- -

Desarrollo de las aleaciones de titanio y tratamientos superficiales para incrementar la vida útil de los implantes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Desarrollo de las aleaciones de titanio y tratamientos superficiales para incrementar la vida útil de los implantes

Mostrar el registro completo del ítem

Lario-Femenía, J.; Amigó Mata, A.; Vicente-Escuder, Á.; Segovia-López, F.; Amigó, V. (2016). Desarrollo de las aleaciones de titanio y tratamientos superficiales para incrementar la vida útil de los implantes. Revista de Metalurgia. 52(4):e084-e096. https://doi.org/10.3989/revmetalm.084

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/93302

Ficheros en el ítem

Metadatos del ítem

Título: Desarrollo de las aleaciones de titanio y tratamientos superficiales para incrementar la vida útil de los implantes
Autor: Lario-Femenía, Joan Amigó Mata, A. Vicente-Escuder, Ángel Segovia-López, Francisco Amigó, Vicente
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] The population aging together with increase of life expectancy forces the development of new prosthesis which may present a higher useful life. The clinical success of implants is based on the osseointegration ...[+]


[ES] El envejecimiento de la población junto con el incremento de la esperanza de vida, obligan al desarrollo de prótesis que presenten un periodo de vida útil cada vez mayor. El éxito clínico de los implantes está basado ...[+]
Palabras clave: Aleaciones &#946 , de titanio , Anodizado , Biocompatibilidad , Nanotubos , Osteointegración , Tratamientos superficiales , Tratamiento térmico , Electron Microscopy Service of the UPV
Derechos de uso: Reconocimiento (by)
Fuente:
Revista de Metalurgia. (issn: 0034-8570 )
DOI: 10.3989/revmetalm.084
Editorial:
Departmento de Publicaciones del CSIC
Versión del editor: http://doi.org/10.3989/revmetalm.084
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2014-53764-C3-1-R/ES/ESTUDIO DEL COMPORTAMIENTO TRIBO-ELECTROQUIMICO EN NUEVAS ALEACIONES DE TITANIO DE BAJO MODULO Y SU MODIFICACION SUPERFICIAL PARA APLICACIONES BIOMEDICAS./
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F040/ES/DESARROLLO DE ALEACIONES DE TITANIO Y MATERIALES CERAMICOS AVANZADOS PARA APLICACIONES BIOMEDICAS/
Agradecimientos:
Los autores desean agradecer al Ministerio de Economía y competitividad el apoyo financiero a través del proyecto de investigación MAT2014-53764-C3-1-R y a la Generalitat Valenciana a través del apoyo PROMETEO/2016/040. A ...[+]
Tipo: Artículo

References

Ahmed, T., & Rack, H. J. (1998). Phase transformations during cooling in α+β titanium alloys. Materials Science and Engineering: A, 243(1-2), 206-211. doi:10.1016/s0921-5093(97)00802-2

Anselme, K., Bigerelle, M., Noel, B., Dufresne, E., Judas, D., Iost, A., & Hardouin, P. (2000). Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. Journal of Biomedical Materials Research, 49(2), 155-166. doi:10.1002/(sici)1097-4636(200002)49:2<155::aid-jbm2>3.0.co;2-j

Bai, Y., Park, I. S., Park, H. H., Lee, M. H., Bae, T. S., Duncan, W., & Swain, M. (2011). The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes. Surface and Interface Analysis, 43(6), 998-1005. doi:10.1002/sia.3683 [+]
Ahmed, T., & Rack, H. J. (1998). Phase transformations during cooling in α+β titanium alloys. Materials Science and Engineering: A, 243(1-2), 206-211. doi:10.1016/s0921-5093(97)00802-2

Anselme, K., Bigerelle, M., Noel, B., Dufresne, E., Judas, D., Iost, A., & Hardouin, P. (2000). Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. Journal of Biomedical Materials Research, 49(2), 155-166. doi:10.1002/(sici)1097-4636(200002)49:2<155::aid-jbm2>3.0.co;2-j

Bai, Y., Park, I. S., Park, H. H., Lee, M. H., Bae, T. S., Duncan, W., & Swain, M. (2011). The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes. Surface and Interface Analysis, 43(6), 998-1005. doi:10.1002/sia.3683

Ban, S., Iwaya, Y., Kono, H., & Sato, H. (2006). Surface modification of titanium by etching in concentrated sulfuric acid. Dental Materials, 22(12), 1115-1120. doi:10.1016/j.dental.2005.09.007

Bauer, S., Pittrof, A., Tsuchiya, H., & Schmuki, P. (2011). Size-effects in TiO2 nanotubes: Diameter dependent anatase/rutile stabilization. Electrochemistry Communications, 13(6), 538-541. doi:10.1016/j.elecom.2011.03.003

Bayram, C., Demirbilek, M., Yalçın, E., Bozkurt, M., Doğan, M., & Denkbaş, E. B. (2014). Osteoblast response on co-modified titanium surfaces via anodization and electrospinning. Applied Surface Science, 288, 143-148. doi:10.1016/j.apsusc.2013.09.168

Berger, S., Hahn, R., Roy, P., & Schmuki, P. (2010). Self-organized TiO2 nanotubes: Factors affecting their morphology and properties. physica status solidi (b), 247(10), 2424-2435. doi:10.1002/pssb.201046373

Berger, S., Albu, S. P., Schmidt-Stein, F., Hildebrand, H., Schmuki, P., Hammond, J. S., … Reichlmaier, S. (2011). The origin for tubular growth of TiO2 nanotubes: A fluoride rich layer between tube-walls. Surface Science, 605(19-20), L57-L60. doi:10.1016/j.susc.2011.06.019

Bjursten, L.M., Rasmusson, L., Oh, S., Smith, G.C., Brammer, K.S., Jin, S. (2010). Titanium dioxide nanotubes enhance bone bonding in vivo. J. Biomed. Mater. Res.- A 92A (3), 1218–1224.

Brammer, K. S., Oh, S., Cobb, C. J., Bjursten, L. M., Heyde, H. van der, & Jin, S. (2009). Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomaterialia, 5(8), 3215-3223. doi:10.1016/j.actbio.2009.05.008

Browne, M., & Gregson, P. . (2000). Effect of mechanical surface pretreatment on metal ion release. Biomaterials, 21(4), 385-392. doi:10.1016/s0142-9612(99)00200-8

Çalışkan, N., Bayram, C., Erdal, E., Karahaliloğlu, Z., & Denkbaş, E. B. (2014). Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Materials Science and Engineering: C, 35, 100-105. doi:10.1016/j.msec.2013.10.033

Chlebus, E., Kuźnicka, B., Kurzynowski, T., & Dybała, B. (2011). Microstructure and mechanical behaviour of Ti―6Al―7Nb alloy produced by selective laser melting. Materials Characterization, 62(5), 488-495. doi:10.1016/j.matchar.2011.03.006

Choe, H.-C., Kim, W.-G., & Jeong, Y.-H. (2010). Surface characteristics of HA coated Ti-30Ta-xZr and Ti-30Nb-xZr alloys after nanotube formation. Surface and Coatings Technology, 205, S305-S311. doi:10.1016/j.surfcoat.2010.08.020

Cochran, D. L., Schenk, R. K., Lussi, A., Higginbottom, F. L., & Buser, D. (1998). Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible. Journal of Biomedical Materials Research, 40(1), 1-11. doi:10.1002/(sici)1097-4636(199804)40:1<1::aid-jbm1>3.0.co;2-q

Cremasco, A., Osório, W. R., Freire, C. M. A., Garcia, A., & Caram, R. (2008). Electrochemical corrosion behavior of a Ti–35Nb alloy for medical prostheses. Electrochimica Acta, 53(14), 4867-4874. doi:10.1016/j.electacta.2008.02.011

Cremasco, A., Messias, A. D., Esposito, A. R., Duek, E. A. de R., & Caram, R. (2011). Effects of alloying elements on the cytotoxic response of titanium alloys. Materials Science and Engineering: C, 31(5), 833-839. doi:10.1016/j.msec.2010.12.013

DAS, K., BOSE, S., & BANDYOPADHYAY, A. (2007). Surface modifications and cell–materials interactions with anodized Ti. Acta Biomaterialia, 3(4), 573-585. doi:10.1016/j.actbio.2006.12.003

Das, K., Bose, S., & Bandyopadhyay, A. (2009). TiO2nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. Journal of Biomedical Materials Research Part A, 90A(1), 225-237. doi:10.1002/jbm.a.32088

Diniz, M. G., Soares, G. A., Coelho, M. J., & Fernandes, M. H. (2002). Journal of Materials Science: Materials in Medicine, 13(4), 421-432. doi:10.1023/a:1014357122284

Duraccio, D., Mussano, F., & Faga, M. G. (2015). Biomaterials for dental implants: current and future trends. Journal of Materials Science, 50(14), 4779-4812. doi:10.1007/s10853-015-9056-3

Eisenbarth, E., Velten, D., Müller, M., Thull, R., & Breme, J. (2004). Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials, 25(26), 5705-5713. doi:10.1016/j.biomaterials.2004.01.021

Ferreira, C. P., Gonçalves, M. C., Caram, R., Bertazzoli, R., & Rodrigues, C. A. (2013). Effects of substrate microstructure on the formation of oriented oxide nanotube arrays on Ti and Ti alloys. Applied Surface Science, 285, 226-234. doi:10.1016/j.apsusc.2013.08.041

Han, C.-M., Kim, H.-E., & Koh, Y.-H. (2014). Creation of hierarchical micro/nano-porous TiO2 surface layer onto Ti implants for improved biocompatibility. Surface and Coatings Technology, 251, 226-231. doi:10.1016/j.surfcoat.2014.04.030

Hao, Y. Q., Li, S. J., Hao, Y. L., Zhao, Y. K., & Ai, H. J. (2013). Effect of nanotube diameters on bioactivity of a multifunctional titanium alloy. Applied Surface Science, 268, 44-51. doi:10.1016/j.apsusc.2012.11.142

Iijima, D. (2003). Wear properties of Ti and Ti–6Al–7Nb castings for dental prostheses. Biomaterials, 24(8), 1519-1524. doi:10.1016/s0142-9612(02)00533-1

Jeong, Y.-H., Kim, W.-G., Choe, H.-C., & Brantley, W. A. (2014). Control of nanotube shape and morphology on Ti–Nb(Ta)–Zr alloys by varying anodizing potential. Thin Solid Films, 572, 105-112. doi:10.1016/j.tsf.2014.09.057

Jeong, Y.-H., Kim, E.-J., Brantley, W. A., & Choe, H.-C. (2014). Morphology of hydroxyapatite nanoparticles in coatings on nanotube-formed Ti–Nb–Zr alloys for dental implants. Vacuum, 107, 297-303. doi:10.1016/j.vacuum.2014.03.004

Kim, W.-G., Choe, H.-C., & Brantley, W. A. (2011). Nanostructured surface changes of Ti–35Ta–xZr alloys with changes in anodization factors. Thin Solid Films, 519(15), 4663-4667. doi:10.1016/j.tsf.2011.01.013

Kim, E.-S., Jeong, Y.-H., Choe, H.-C., & Brantley, W. A. (2013). Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing. Thin Solid Films, 549, 141-146. doi:10.1016/j.tsf.2013.08.058

Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y., & Yashiro, T. (1998). Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science and Engineering: A, 243(1-2), 244-249. doi:10.1016/s0921-5093(97)00808-3

Le Guéhennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials, 23(7), 844-854. doi:10.1016/j.dental.2006.06.025

Le Guehennec, L., Lopez-Heredia, M.-A., Enkel, B., Weiss, P., Amouriq, Y., & Layrolle, P. (2008). Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomaterialia, 4(3), 535-543. doi:10.1016/j.actbio.2007.12.002

Lee, K., Jeong, Y.-H., Ko, Y.-M., Choe, H.-C., & Brantley, W. A. (2013). Hydroxyapatite coating on micropore-formed titanium alloy utilizing electrochemical deposition. Thin Solid Films, 549, 154-158. doi:10.1016/j.tsf.2013.09.002

Lee, W.-S., & Chen, C.-W. (2013). High temperature impact properties and dislocation substructure of Ti–6Al–7Nb biomedical alloy. Materials Science and Engineering: A, 576, 91-100. doi:10.1016/j.msea.2013.03.088

Li, D., Ferguson, S. J., Beutler, T., Cochran, D. L., Sittig, C., Hirt, H. P., & Buser, D. (2002). Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. Journal of Biomedical Materials Research, 60(2), 325-332. doi:10.1002/jbm.10063

Long, M., & Rack, H. . (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621-1639. doi:10.1016/s0142-9612(97)00146-4

Lütjering, G. (1998). Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Materials Science and Engineering: A, 243(1-2), 32-45. doi:10.1016/s0921-5093(97)00778-8

Mendonça, G., Mendonça, D. B. S., Aragão, F. J. L., & Cooper, L. F. (2008). Advancing dental implant surface technology – From micron- to nanotopography. Biomaterials, 29(28), 3822-3835. doi:10.1016/j.biomaterials.2008.05.012

Minagar, S., Berndt, C. C., Wang, J., Ivanova, E., & Wen, C. (2012). A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomaterialia, 8(8), 2875-2888. doi:10.1016/j.actbio.2012.04.005

Minagar, S., Wang, J., Berndt, C. C., Ivanova, E. P., & Wen, C. (2013). Cell response of anodized nanotubes on titanium and titanium alloys. Journal of Biomedical Materials Research Part A, 101A(9), 2726-2739. doi:10.1002/jbm.a.34575

Mîndroiu, M., Pirvu, C., Ion, R., & Demetrescu, I. (2010). Comparing performance of nanoarchitectures fabricated by Ti6Al7Nb anodizing in two kinds of electrolytes. Electrochimica Acta, 56(1), 193-202. doi:10.1016/j.electacta.2010.08.100

Nguyen, T.-D. T., Park, I.-S., Lee, M.-H., & Bae, T.-S. (2013). Enhanced biocompatibility of a pre-calcified nanotubular TiO2 layer on Ti–6Al–7Nb alloy. Surface and Coatings Technology, 236, 127-134. doi:10.1016/j.surfcoat.2013.09.038

Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243(1-2), 231-236. doi:10.1016/s0921-5093(97)00806-x

Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30-42. doi:10.1016/j.jmbbm.2007.07.001

Okazaki, Y., & Gotoh, E. (2005). Comparison of metal release from various metallic biomaterials in vitro. Biomaterials, 26(1), 11-21. doi:10.1016/j.biomaterials.2004.02.005

Ossowska, A., Sobieszczyk, S., Supernak, M., & Zielinski, A. (2014). Morphology and properties of nanotubular oxide layer on the «Ti–13Zr–13Nb» alloy. Surface and Coatings Technology, 258, 1239-1248. doi:10.1016/j.surfcoat.2014.06.054

Pan, J., Thierry, D., & Leygraf, C. (1996). Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochimica Acta, 41(7-8), 1143-1153. doi:10.1016/0013-4686(95)00465-3

Park, I.-S., & Bae, T.-S. (2014). The bioactivity of enhanced Ti-32Nb-5Zr alloy with anodic oxidation and cyclic calcification. International Journal of Precision Engineering and Manufacturing, 15(8), 1595-1600. doi:10.1007/s12541-014-0508-5

PYPEN, C. M. J. M., PLENK Jr, H., EBEL, M. F., SVAGERA, R., & WERNISCH, J. (1997). Journal of Materials Science Materials in Medicine, 8(12), 781-784. doi:10.1023/a:1018568830442

Reyes-Coronado, D., Rodríguez-Gattorno, G., Espinosa-Pesqueira, M. E., Cab, C., de Coss, R., & Oskam, G. (2008). Phase-pure TiO2nanoparticles: anatase, brookite and rutile. Nanotechnology, 19(14), 145605. doi:10.1088/0957-4484/19/14/145605

RYAN, G., PANDIT, A., & APATSIDIS, D. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27(13), 2651-2670. doi:10.1016/j.biomaterials.2005.12.002

Salou, L., Hoornaert, A., Louarn, G., & Layrolle, P. (2015). Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta Biomaterialia, 11, 494-502. doi:10.1016/j.actbio.2014.10.017

Ivasishin, O. M., Semiatin, S. L., Markovsky, P. E., Shevchenko, S. V., & Ulshin, S. V. (2002). Grain growth and texture evolution in Ti–6Al–4V during beta annealing under continuous heating conditions. Materials Science and Engineering: A, 337(1-2), 88-96. doi:10.1016/s0921-5093(01)01990-6

Sieniawski, J., Filip, R., & Ziaja, W. (1997). The effect of microstructure on the mechanical properties of two-phase titanium alloys. Materials & Design, 18(4-6), 361-363. doi:10.1016/s0261-3069(97)00087-3

Sista, S., Nouri, A., Li, Y., Wen, C., Hodgson, P. D., & Pande, G. (2013). Cell biological responses of osteoblasts on anodized nanotubular surface of a titanium-zirconium alloy. Journal of Biomedical Materials Research Part A, 101(12), 3416-3430. doi:10.1002/jbm.a.34638

Tan, A. W., Pingguan-Murphy, B., Ahmad, R., & Akbar, S. A. (2012). Review of titania nanotubes: Fabrication and cellular response. Ceramics International, 38(6), 4421-4435. doi:10.1016/j.ceramint.2012.03.002

Xie, Y., Ao, H., Xin, S., Zheng, X., & Ding, C. (2014). Enhanced cellular responses to titanium coating with hierarchical hybrid structure. Materials Science and Engineering: C, 38, 272-277. doi:10.1016/j.msec.2014.02.004

Yao, C., & Webster, T. J. (2009). Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(2), 587-595. doi:10.1002/jbm.b.31433

Yu, W., Zhang, Y., Jiang, X., & Zhang, F. (2010). In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes. Oral Diseases, 16(7), 624-630. doi:10.1111/j.1601-0825.2009.01643.x

Zhao, Y., Xiong, T., & Huang, W. (2010). Effect of heat treatment on bioactivity of anodic titania films. Applied Surface Science, 256(10), 3073-3076. doi:10.1016/j.apsusc.2009.11.075

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem