- -

Subwavelength grating enabled on-chip ultra-compact optical true time delay line

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Subwavelength grating enabled on-chip ultra-compact optical true time delay line

Mostrar el registro completo del ítem

Wang, J.; Ashrafi, R.; Adams, R.; Glesk, I.; Gasulla Mestre, I.; Capmany Francoy, J.; Chen, LR. (2016). Subwavelength grating enabled on-chip ultra-compact optical true time delay line. Scientific Reports. 6(3023):1-10. https://doi.org/10.1038/srep30235

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/92404

Ficheros en el ítem

Metadatos del ítem

Título: Subwavelength grating enabled on-chip ultra-compact optical true time delay line
Autor: Wang, Junjia Ashrafi, Reza Adams, Rhys Glesk, Ivan Gasulla Mestre, Ivana Capmany Francoy, José Chen, Lawrence R
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
[EN] An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/srep30235
Editorial:
Nature Publishing Group
Versión del editor: http://doi.org/10.1038/srep30235
Agradecimientos:
We thank Prof. Michael Hilke for lending the VNA used in this work and Prof. Thomas Szkopek for discussions. We also thank Richard Bojko for fabrication of our integrated silicon photonic OTTDLs at the University of ...[+]
Tipo: Artículo

References

Cheben, P. et al. A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides. Opt. Express 15, 2299–2306 (2007).

Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).

Yao, J. Microwave photonics. IEEE/OSA J. Lightwave Technol. 27, 314–335 (2009). [+]
Cheben, P. et al. A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides. Opt. Express 15, 2299–2306 (2007).

Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).

Yao, J. Microwave photonics. IEEE/OSA J. Lightwave Technol. 27, 314–335 (2009).

Mailloux, R. J. Phased array antenna handbook (Artech House, 2005).

Ng, W. et al. The first demonstration of an optically steered microwave phased array antenna using true-time-delay. IEEE/OSA J. Lightw. Technol. 9, 1124–1131 (1991).

Kaman, V., Zheng, X., Helkey, R. J., Pusarla, C. & Bowers, J. E. A 32-element 8-bit photonic true-time-delay system based on a 288 × 288 3-D MEMS optical switch. IEEE Photon. Technol. Lett. 15, 849–851 (2003).

Shin, J. D., Lee, B. S. & Kim, B. G. Optical true time-delay feeder for X-band phased array antennas composed of 2 × 2 optical MEMS switches and fiber delay lines. IEEE Photon. Technol. Lett. 15, 1364–1366 (2004).

Sancho, J. et al. Integrable microwave filter based on a photonic crystal delay line. Nat. Comm. 3, 1075 (2012).

Adachi, J., Ishikura, N., Sasaki, H. & Baba, T. Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping. IEEE J. Sel. Top. Quantum Electron. 16, 192–199 (2010).

Melloni, A. Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison. IEEE Photon. J. 2, 181–194 (2010).

Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475–21484 (2011).

Rasras, M. S. et al. Integrated resonance-enhanced variable optical delay lines. IEEE Photon. Technol. Lett. 17, 834–836 (2005).

Cardenas, J. et al. Wide-bandwidth continuously tunable optical delay line using silicon microring resonators. Opt. Express 18, 26525–26534 (2010).

Morton, P. A., Cardenas, J., Khurgin, J. B. & Lipson, M. Fast thermal switching of wideband optical delay line with no long-term transient. IEEE Photon. Technol. Lett. 24, 512–514 (2012).

Xie, J. et al. Continuously tunable reflective-type optical delay lines using microring resonators. Opt. Express 22, 817–823 (2014).

Spasojevic M. & Chen, L. R. Discretely tunable optical delay lines using serial and step-chirped sidewall Bragg gratings in SOI. Electron. Lett. 49, 608–610 (2013).

Khan, S., Baghban, M. A. & Fathpour, S. Electronically tunable silicon photonic delay lines. Opt. Express 19, 11780–11785 (2011).

Giuntoni, I. et al. Continuously tunable delay line based on SOI tapered Bragg gratings. Opt. Express 20, 11241–11246 (2012).

Khan, S. & Fathpour, S. Complementary apodized grating waveguides for tunable optical delay lines. Opt. Express 20, 19859–19867 (2012).

Burla, M. et al. Integrated waveguide Bragg gratings for microwave photonics signal processing. Opt. Express 21, 25120–25147 (2013).

Shi, W., Veerasubramanian, V., Patel, D. & Plant, D. V. Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings. Opt. Lett. 39, 701–703 (2014).

Yegnanarayanan, S., Trinh, P., Coppinger, F. & Jalali, B. Compact silicon-based integrated optic time delays. IEEE Photon. Technol. Lett. 9, 634–635 (1997).

Lee, H., Chen, T., Li, J., Painter, O. & Vahala, K. J. Ultra-low-loss optical delay line on a silicon chip. Nat. Comm. 3, 867 (2012).

Moreira, R. L. et al. Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications. IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).

Xie, J., Zhou, L., Li, Z., Wang, J. & Chen, J. Seven-bit reconfigurable optical true time delay line based on silicon integration. Opt. Express 22, 22707–22715 (2014).

Lenz, G., Eggleton, B. J., Madsen, C. K. & Slusher, R. E. Optical delay lines based on optical filters. IEEE J. Quantum Electron. 37, pp. 525–532 (2001).

Gasulla, I. & Capmany, J. Microwave photonics applications of multicore fibers. IEEE Photon. J. 4, 877–888 (2012).

Garcia S. & Gasulla, I. Design of heterogeneous multicore fibers as sampled true-time delay lines. Opt. Lett. 40, 621–624 (2015).

Bock, P. J. et al. Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. Opt. Express 18, 20251–20262 (2010).

Halir, R. et al. Waveguide sub-wavelength structures: a review of principles and applications. Laser Photonics Rev. 9, 1–25 (2014).

Farn, M. W. Binary gratings with increased efficiency. Appl. Opt. 31, 4453–4458 (1992).

Halir, R. et al. Waveguide grating coupler with subwavelength microstructures. Opt. Lett. 34, 1408–1410 (2009).

Cheben, P. et al. Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers. Opt. Lett. 35, 2526–2528 (2010).

Zhou, Y. et al. High-index-contrast grating (HCG) and its applications in optoelectronic devices. IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).

Karagodsky, V., Sedgwick, F. G. & Chang-Hasnain, C. J. Theoretical analysis of subwavelength high contrast grating reflectors. Opt. Express 18, 16973–16988 (2010).

Zhou, Y., Moewe, M., Kern, J., Huang, M. C. Y. & Chang-Hasnain, C. J. Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating. Opt. Express 16, 17282–17287 (2008).

Yang, W. et al. Low loss hollow-core waveguide on a silicon substrate. Nanophotonics 1, 23–29 (2012).

Fattal, D., Li, J., Peng, Z., Fiorentino, M. & Beausoleil, R. G. Flat dielectric grating reflectors with focusing abilities. Nat. Photonics 4, 466–470 (2010).

Huang, M. C., Zhou, Y. & Chang-Hasnain, C. J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photon. 1, 119–122 (2007).

Bock, P. J. et al. Subwavelength grating crossings for silicon wire waveguides. Opt. Express 18, 16146–16155 (2010).

Wang, J., Glesk, I. & Chen, L. R. Subwavelength grating filtering devices. Opt. Express 22, 15335–15345 (2014).

Donzella, V. et al. Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides. Opt. Express 23, 4791–4803 (2015).

Maese-Novo, A. et al. Wavelength independent multimode interference coupler. Opt. Express 21, 7033–7040 (2013).

Donzella, V. et al. Sub-wavelength grating components for integrated optics applications on SOI chips. Opt. Express 22, 21037–21050 (2014).

Chrostowski, L. & Hochberg, M. Silicon photonics design: from devices to systems (Cambridge University Press, 2015).

Wang, Z. et al. Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonic circuits. Scientific Rep. 6, 24106 (2016).

Roeloffzen, C. G. H. et al. Silicon nitride microwave photonic circuits. Opt. Express 21, 22937–22961 (2013).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem