Mostrar el registro sencillo del ítem
dc.contributor.author | Serrano Cruz, José Ramón | es_ES |
dc.contributor.author | Olmeda González, Pablo Cesar | es_ES |
dc.contributor.author | Arnau Martínez, Francisco José | es_ES |
dc.contributor.author | Dombrovsky, A. | es_ES |
dc.contributor.author | Smith, L. | es_ES |
dc.date.accessioned | 2017-09-20T18:00:19Z | |
dc.date.issued | 2015-02 | |
dc.identifier.issn | 0742-4795 | |
dc.identifier.uri | http://hdl.handle.net/10251/87657 | |
dc.description.abstract | In the present work a comprehensive study of turbocharger heat transfer phenomena is discussed, showing their relevance compared to gas enthalpy variations through the turbomachinery. The study provides an experimental methodology to consider the different heat fluxes in the turbocharger and modeling them by means of a lumped capacitance heat transfer model (HTM). The input data required for the model are obtained experimentally by a proper combination of both steady and transient tests. These tests are performed in different test benches, in which incompressible fluids (oil) and compressible fluids (gas) are used in a given sequence. The experimental data allows developing heat transfer correlations for the different turbocharger elements. These correlations take into account all the possible heat fluxes, discriminating between internal and external heat transfer. In order to analyze the relative importance of heat transfer phenomena in the predictability of the turbocharger performance and the different related variables; model results, in hot and cold conditions, have been compared with those provided by the standard technique, consisting on using look up maps (LUM) of the turbocharger. The analysis of these results evidences the highly diabatic operative areas of the turbocharger and it provides clearly ground rules for using hot or cold turbocharger maps. In addition, paper discussion advises about using or not aHTM, depending on the turbocharger variables and the operative conditions that one desires to predict. Paper concludes that an accurate prediction of gas temperatures at turbine and compressor outlet and of fluid temperatures at water and oil ports outlet is not always possible without considering heat transfer phenomena in the turbocharger. | es_ES |
dc.description.sponsorship | This work has been financial supported by Jaguar Land Rover Ltd. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Society of Mechanical Engineers (ASME) | es_ES |
dc.relation.ispartof | Journal of Engineering for Gas Turbines and Power | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1115/1.4028261 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Serrano Cruz, JR.; Olmeda González, PC.; Arnau Martínez, FJ.; Dombrovsky, A.; Smith, L. (2015). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power. 137(2):1-11. doi:10.1115/1.4028261 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.dx.doi.org/10.1115/1.4028261 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 137 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 278382 | es_ES |
dc.identifier.eissn | 1528-8919 | |
dc.contributor.funder | Jaguar Land Rover Limited | es_ES |
dc.description.references | Baines, N., Wygant, K., and Dris, A., 2009, “The Analysis of Heat Transfer in Automotive Turbochargers,” ASME Paper No. GT2009-59618.10.1115/GT2009-59618 | es_ES |
dc.description.references | Sirakov, B., & Casey, M. (2012). Evaluation of Heat Transfer Effects on Turbocharger Performance. Journal of Turbomachinery, 135(2). doi:10.1115/1.4006608 | es_ES |
dc.description.references | Shaaban, S., Seume, J., Berndt, R., Pucher, H., and Linnhoff, H. J., 2006, “Part-Load Performance Prediction of Turbocharged Engines,” IMechE 8th International Conference on Turbochargers and Turbocharging, London, May 17–18, Paper No. C647/019, pp. 131–144.10.1016/B978-1-84569-174-5.50013-0 | es_ES |
dc.description.references | Bohn, D., Moritz, N., and Wol, M., 2003, “Conjugate Flow and Heat Transfer Investigation of a Turbo Charger: Part II—Experimental Results,” ASME Paper No. GT2003-38449.10.1115/GT2003-38449 | es_ES |
dc.description.references | Bet, F., and Seider, G., 2011, “Thermal Management of a Turbocharger for Unsteady Operation,” STAR European Conference 2011, Noordwijk, Netherlands, Mar. 22–23. | es_ES |
dc.description.references | Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Theoretical and experimental study of mechanical losses in automotive turbochargers. Energy, 55, 888-898. doi:10.1016/j.energy.2013.04.042 | es_ES |
dc.description.references | Cormerais, J., Hetet, J. F., Chesse, P., and Maiboom, A., 2006, “Heat Transfers Characterisations in a Turbocharger: Experiments and Correlations,” ASME Paper No. ICES2006-1324.10.1115/ICES2006-1324 | es_ES |
dc.description.references | Serrano, J. R., Arnau, F. J., Fajardo, P., Reyes Belmonte, M. A., & Vidal, F. (2012). Contribution to the Modeling and Understanding of Cold Pulsating Flow Influence in the Efficiency of Small Radial Turbines for Turbochargers. Journal of Engineering for Gas Turbines and Power, 134(10). doi:10.1115/1.4007027 | es_ES |
dc.description.references | Payri, F., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). External heat losses in small turbochargers: Model and experiments. Energy, 71, 534-546. doi:10.1016/j.energy.2014.04.096 | es_ES |