Mostrar el registro sencillo del ítem
dc.contributor.author | Ponz Tienda, José Luis | es_ES |
dc.contributor.author | Salcedo-Bernal, Alejandro | es_ES |
dc.contributor.author | Pellicer Armiñana, Eugenio | es_ES |
dc.date.accessioned | 2017-10-20T07:38:45Z | |
dc.date.available | 2017-10-20T07:38:45Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1093-9687 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/89690 | |
dc.description.abstract | [EN] The efficient use of resources is a key factor to minimize the cost while meeting time deadlines and quality requirements; this is especially important in construction projects where field operations take fluctuations of resources unproductive and costly. Resource Leveling Problems (RLP) aim to sequence the construction activities that maximize the resource consumption efficiency over time, minimizing the variability. Exact algorithms for the RLP have been proposed throughout the years to offer optimal solutions; however, these problems require a vast computational capability ( combinatorial explosion ) that makes them unpractical. Therefore, alternative heuristic and metaheuristic algorithms have been suggested in the literature to find local optimal solutions, using different libraries to benchmark optimal values; for example, the Project Scheduling Problem LIBrary for minimal lags is still open to be solved to optimality for RLP. To partially fill this gap, the authors propose a Parallel Branch and Bound algorithm for the RLP with minimal lags to solve the RLP with an acceptable computational effort. This way, this research contributes to the body of knowledge of construction project scheduling providing the optimums of 50 problems for the RLP with minimal lags for the first time, allowing future contributors to benchmark their heuristics meth-ods against exact results by obtaining the distance of their solution to the optimal values. Furthermore, for practitioners,the time required to solve this kind of problem is reasonable and practical, considering that unbalanced resources can risk the goals of the construction project. | es_ES |
dc.description.sponsorship | This research was supported by the FAPA program of the Universidad de Los Andes (Colombia). The authors would like to thank the research group of Construction Engineering and Management (INgeco), especially J. S. Rojas-Quintero, and the Department of Systems Engineering at the Universidad de Los Andes. The authors are also grateful to the anonymous reviewers for their valuable and constructive suggestions. | en_EN |
dc.language | Inglés | es_ES |
dc.relation.ispartof | COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | CONSTRUCCIONES ARQUITECTONICAS | es_ES |
dc.subject.classification | PROYECTOS DE INGENIERIA | es_ES |
dc.title | A Parallel Branch and Bound Algorithm for the Resource Leveling Problem with Minimal Lags | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/mice.12233 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2018-06-30 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Ponz Tienda, JL.; Salcedo-Bernal, A.; Pellicer Armiñana, E. (2017). A Parallel Branch and Bound Algorithm for the Resource Leveling Problem with Minimal Lags. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING. 32:474-498. doi:10.1111/mice.12233 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http:dx.doi.org/10.1111/mice.12233 | es_ES |
dc.description.upvformatpinicio | 474 | es_ES |
dc.description.upvformatpfin | 498 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 32 | es_ES |
dc.relation.pasarela | S\340425 | es_ES |
dc.contributor.funder | Universidad de los Andes, Colombia | |
dc.description.references | Adeli, H. (2000). High-Performance Computing for Large-Scale Analysis, Optimization, and Control. Journal of Aerospace Engineering, 13(1), 1-10. doi:10.1061/(asce)0893-1321(2000)13:1(1) | es_ES |
dc.description.references | ADELI, H., & KAMAL, O. (2008). Parallel Structural Analysis Using Threads. Computer-Aided Civil and Infrastructure Engineering, 4(2), 133-147. doi:10.1111/j.1467-8667.1989.tb00015.x | es_ES |
dc.description.references | Adeli, H., & Kamal, O. (1992). Concurrent analysis of large structures—II. applications. Computers & Structures, 42(3), 425-432. doi:10.1016/0045-7949(92)90038-2 | es_ES |
dc.description.references | Adeli, H., Kamat, M. P., Kulkarni, G., & Vanluchene, R. D. (1993). High‐Performance Computing in Structural Mechanics and Engineering. Journal of Aerospace Engineering, 6(3), 249-267. doi:10.1061/(asce)0893-1321(1993)6:3(249) | es_ES |
dc.description.references | Adeli, H., & Karim, A. (1997). Scheduling/Cost Optimization and Neural Dynamics Model for Construction. Journal of Construction Engineering and Management, 123(4), 450-458. doi:10.1061/(asce)0733-9364(1997)123:4(450) | es_ES |
dc.description.references | Adeli, H., & Kumar, S. (1995). Concurrent Structural Optimization on Massively Parallel Supercomputer. Journal of Structural Engineering, 121(11), 1588-1597. doi:10.1061/(asce)0733-9445(1995)121:11(1588) | es_ES |
dc.description.references | ADELI, H., & VISHNUBHOTLA, P. (2008). Parallel Processing. Computer-Aided Civil and Infrastructure Engineering, 2(3), 257-269. doi:10.1111/j.1467-8667.1987.tb00150.x | es_ES |
dc.description.references | Adeli, H., & Wu, M. (1998). Regularization Neural Network for Construction Cost Estimation. Journal of Construction Engineering and Management, 124(1), 18-24. doi:10.1061/(asce)0733-9364(1998)124:1(18) | es_ES |
dc.description.references | Alsayegh, H., & Hariga, M. (2012). Hybrid meta-heuristic methods for the multi-resource leveling problem with activity splitting. Automation in Construction, 27, 89-98. doi:10.1016/j.autcon.2012.04.017 | es_ES |
dc.description.references | Anagnostopoulos, K., & Koulinas, G. (2012). Resource-Constrained Critical Path Scheduling by a GRASP-Based Hyperheuristic. Journal of Computing in Civil Engineering, 26(2), 204-213. doi:10.1061/(asce)cp.1943-5487.0000116 | es_ES |
dc.description.references | Anagnostopoulos, K. P., & Koulinas, G. K. (2010). A simulated annealing hyperheuristic for construction resource levelling. Construction Management and Economics, 28(2), 163-175. doi:10.1080/01446190903369907 | es_ES |
dc.description.references | Arditi, D., & Bentotage, S. N. (1996). System for Scheduling Highway Construction Projects. Computer-Aided Civil and Infrastructure Engineering, 11(2), 123-139. doi:10.1111/j.1467-8667.1996.tb00316.x | es_ES |
dc.description.references | Bandelloni, M., Tucci, M., & Rinaldi, R. (1994). Optimal resource leveling using non-serial dyanamic programming. European Journal of Operational Research, 78(2), 162-177. doi:10.1016/0377-2217(94)90380-8 | es_ES |
dc.description.references | Benjaoran, V., Tabyang, W., & Sooksil, N. (2015). Precedence relationship options for the resource levelling problem using a genetic algorithm. Construction Management and Economics, 33(9), 711-723. doi:10.1080/01446193.2015.1100317 | es_ES |
dc.description.references | Bianco, L., Caramia, M., & Giordani, S. (2016). Resource levelling in project scheduling with generalized precedence relationships and variable execution intensities. OR Spectrum, 38(2), 405-425. doi:10.1007/s00291-016-0435-1 | es_ES |
dc.description.references | Chakroun, I., & Melab, N. (2015). Towards a heterogeneous and adaptive parallel Branch-and-Bound algorithm. Journal of Computer and System Sciences, 81(1), 72-84. doi:10.1016/j.jcss.2014.06.012 | es_ES |
dc.description.references | Christodoulou, S. E., Ellinas, G., & Michaelidou-Kamenou, A. (2010). Minimum Moment Method for Resource Leveling Using Entropy Maximization. Journal of Construction Engineering and Management, 136(5), 518-527. doi:10.1061/(asce)co.1943-7862.0000149 | es_ES |
dc.description.references | Clausen, J., & Perregaard, M. (1999). Annals of Operations Research, 90, 1-17. doi:10.1023/a:1018952429396 | es_ES |
dc.description.references | Coughlan, E. T., Lübbecke, M. E., & Schulz, J. (2010). A Branch-and-Price Algorithm for Multi-mode Resource Leveling. Lecture Notes in Computer Science, 226-238. doi:10.1007/978-3-642-13193-6_20 | es_ES |
dc.description.references | Coughlan, E. T., Lübbecke, M. E., & Schulz, J. (2015). A branch-price-and-cut algorithm for multi-mode resource leveling. European Journal of Operational Research, 245(1), 70-80. doi:10.1016/j.ejor.2015.02.043 | es_ES |
dc.description.references | Crainic, T. G., Le Cun, B., & Roucairol, C. (s. f.). Parallel Branch-and-Bound Algorithms. Parallel Combinatorial Optimization, 1-28. doi:10.1002/9780470053928.ch1 | es_ES |
dc.description.references | Damci, A., Arditi, D., & Polat, G. (2013). Resource Leveling in Line-of-Balance Scheduling. Computer-Aided Civil and Infrastructure Engineering, 28(9), 679-692. doi:10.1111/mice.12038 | es_ES |
dc.description.references | Damci, A., Arditi, D., & Polat, G. (2013). Multiresource Leveling in Line-of-Balance Scheduling. Journal of Construction Engineering and Management, 139(9), 1108-1116. doi:10.1061/(asce)co.1943-7862.0000716 | es_ES |
dc.description.references | Damci, A., Arditi, D., & Polat, G. (2015). Impacts of different objective functions on resource leveling in Line-of-Balance scheduling. KSCE Journal of Civil Engineering, 20(1), 58-67. doi:10.1007/s12205-015-0578-7 | es_ES |
dc.description.references | De Reyck, B., & Herroelen, W. (1996). On the use of the complexity index as a measure of complexity in activity networks. European Journal of Operational Research, 91(2), 347-366. doi:10.1016/0377-2217(94)00344-0 | es_ES |
dc.description.references | Hossein Hashemi Doulabi, S., Seifi, A., & Shariat, S. Y. (2011). Efficient Hybrid Genetic Algorithm for Resource Leveling via Activity Splitting. Journal of Construction Engineering and Management, 137(2), 137-146. doi:10.1061/(asce)co.1943-7862.0000261 | es_ES |
dc.description.references | Drexl, A., & Kimms, A. (2001). Optimization guided lower and upper bounds for the resource investment problem. Journal of the Operational Research Society, 52(3), 340-351. doi:10.1057/palgrave.jors.2601099 | es_ES |
dc.description.references | Easa, S. M. (1989). Resource Leveling in Construction by Optimization. Journal of Construction Engineering and Management, 115(2), 302-316. doi:10.1061/(asce)0733-9364(1989)115:2(302) | es_ES |
dc.description.references | El-Rayes, K., & Jun, D. H. (2009). Optimizing Resource Leveling in Construction Projects. Journal of Construction Engineering and Management, 135(11), 1172-1180. doi:10.1061/(asce)co.1943-7862.0000097 | es_ES |
dc.description.references | Florez, L., Castro-Lacouture, D., & Medaglia, A. L. (2013). Sustainable workforce scheduling in construction program management. Journal of the Operational Research Society, 64(8), 1169-1181. doi:10.1057/jors.2012.164 | es_ES |
dc.description.references | Gaitanidis, A., Vassiliadis, V., Kyriklidis, C., & Dounias, G. (2016). Hybrid Evolutionary Algorithms in Resource Leveling Optimization. Proceedings of the 9th Hellenic Conference on Artificial Intelligence - SETN ’16. doi:10.1145/2903220.2903227 | es_ES |
dc.description.references | Gather, T., Zimmermann, J., & Bartels, J.-H. (2010). Exact methods for the resource levelling problem. Journal of Scheduling, 14(6), 557-569. doi:10.1007/s10951-010-0207-8 | es_ES |
dc.description.references | Georgy, M. E. (2008). Evolutionary resource scheduler for linear projects. Automation in Construction, 17(5), 573-583. doi:10.1016/j.autcon.2007.10.005 | es_ES |
dc.description.references | Hariga, M., & El-Sayegh, S. M. (2011). Cost Optimization Model for the Multiresource Leveling Problem with Allowed Activity Splitting. Journal of Construction Engineering and Management, 137(1), 56-64. doi:10.1061/(asce)co.1943-7862.0000251 | es_ES |
dc.description.references | Harris, R. B. (1990). Packing Method for Resource Leveling (Pack). Journal of Construction Engineering and Management, 116(2), 331-350. doi:10.1061/(asce)0733-9364(1990)116:2(331) | es_ES |
dc.description.references | Hegazy, T. (1999). Optimization of Resource Allocation and Leveling Using Genetic Algorithms. Journal of Construction Engineering and Management, 125(3), 167-175. doi:10.1061/(asce)0733-9364(1999)125:3(167) | es_ES |
dc.description.references | Heon Jun, D., & El-Rayes, K. (2011). Multiobjective Optimization of Resource Leveling and Allocation during Construction Scheduling. Journal of Construction Engineering and Management, 137(12), 1080-1088. doi:10.1061/(asce)co.1943-7862.0000368 | es_ES |
dc.description.references | Hiyassat, M. A. S. (2000). Modification of Minimum Moment Approach in Resource Leveling. Journal of Construction Engineering and Management, 126(4), 278-284. doi:10.1061/(asce)0733-9364(2000)126:4(278) | es_ES |
dc.description.references | Hiyassat, M. A. S. (2001). Applying Modified Minimum Moment Method to Multiple Resource Leveling. Journal of Construction Engineering and Management, 127(3), 192-198. doi:10.1061/(asce)0733-9364(2001)127:3(192) | es_ES |
dc.description.references | Ismail, M. M., el-raoof, O. abd, & Abd EL-Wahed, W. F. (2014). A Parallel Branch and Bound Algorithm for Solving Large Scale Integer Programming Problems. Applied Mathematics & Information Sciences, 8(4), 1691-1698. doi:10.12785/amis/080425 | es_ES |
dc.description.references | Kolisch, R., & Sprecher, A. (1997). PSPLIB - A project scheduling problem library. European Journal of Operational Research, 96(1), 205-216. doi:10.1016/s0377-2217(96)00170-1 | es_ES |
dc.description.references | Koulinas, G. K., & Anagnostopoulos, K. P. (2013). A new tabu search-based hyper-heuristic algorithm for solving construction leveling problems with limited resource availabilities. Automation in Construction, 31, 169-175. doi:10.1016/j.autcon.2012.11.002 | es_ES |
dc.description.references | Lai, T.-H., & Sahni, S. (1984). Anomalies in parallel branch-and-bound algorithms. Communications of the ACM, 27(6), 594-602. doi:10.1145/358080.358103 | es_ES |
dc.description.references | Leu, S.-S., Yang, C.-H., & Huang, J.-C. (2000). Resource leveling in construction by genetic algorithm-based optimization and its decision support system application. Automation in Construction, 10(1), 27-41. doi:10.1016/s0926-5805(99)00011-4 | es_ES |
dc.description.references | Li, H., Xu, Z., & Demeulemeester, E. (2015). Scheduling Policies for the Stochastic Resource Leveling Problem. Journal of Construction Engineering and Management, 141(2), 04014072. doi:10.1061/(asce)co.1943-7862.0000936 | es_ES |
dc.description.references | Lim, T.-K., Yi, C.-Y., Lee, D.-E., & Arditi, D. (2014). Concurrent Construction Scheduling Simulation Algorithm. Computer-Aided Civil and Infrastructure Engineering, 29(6), 449-463. doi:10.1111/mice.12073 | es_ES |
dc.description.references | Menesi, W., & Hegazy, T. (2015). Multimode Resource-Constrained Scheduling and Leveling for Practical-Size Projects. Journal of Management in Engineering, 31(6), 04014092. doi:10.1061/(asce)me.1943-5479.0000338 | es_ES |
dc.description.references | Neumann, K., Schwindt, C., & Zimmermann, J. (2003). Project Scheduling with Time Windows and Scarce Resources. doi:10.1007/978-3-540-24800-2 | es_ES |
dc.description.references | Neumann, K., & Zimmermann, J. (1999). Methods for Resource-Constrained Project Scheduling with Regular and Nonregular Objective Functions and Schedule-Dependent Time Windows. International Series in Operations Research & Management Science, 261-287. doi:10.1007/978-1-4615-5533-9_12 | es_ES |
dc.description.references | Neumann, K., & Zimmermann, J. (2000). Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints. European Journal of Operational Research, 127(2), 425-443. doi:10.1016/s0377-2217(99)00498-1 | es_ES |
dc.description.references | Nübel, H. (2001). The resource renting problem subject to temporal constraints. OR-Spektrum, 23(3), 359-381. doi:10.1007/pl00013357 | es_ES |
dc.description.references | Perregaard, M., & Clausen, J. (1998). Annals of Operations Research, 83, 137-160. doi:10.1023/a:1018903912673 | es_ES |
dc.description.references | Ponz-Tienda, J. L., Pellicer, E., Benlloch-Marco, J., & Andrés-Romano, C. (2015). The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations. Computer-Aided Civil and Infrastructure Engineering, 30(11), 872-891. doi:10.1111/mice.12166 | es_ES |
dc.description.references | Ponz-Tienda, J. L., Yepes, V., Pellicer, E., & Moreno-Flores, J. (2013). The Resource Leveling Problem with multiple resources using an adaptive genetic algorithm. Automation in Construction, 29, 161-172. doi:10.1016/j.autcon.2012.10.003 | es_ES |
dc.description.references | Pritsker, A. A. B., Waiters, L. J., & Wolfe, P. M. (1969). Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach. Management Science, 16(1), 93-108. doi:10.1287/mnsc.16.1.93 | es_ES |
dc.description.references | Ranjbar, M. (2013). A path-relinking metaheuristic for the resource levelling problem. Journal of the Operational Research Society, 64(7), 1071-1078. doi:10.1057/jors.2012.119 | es_ES |
dc.description.references | Rieck, J., & Zimmermann, J. (2014). Exact Methods for Resource Leveling Problems. Handbook on Project Management and Scheduling Vol.1, 361-387. doi:10.1007/978-3-319-05443-8_17 | es_ES |
dc.description.references | Rieck, J., Zimmermann, J., & Gather, T. (2012). Mixed-integer linear programming for resource leveling problems. European Journal of Operational Research, 221(1), 27-37. doi:10.1016/j.ejor.2012.03.003 | es_ES |
dc.description.references | Saleh, A., & Adeli, H. (1994). Microtasking, Macrotasking, and Autotasking for Structural Optimization. Journal of Aerospace Engineering, 7(2), 156-174. doi:10.1061/(asce)0893-1321(1994)7:2(156) | es_ES |
dc.description.references | Saleh, A., & Adeli, H. (1994). Parallel Algorithms for Integrated Structural/Control Optimization. Journal of Aerospace Engineering, 7(3), 297-314. doi:10.1061/(asce)0893-1321(1994)7:3(297) | es_ES |
dc.description.references | Son, J., & Mattila, K. G. (2004). Binary Resource Leveling Model: Activity Splitting Allowed. Journal of Construction Engineering and Management, 130(6), 887-894. doi:10.1061/(asce)0733-9364(2004)130:6(887) | es_ES |
dc.description.references | Son, J., & Skibniewski, M. J. (1999). Multiheuristic Approach for Resource Leveling Problem in Construction Engineering: Hybrid Approach. Journal of Construction Engineering and Management, 125(1), 23-31. doi:10.1061/(asce)0733-9364(1999)125:1(23) | es_ES |
dc.description.references | Tang, Y., Liu, R., & Sun, Q. (2014). Two-Stage Scheduling Model for Resource Leveling of Linear Projects. Journal of Construction Engineering and Management, 140(7), 04014022. doi:10.1061/(asce)co.1943-7862.0000862 | es_ES |
dc.description.references | Wah, Guo-jie Li, & Chee Fen Yu. (1985). Multiprocessing of Combinatorial Search Problems. Computer, 18(6), 93-108. doi:10.1109/mc.1985.1662926 | es_ES |
dc.description.references | Yeniocak , H. 2013 An efficient branch and bound algorithm for the resource leveling problem Ph.D. dissertation, Middle East Technical University, School of Natural and Applied Sciences | es_ES |
dc.description.references | Younis, M. A., & Saad, B. (1996). Optimal resource leveling of multi-resource projects. Computers & Industrial Engineering, 31(1-2), 1-4. doi:10.1016/0360-8352(96)00116-7 | es_ES |