz space, Symp. Math. XXI (1977), 411–431. | es_ES |
dc.description.references | H. Herrlich and G. Strecker, Category Theory, Allyn and Bacon 1973. | es_ES |
dc.description.references | Kennison, J. F. (1965). Reflective functors in general topology and elsewhere. Transactions of the American Mathematical Society, 118, 303-303. doi:10.1090/s0002-9947-1965-0174611-9 | es_ES |
dc.description.references | Porter, J. R., & Woods, R. G. (1988). Extensions and Absolutes of Hausdorff Spaces. doi:10.1007/978-1-4612-3712-9 | es_ES |
dc.description.references | V. Trnková, Non-constant continuous mappings of metric or compact Hausdorff spaces, Comm. Math. Univ. Carol. 13 (1972), 283–295. | es_ES |