- -

A Parallel Branch and Bound Algorithm for the Resource Leveling Problem with Minimal Lags

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Parallel Branch and Bound Algorithm for the Resource Leveling Problem with Minimal Lags

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ponz Tienda, José Luis es_ES
dc.contributor.author Salcedo-Bernal, Alejandro es_ES
dc.contributor.author Pellicer Armiñana, Eugenio es_ES
dc.date.accessioned 2017-10-20T07:38:45Z
dc.date.available 2017-10-20T07:38:45Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1093-9687 es_ES
dc.identifier.uri http://hdl.handle.net/10251/89690
dc.description.abstract [EN] The efficient use of resources is a key factor to minimize the cost while meeting time deadlines and quality requirements; this is especially important in construction projects where field operations take fluctuations of resources unproductive and costly. Resource Leveling Problems (RLP) aim to sequence the construction activities that maximize the resource consumption efficiency over time, minimizing the variability. Exact algorithms for the RLP have been proposed throughout the years to offer optimal solutions; however, these problems require a vast computational capability ( combinatorial explosion ) that makes them unpractical. Therefore, alternative heuristic and metaheuristic algorithms have been suggested in the literature to find local optimal solutions, using different libraries to benchmark optimal values; for example, the Project Scheduling Problem LIBrary for minimal lags is still open to be solved to optimality for RLP. To partially fill this gap, the authors propose a Parallel Branch and Bound algorithm for the RLP with minimal lags to solve the RLP with an acceptable computational effort. This way, this research contributes to the body of knowledge of construction project scheduling providing the optimums of 50 problems for the RLP with minimal lags for the first time, allowing future contributors to benchmark their heuristics meth-ods against exact results by obtaining the distance of their solution to the optimal values. Furthermore, for practitioners,the time required to solve this kind of problem is reasonable and practical, considering that unbalanced resources can risk the goals of the construction project. es_ES
dc.description.sponsorship This research was supported by the FAPA program of the Universidad de Los Andes (Colombia). The authors would like to thank the research group of Construction Engineering and Management (INgeco), especially J. S. Rojas-Quintero, and the Department of Systems Engineering at the Universidad de Los Andes. The authors are also grateful to the anonymous reviewers for their valuable and constructive suggestions. en_EN
dc.language Inglés es_ES
dc.relation.ispartof COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.title A Parallel Branch and Bound Algorithm for the Resource Leveling Problem with Minimal Lags es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/mice.12233 es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-06-30 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Ponz Tienda, JL.; Salcedo-Bernal, A.; Pellicer Armiñana, E. (2017). A Parallel Branch and Bound Algorithm for the Resource Leveling Problem with Minimal Lags. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING. 32:474-498. doi:10.1111/mice.12233 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http:dx.doi.org/10.1111/mice.12233 es_ES
dc.description.upvformatpinicio 474 es_ES
dc.description.upvformatpfin 498 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.relation.pasarela S\340425 es_ES
dc.contributor.funder Universidad de los Andes, Colombia
dc.description.references Adeli, H. (2000). High-Performance Computing for Large-Scale Analysis, Optimization, and Control. Journal of Aerospace Engineering, 13(1), 1-10. doi:10.1061/(asce)0893-1321(2000)13:1(1) es_ES
dc.description.references ADELI, H., & KAMAL, O. (2008). Parallel Structural Analysis Using Threads. Computer-Aided Civil and Infrastructure Engineering, 4(2), 133-147. doi:10.1111/j.1467-8667.1989.tb00015.x es_ES
dc.description.references Adeli, H., & Kamal, O. (1992). Concurrent analysis of large structures—II. applications. Computers & Structures, 42(3), 425-432. doi:10.1016/0045-7949(92)90038-2 es_ES
dc.description.references Adeli, H., Kamat, M. P., Kulkarni, G., & Vanluchene, R. D. (1993). High‐Performance Computing in Structural Mechanics and Engineering. Journal of Aerospace Engineering, 6(3), 249-267. doi:10.1061/(asce)0893-1321(1993)6:3(249) es_ES
dc.description.references Adeli, H., & Karim, A. (1997). Scheduling/Cost Optimization and Neural Dynamics Model for Construction. Journal of Construction Engineering and Management, 123(4), 450-458. doi:10.1061/(asce)0733-9364(1997)123:4(450) es_ES
dc.description.references Adeli, H., & Kumar, S. (1995). Concurrent Structural Optimization on Massively Parallel Supercomputer. Journal of Structural Engineering, 121(11), 1588-1597. doi:10.1061/(asce)0733-9445(1995)121:11(1588) es_ES
dc.description.references ADELI, H., & VISHNUBHOTLA, P. (2008). Parallel Processing. Computer-Aided Civil and Infrastructure Engineering, 2(3), 257-269. doi:10.1111/j.1467-8667.1987.tb00150.x es_ES
dc.description.references Adeli, H., & Wu, M. (1998). Regularization Neural Network for Construction Cost Estimation. Journal of Construction Engineering and Management, 124(1), 18-24. doi:10.1061/(asce)0733-9364(1998)124:1(18) es_ES
dc.description.references Alsayegh, H., & Hariga, M. (2012). Hybrid meta-heuristic methods for the multi-resource leveling problem with activity splitting. Automation in Construction, 27, 89-98. doi:10.1016/j.autcon.2012.04.017 es_ES
dc.description.references Anagnostopoulos, K., & Koulinas, G. (2012). Resource-Constrained Critical Path Scheduling by a GRASP-Based Hyperheuristic. Journal of Computing in Civil Engineering, 26(2), 204-213. doi:10.1061/(asce)cp.1943-5487.0000116 es_ES
dc.description.references Anagnostopoulos, K. P., & Koulinas, G. K. (2010). A simulated annealing hyperheuristic for construction resource levelling. Construction Management and Economics, 28(2), 163-175. doi:10.1080/01446190903369907 es_ES
dc.description.references Arditi, D., & Bentotage, S. N. (1996). System for Scheduling Highway Construction Projects. Computer-Aided Civil and Infrastructure Engineering, 11(2), 123-139. doi:10.1111/j.1467-8667.1996.tb00316.x es_ES
dc.description.references Bandelloni, M., Tucci, M., & Rinaldi, R. (1994). Optimal resource leveling using non-serial dyanamic programming. European Journal of Operational Research, 78(2), 162-177. doi:10.1016/0377-2217(94)90380-8 es_ES
dc.description.references Benjaoran, V., Tabyang, W., & Sooksil, N. (2015). Precedence relationship options for the resource levelling problem using a genetic algorithm. Construction Management and Economics, 33(9), 711-723. doi:10.1080/01446193.2015.1100317 es_ES
dc.description.references Bianco, L., Caramia, M., & Giordani, S. (2016). Resource levelling in project scheduling with generalized precedence relationships and variable execution intensities. OR Spectrum, 38(2), 405-425. doi:10.1007/s00291-016-0435-1 es_ES
dc.description.references Chakroun, I., & Melab, N. (2015). Towards a heterogeneous and adaptive parallel Branch-and-Bound algorithm. Journal of Computer and System Sciences, 81(1), 72-84. doi:10.1016/j.jcss.2014.06.012 es_ES
dc.description.references Christodoulou, S. E., Ellinas, G., & Michaelidou-Kamenou, A. (2010). Minimum Moment Method for Resource Leveling Using Entropy Maximization. Journal of Construction Engineering and Management, 136(5), 518-527. doi:10.1061/(asce)co.1943-7862.0000149 es_ES
dc.description.references Clausen, J., & Perregaard, M. (1999). Annals of Operations Research, 90, 1-17. doi:10.1023/a:1018952429396 es_ES
dc.description.references Coughlan, E. T., Lübbecke, M. E., & Schulz, J. (2010). A Branch-and-Price Algorithm for Multi-mode Resource Leveling. Lecture Notes in Computer Science, 226-238. doi:10.1007/978-3-642-13193-6_20 es_ES
dc.description.references Coughlan, E. T., Lübbecke, M. E., & Schulz, J. (2015). A branch-price-and-cut algorithm for multi-mode resource leveling. European Journal of Operational Research, 245(1), 70-80. doi:10.1016/j.ejor.2015.02.043 es_ES
dc.description.references Crainic, T. G., Le Cun, B., & Roucairol, C. (s. f.). Parallel Branch-and-Bound Algorithms. Parallel Combinatorial Optimization, 1-28. doi:10.1002/9780470053928.ch1 es_ES
dc.description.references Damci, A., Arditi, D., & Polat, G. (2013). Resource Leveling in Line-of-Balance Scheduling. Computer-Aided Civil and Infrastructure Engineering, 28(9), 679-692. doi:10.1111/mice.12038 es_ES
dc.description.references Damci, A., Arditi, D., & Polat, G. (2013). Multiresource Leveling in Line-of-Balance Scheduling. Journal of Construction Engineering and Management, 139(9), 1108-1116. doi:10.1061/(asce)co.1943-7862.0000716 es_ES
dc.description.references Damci, A., Arditi, D., & Polat, G. (2015). Impacts of different objective functions on resource leveling in Line-of-Balance scheduling. KSCE Journal of Civil Engineering, 20(1), 58-67. doi:10.1007/s12205-015-0578-7 es_ES
dc.description.references De Reyck, B., & Herroelen, W. (1996). On the use of the complexity index as a measure of complexity in activity networks. European Journal of Operational Research, 91(2), 347-366. doi:10.1016/0377-2217(94)00344-0 es_ES
dc.description.references Hossein Hashemi Doulabi, S., Seifi, A., & Shariat, S. Y. (2011). Efficient Hybrid Genetic Algorithm for Resource Leveling via Activity Splitting. Journal of Construction Engineering and Management, 137(2), 137-146. doi:10.1061/(asce)co.1943-7862.0000261 es_ES
dc.description.references Drexl, A., & Kimms, A. (2001). Optimization guided lower and upper bounds for the resource investment problem. Journal of the Operational Research Society, 52(3), 340-351. doi:10.1057/palgrave.jors.2601099 es_ES
dc.description.references Easa, S. M. (1989). Resource Leveling in Construction by Optimization. Journal of Construction Engineering and Management, 115(2), 302-316. doi:10.1061/(asce)0733-9364(1989)115:2(302) es_ES
dc.description.references El-Rayes, K., & Jun, D. H. (2009). Optimizing Resource Leveling in Construction Projects. Journal of Construction Engineering and Management, 135(11), 1172-1180. doi:10.1061/(asce)co.1943-7862.0000097 es_ES
dc.description.references Florez, L., Castro-Lacouture, D., & Medaglia, A. L. (2013). Sustainable workforce scheduling in construction program management. Journal of the Operational Research Society, 64(8), 1169-1181. doi:10.1057/jors.2012.164 es_ES
dc.description.references Gaitanidis, A., Vassiliadis, V., Kyriklidis, C., & Dounias, G. (2016). Hybrid Evolutionary Algorithms in Resource Leveling Optimization. Proceedings of the 9th Hellenic Conference on Artificial Intelligence - SETN ’16. doi:10.1145/2903220.2903227 es_ES
dc.description.references Gather, T., Zimmermann, J., & Bartels, J.-H. (2010). Exact methods for the resource levelling problem. Journal of Scheduling, 14(6), 557-569. doi:10.1007/s10951-010-0207-8 es_ES
dc.description.references Georgy, M. E. (2008). Evolutionary resource scheduler for linear projects. Automation in Construction, 17(5), 573-583. doi:10.1016/j.autcon.2007.10.005 es_ES
dc.description.references Hariga, M., & El-Sayegh, S. M. (2011). Cost Optimization Model for the Multiresource Leveling Problem with Allowed Activity Splitting. Journal of Construction Engineering and Management, 137(1), 56-64. doi:10.1061/(asce)co.1943-7862.0000251 es_ES
dc.description.references Harris, R. B. (1990). Packing Method for Resource Leveling (Pack). Journal of Construction Engineering and Management, 116(2), 331-350. doi:10.1061/(asce)0733-9364(1990)116:2(331) es_ES
dc.description.references Hegazy, T. (1999). Optimization of Resource Allocation and Leveling Using Genetic Algorithms. Journal of Construction Engineering and Management, 125(3), 167-175. doi:10.1061/(asce)0733-9364(1999)125:3(167) es_ES
dc.description.references Heon Jun, D., & El-Rayes, K. (2011). Multiobjective Optimization of Resource Leveling and Allocation during Construction Scheduling. Journal of Construction Engineering and Management, 137(12), 1080-1088. doi:10.1061/(asce)co.1943-7862.0000368 es_ES
dc.description.references Hiyassat, M. A. S. (2000). Modification of Minimum Moment Approach in Resource Leveling. Journal of Construction Engineering and Management, 126(4), 278-284. doi:10.1061/(asce)0733-9364(2000)126:4(278) es_ES
dc.description.references Hiyassat, M. A. S. (2001). Applying Modified Minimum Moment Method to Multiple Resource Leveling. Journal of Construction Engineering and Management, 127(3), 192-198. doi:10.1061/(asce)0733-9364(2001)127:3(192) es_ES
dc.description.references Ismail, M. M., el-raoof, O. abd, & Abd EL-Wahed, W. F. (2014). A Parallel Branch and Bound Algorithm for Solving Large Scale Integer Programming Problems. Applied Mathematics & Information Sciences, 8(4), 1691-1698. doi:10.12785/amis/080425 es_ES
dc.description.references Kolisch, R., & Sprecher, A. (1997). PSPLIB - A project scheduling problem library. European Journal of Operational Research, 96(1), 205-216. doi:10.1016/s0377-2217(96)00170-1 es_ES
dc.description.references Koulinas, G. K., & Anagnostopoulos, K. P. (2013). A new tabu search-based hyper-heuristic algorithm for solving construction leveling problems with limited resource availabilities. Automation in Construction, 31, 169-175. doi:10.1016/j.autcon.2012.11.002 es_ES
dc.description.references Lai, T.-H., & Sahni, S. (1984). Anomalies in parallel branch-and-bound algorithms. Communications of the ACM, 27(6), 594-602. doi:10.1145/358080.358103 es_ES
dc.description.references Leu, S.-S., Yang, C.-H., & Huang, J.-C. (2000). Resource leveling in construction by genetic algorithm-based optimization and its decision support system application. Automation in Construction, 10(1), 27-41. doi:10.1016/s0926-5805(99)00011-4 es_ES
dc.description.references Li, H., Xu, Z., & Demeulemeester, E. (2015). Scheduling Policies for the Stochastic Resource Leveling Problem. Journal of Construction Engineering and Management, 141(2), 04014072. doi:10.1061/(asce)co.1943-7862.0000936 es_ES
dc.description.references Lim, T.-K., Yi, C.-Y., Lee, D.-E., & Arditi, D. (2014). Concurrent Construction Scheduling Simulation Algorithm. Computer-Aided Civil and Infrastructure Engineering, 29(6), 449-463. doi:10.1111/mice.12073 es_ES
dc.description.references Menesi, W., & Hegazy, T. (2015). Multimode Resource-Constrained Scheduling and Leveling for Practical-Size Projects. Journal of Management in Engineering, 31(6), 04014092. doi:10.1061/(asce)me.1943-5479.0000338 es_ES
dc.description.references Neumann, K., Schwindt, C., & Zimmermann, J. (2003). Project Scheduling with Time Windows and Scarce Resources. doi:10.1007/978-3-540-24800-2 es_ES
dc.description.references Neumann, K., & Zimmermann, J. (1999). Methods for Resource-Constrained Project Scheduling with Regular and Nonregular Objective Functions and Schedule-Dependent Time Windows. International Series in Operations Research & Management Science, 261-287. doi:10.1007/978-1-4615-5533-9_12 es_ES
dc.description.references Neumann, K., & Zimmermann, J. (2000). Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints. European Journal of Operational Research, 127(2), 425-443. doi:10.1016/s0377-2217(99)00498-1 es_ES
dc.description.references Nübel, H. (2001). The resource renting problem subject to temporal constraints. OR-Spektrum, 23(3), 359-381. doi:10.1007/pl00013357 es_ES
dc.description.references Perregaard, M., & Clausen, J. (1998). Annals of Operations Research, 83, 137-160. doi:10.1023/a:1018903912673 es_ES
dc.description.references Ponz-Tienda, J. L., Pellicer, E., Benlloch-Marco, J., & Andrés-Romano, C. (2015). The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations. Computer-Aided Civil and Infrastructure Engineering, 30(11), 872-891. doi:10.1111/mice.12166 es_ES
dc.description.references Ponz-Tienda, J. L., Yepes, V., Pellicer, E., & Moreno-Flores, J. (2013). The Resource Leveling Problem with multiple resources using an adaptive genetic algorithm. Automation in Construction, 29, 161-172. doi:10.1016/j.autcon.2012.10.003 es_ES
dc.description.references Pritsker, A. A. B., Waiters, L. J., & Wolfe, P. M. (1969). Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach. Management Science, 16(1), 93-108. doi:10.1287/mnsc.16.1.93 es_ES
dc.description.references Ranjbar, M. (2013). A path-relinking metaheuristic for the resource levelling problem. Journal of the Operational Research Society, 64(7), 1071-1078. doi:10.1057/jors.2012.119 es_ES
dc.description.references Rieck, J., & Zimmermann, J. (2014). Exact Methods for Resource Leveling Problems. Handbook on Project Management and Scheduling Vol.1, 361-387. doi:10.1007/978-3-319-05443-8_17 es_ES
dc.description.references Rieck, J., Zimmermann, J., & Gather, T. (2012). Mixed-integer linear programming for resource leveling problems. European Journal of Operational Research, 221(1), 27-37. doi:10.1016/j.ejor.2012.03.003 es_ES
dc.description.references Saleh, A., & Adeli, H. (1994). Microtasking, Macrotasking, and Autotasking for Structural Optimization. Journal of Aerospace Engineering, 7(2), 156-174. doi:10.1061/(asce)0893-1321(1994)7:2(156) es_ES
dc.description.references Saleh, A., & Adeli, H. (1994). Parallel Algorithms for Integrated Structural/Control Optimization. Journal of Aerospace Engineering, 7(3), 297-314. doi:10.1061/(asce)0893-1321(1994)7:3(297) es_ES
dc.description.references Son, J., & Mattila, K. G. (2004). Binary Resource Leveling Model: Activity Splitting Allowed. Journal of Construction Engineering and Management, 130(6), 887-894. doi:10.1061/(asce)0733-9364(2004)130:6(887) es_ES
dc.description.references Son, J., & Skibniewski, M. J. (1999). Multiheuristic Approach for Resource Leveling Problem in Construction Engineering: Hybrid Approach. Journal of Construction Engineering and Management, 125(1), 23-31. doi:10.1061/(asce)0733-9364(1999)125:1(23) es_ES
dc.description.references Tang, Y., Liu, R., & Sun, Q. (2014). Two-Stage Scheduling Model for Resource Leveling of Linear Projects. Journal of Construction Engineering and Management, 140(7), 04014022. doi:10.1061/(asce)co.1943-7862.0000862 es_ES
dc.description.references Wah, Guo-jie Li, & Chee Fen Yu. (1985). Multiprocessing of Combinatorial Search Problems. Computer, 18(6), 93-108. doi:10.1109/mc.1985.1662926 es_ES
dc.description.references Yeniocak , H. 2013 An efficient branch and bound algorithm for the resource leveling problem Ph.D. dissertation, Middle East Technical University, School of Natural and Applied Sciences es_ES
dc.description.references Younis, M. A., & Saad, B. (1996). Optimal resource leveling of multi-resource projects. Computers & Industrial Engineering, 31(1-2), 1-4. doi:10.1016/0360-8352(96)00116-7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem