- -

Dynamic Identification of Thermodynamic Parameters for Turbocharger Compressor Models

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Dynamic Identification of Thermodynamic Parameters for Turbocharger Compressor Models

Show simple item record

Files in this item

dc.contributor.author Burke, R.D. es_ES
dc.contributor.author Olmeda González, Pablo Cesar es_ES
dc.contributor.author Serrano Cruz, José Ramón es_ES
dc.date.accessioned 2017-09-20T18:52:27Z
dc.date.issued 2015-10
dc.identifier.issn 0742-4795
dc.identifier.uri http://hdl.handle.net/10251/87673
dc.description.abstract A novel experimental procedure is presented which allows simultaneous identification of heat and work transfer parameters for turbocharger compressor models. The method introduces a thermally transient condition and uses temperature measurements to extract the adiabatic efficiency and internal convective heat transfer coefficient simultaneously, thus capturing the aerodynamic and thermal performance. The procedure has been implemented both in simulation and experimentally on a typical turbocharger gas stand facility. Under ideal conditions, the new identification predicted adiabatic efficiency to within 1% point1 and heat transfer coefficient to within 1%. A sensitivity study subsequently showed that the method is particularly sensitive to the assumptions of heat transfer distribution pre- and postcompression. If 20% of the internal area of the compressor housing is exposed to the low pressure intake gas, and this is not correctly assumed in the identification process, errors of 7–15% points were observed for compressor efficiency. This distribution in heat transfer also affected the accuracy of heat transfer coefficient which increased to 20%. Thermocouple sensors affect the transient temperature measurements and in order to maintain efficiency errors below 1%, probes with diameter of less than 1.5 mm should be used. Experimentally, the method was shown to reduce the adiabatic efficiency error at 90 krpm and 110 krpm compared to industry-standard approach from 6% to 3%. However at low speeds, where temperature differences during the identi- fication are small, the method showed much larger errors. es_ES
dc.description.sponsorship The authors would like to acknowledge the staff at CMT Motores Termicos at the Universitat Politecnica de Valencia for their assistance in undertaking the experimental aspects of this work and funding from the Powertrain and Vehicle Research Centre at the University of Bath. en_EN
dc.language Inglés es_ES
dc.publisher American Society of Mechanical Engineers (ASME) es_ES
dc.relation.ispartof Journal of Engineering for Gas Turbines and Power es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Heat transfer es_ES
dc.subject Turbocharger mapping es_ES
dc.subject Transient es_ES
dc.subject Model es_ES
dc.subject 1D modeling es_ES
dc.subject Test methods es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Dynamic Identification of Thermodynamic Parameters for Turbocharger Compressor Models es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1115/1.4030092
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Burke, R.; Olmeda González, PC.; Serrano Cruz, JR. (2015). Dynamic Identification of Thermodynamic Parameters for Turbocharger Compressor Models. Journal of Engineering for Gas Turbines and Power. 137(10):1-10. doi:10.1115/1.4030092 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.dx.doi.org/10.1115/1.4030092 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 137 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 303821 es_ES
dc.identifier.eissn 1528-8919
dc.contributor.funder University of Bath es_ES
dc.description.references Chesse, P., Chalet, D., & Tauzia, X. (2011). Impact of the Heat Transfer on the Performance Calculations of Automotive Turbocharger Compressor. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 66(5), 791-800. doi:10.2516/ogst/2011129 es_ES
dc.description.references Cormerais, M., Hetet, J.-F., Chesse, P., and Maiboom, A., 2006, “Heat Transfers Characterisations in a Turbocharger: Experiments and Correlations,” ASME Paper No. ICES2006-1324. 10.1115/ICES2006-1324 es_ES
dc.description.references Shaaban, S., 2006, “Experimental Investigation and Extended Simulation of Turbocharger Non-Adiabatic Performance,” Ph.D. thesis, Fachbereich Maschinenbau, Universität Hannover, Hannover, Germany. es_ES
dc.description.references Baines, N., Wygant, K. D., & Dris, A. (2010). The Analysis of Heat Transfer in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 132(4). doi:10.1115/1.3204586 es_ES
dc.description.references Serrano, J., Olmeda, P., Arnau, F., Reyes-Belmonte, M., & Lefebvre, A. (2013). Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications. SAE International Journal of Engines, 6(2), 716-728. doi:10.4271/2013-01-0576 es_ES
dc.description.references Burke, R. D., 2013, “Analysis and Modelling of the Dynamic Behavior of Automotive Turbochargers,” ASME Paper No. ICEF2013-19120.10.1115/ICEF2013-19120 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Páez, A., & Vidal, F. (2010). An experimental procedure to determine heat transfer properties of turbochargers. Measurement Science and Technology, 21(3), 035109. doi:10.1088/0957-0233/21/3/035109 es_ES
dc.description.references Bohn, D., Heuer, T., & Kusterer, K. (2005). Conjugate Flow and Heat Transfer Investigation of a Turbo Charger. Journal of Engineering for Gas Turbines and Power, 127(3), 663-669. doi:10.1115/1.1839919 es_ES
dc.description.references Burke, R. D., Copeland, C. D., and Duda, T., 2014, “Investigation Into the Assumptions for Lumped Capacitance Modelling of Turbocharger Heat Transfer,” 6th International Conference on Simulation and Testing, Berlin, May 15–16. es_ES


This item appears in the following Collection(s)

Show simple item record