- -

The hyperspaces Cn(X) for finite ray-graphs

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

The hyperspaces Cn(X) for finite ray-graphs

Show full item record

Esty, N. (2013). The hyperspaces Cn(X) for finite ray-graphs. Applied General Topology. 14(1):73-84. https://doi.org/10.4995/agt.2013.1619

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/87467

Files in this item

Item Metadata

Title: The hyperspaces Cn(X) for finite ray-graphs
Author: Esty, Norah
Issued date:
Abstract:
[EN] In this paper we consider the hyperspace Cn(X) of non-empty and closed subsets of a base space X with up to n connected components. The class of base spaces we consider we call finite ray-graphs, and are a noncompact ...[+]
Subjects: Hyperspaces , Finite graphs
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2013.1619
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2013.1619
Type: Artículo

References

R. Duda, On the hyperspace of subcontinua of a finite graph I, Fund. Math. 62 (1968), 265–286.

R. Duda, On the hyperspace of subcontinua of a finite graph II, Fund. Math. 63 (1968), 225–255.

N. Esty, On the contractibility of certain hyperspaces, Top. Proc. 32 (2008), 291–300. [+]
R. Duda, On the hyperspace of subcontinua of a finite graph I, Fund. Math. 62 (1968), 265–286.

R. Duda, On the hyperspace of subcontinua of a finite graph II, Fund. Math. 63 (1968), 225–255.

N. Esty, On the contractibility of certain hyperspaces, Top. Proc. 32 (2008), 291–300.

A. Illanes, The hyperspace C2(X) for a finte graph is unique, Glasnik Mat. 37 (2002), 347–363.

A. Illanes, Finite graphs X have unique hyperspaces Cn(X), Top. Proc. 27 (2003), 179–188.

A. Illanes and S. Nadler, Hyperspaces: Fundamentals and Recent Advances, Marcel Dekker, Inc., New York, 1999.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record