Mostrar el registro sencillo del ítem
dc.contributor.author | Burke, R.D. | es_ES |
dc.contributor.author | Olmeda González, Pablo Cesar | es_ES |
dc.contributor.author | Serrano Cruz, José Ramón | es_ES |
dc.date.accessioned | 2017-09-20T18:52:27Z | |
dc.date.issued | 2015-10 | |
dc.identifier.issn | 0742-4795 | |
dc.identifier.uri | http://hdl.handle.net/10251/87673 | |
dc.description.abstract | A novel experimental procedure is presented which allows simultaneous identification of heat and work transfer parameters for turbocharger compressor models. The method introduces a thermally transient condition and uses temperature measurements to extract the adiabatic efficiency and internal convective heat transfer coefficient simultaneously, thus capturing the aerodynamic and thermal performance. The procedure has been implemented both in simulation and experimentally on a typical turbocharger gas stand facility. Under ideal conditions, the new identification predicted adiabatic efficiency to within 1% point1 and heat transfer coefficient to within 1%. A sensitivity study subsequently showed that the method is particularly sensitive to the assumptions of heat transfer distribution pre- and postcompression. If 20% of the internal area of the compressor housing is exposed to the low pressure intake gas, and this is not correctly assumed in the identification process, errors of 7–15% points were observed for compressor efficiency. This distribution in heat transfer also affected the accuracy of heat transfer coefficient which increased to 20%. Thermocouple sensors affect the transient temperature measurements and in order to maintain efficiency errors below 1%, probes with diameter of less than 1.5 mm should be used. Experimentally, the method was shown to reduce the adiabatic efficiency error at 90 krpm and 110 krpm compared to industry-standard approach from 6% to 3%. However at low speeds, where temperature differences during the identi- fication are small, the method showed much larger errors. | es_ES |
dc.description.sponsorship | The authors would like to acknowledge the staff at CMT Motores Termicos at the Universitat Politecnica de Valencia for their assistance in undertaking the experimental aspects of this work and funding from the Powertrain and Vehicle Research Centre at the University of Bath. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Society of Mechanical Engineers (ASME) | es_ES |
dc.relation.ispartof | Journal of Engineering for Gas Turbines and Power | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Heat transfer | es_ES |
dc.subject | Turbocharger mapping | es_ES |
dc.subject | Transient | es_ES |
dc.subject | Model | es_ES |
dc.subject | 1D modeling | es_ES |
dc.subject | Test methods | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Dynamic Identification of Thermodynamic Parameters for Turbocharger Compressor Models | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1115/1.4030092 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Burke, R.; Olmeda González, PC.; Serrano Cruz, JR. (2015). Dynamic Identification of Thermodynamic Parameters for Turbocharger Compressor Models. Journal of Engineering for Gas Turbines and Power. 137(10):1-10. doi:10.1115/1.4030092 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.dx.doi.org/10.1115/1.4030092 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 137 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.senia | 303821 | es_ES |
dc.identifier.eissn | 1528-8919 | |
dc.contributor.funder | University of Bath | es_ES |
dc.description.references | Chesse, P., Chalet, D., & Tauzia, X. (2011). Impact of the Heat Transfer on the Performance Calculations of Automotive Turbocharger Compressor. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 66(5), 791-800. doi:10.2516/ogst/2011129 | es_ES |
dc.description.references | Cormerais, M., Hetet, J.-F., Chesse, P., and Maiboom, A., 2006, “Heat Transfers Characterisations in a Turbocharger: Experiments and Correlations,” ASME Paper No. ICES2006-1324. 10.1115/ICES2006-1324 | es_ES |
dc.description.references | Shaaban, S., 2006, “Experimental Investigation and Extended Simulation of Turbocharger Non-Adiabatic Performance,” Ph.D. thesis, Fachbereich Maschinenbau, Universität Hannover, Hannover, Germany. | es_ES |
dc.description.references | Baines, N., Wygant, K. D., & Dris, A. (2010). The Analysis of Heat Transfer in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 132(4). doi:10.1115/1.3204586 | es_ES |
dc.description.references | Serrano, J., Olmeda, P., Arnau, F., Reyes-Belmonte, M., & Lefebvre, A. (2013). Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications. SAE International Journal of Engines, 6(2), 716-728. doi:10.4271/2013-01-0576 | es_ES |
dc.description.references | Burke, R. D., 2013, “Analysis and Modelling of the Dynamic Behavior of Automotive Turbochargers,” ASME Paper No. ICEF2013-19120.10.1115/ICEF2013-19120 | es_ES |
dc.description.references | Serrano, J. R., Olmeda, P., Páez, A., & Vidal, F. (2010). An experimental procedure to determine heat transfer properties of turbochargers. Measurement Science and Technology, 21(3), 035109. doi:10.1088/0957-0233/21/3/035109 | es_ES |
dc.description.references | Bohn, D., Heuer, T., & Kusterer, K. (2005). Conjugate Flow and Heat Transfer Investigation of a Turbo Charger. Journal of Engineering for Gas Turbines and Power, 127(3), 663-669. doi:10.1115/1.1839919 | es_ES |
dc.description.references | Burke, R. D., Copeland, C. D., and Duda, T., 2014, “Investigation Into the Assumptions for Lumped Capacitance Modelling of Turbocharger Heat Transfer,” 6th International Conference on Simulation and Testing, Berlin, May 15–16. | es_ES |