- -

High order structure preserving explicit methods for solving linear-quadratic optimal control problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High order structure preserving explicit methods for solving linear-quadratic optimal control problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blanes Zamora, Sergio es_ES
dc.date.accessioned 2018-01-11T14:07:49Z
dc.date.available 2018-01-11T14:07:49Z
dc.date.issued 2015 es_ES
dc.identifier.issn 1017-1398 es_ES
dc.identifier.uri http://hdl.handle.net/10251/94538
dc.description.abstract [EN] We consider the numerical integration of linear-quadratic optimal control problems. This problem requires the solution of a boundary value problem: a non-autonomous matrix Riccati differential equation (RDE) with final conditions coupled with the state vector equation with initial conditions. The RDE has positive definite matrix solution and to numerically preserve this qualitative property we propose first to integrate this equation backward in time with a sufficiently accurate scheme. Then, this problem turns into an initial value problem, and we analyse splitting and Magnus integrators for the forward time integration which preserve the positive definite matrix solutions for the RDE. Duplicating the time as two new coordinates and using appropriate splitting methods, high order methods preserving the desired property can be obtained. The schemes make sequential computations and do not require the storrage of intermediate results, so the storage requirements are minimal. The proposed methods are also adapted for solving linear-quadratic N-player differential games. The performance of the splitting methods can be considerably improved if the system is a perturbation of an exactly solvable problem and the system is properly split. Some numerical examples illustrate the performance of the proposed methods. es_ES
dc.description.sponsorship The author wishes to thank the University of California San Diego for its hospitality where part of this work was done. He also acknowledges the support of the Ministerio de Ciencia e Innovacion (Spain) under the coordinated project MTM2010-18246-C03. The author also acknowledges the suggestions by the referees to improve the presentation of this work. en_EN
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Numerical Algorithms es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Geometric Numerical Integration es_ES
dc.subject Splitting methods es_ES
dc.subject matrix Riccati differential equations es_ES
dc.subject LQ optimal control problems es_ES
dc.subject Differential games es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title High order structure preserving explicit methods for solving linear-quadratic optimal control problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11075-014-9894-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03-02/ES/METODOS DE ESCISION Y COMPOSICION EN INTEGRACION NUMERICA GEOMETRICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Blanes Zamora, S. (2015). High order structure preserving explicit methods for solving linear-quadratic optimal control problems. Numerical Algorithms. 69:271-290. https://doi.org/10.1007/s11075-014-9894-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11075-014-9894-0 es_ES
dc.description.upvformatpinicio 271 es_ES
dc.description.upvformatpfin 290 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 69 es_ES
dc.relation.pasarela S\303757 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Abou-Kandil, H., Freiling, G., Ionescy, V., Jank, G.: Matrix Riccati equations in control and systems theory. Basel, Burkhäuser Verlag (2003) es_ES
dc.description.references Al-Mohy, A.H., Higham, N.J.: Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators. SIAM. J. Sci. Comp. 33, 488–511 (2011) es_ES
dc.description.references Anderson, B.D.O., Moore, J.B.: Optimal control: linear quadratic methods. Dover, New York (1990) es_ES
dc.description.references Ascher, U.M., Mattheij, R.M., Russell, R.D.: Numerical solutions of boundary value problems for ordinary differential equations. Prentice-Hall, Englewood Cliffs (1988) es_ES
dc.description.references Bader, P., Blanes, S., Ponsoda, E.: Structure preserving integrators for solving linear quadratic optimal control problems with applications to describe the flight of a quadrotor. J. Comput. Appl. Math. 262, 223–233 (2014) es_ES
dc.description.references Basar, T., Olsder, G.J.: Dynamic non cooperative game theory, 2nd Ed, SIAM, Philadelphhia (1999) es_ES
dc.description.references Blanes, S., Casas, F.: On the necessity of negative coefficients for operator splitting schemes of order higher than two. Appl. Num. Math. 54, 23–37 (2005) es_ES
dc.description.references Blanes, S., Casas, F., Farrés, A., Laskar, J., Makazaga, J., Murua, A.: New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl. Numer. Math. 68, 58–72 (2013) es_ES
dc.description.references Blanes, S., Casas, F., Oteo, J.A., Ros, J.: The Magnus expansion and some of its applications. Phys. Rep. 470, 151–238 (2009) es_ES
dc.description.references Blanes, S., Casas, F., Ros, J.: High order optimized geometric integrators for linear differential equations. BIT 42, 262–284 (2002) es_ES
dc.description.references Blanes, S., Diele, F., Marangi, C., Ragni, S.: Splitting and composition methods for explicit time dependence in separable dynamical systems. J. Comput. Appl. Math. 235, 646–659 (2010) es_ES
dc.description.references Blanes, S., Moan, P.C.: Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nystrm methods. J. Comput. Appl. Math. 142, 313–330 (2002) es_ES
dc.description.references Blanes, S., Ponsoda, E.: Magnus integrators for solving linear-quadratic differential games. J. Comput. Appl. Math. 236, 3394–3408 (2012) es_ES
dc.description.references Brif, C., Chakrabarti, R., Rabitz, H.: Control of quantum phenomena: past, present and future. New J. Phys. 12, 075008(68pp) (2010) es_ES
dc.description.references Cruz, J.B., Chen, C.I.: Series Nash solution of two person non zero sum linear quadratic games. J. Optim. Theory Appl. 7, 240–257 (1971) es_ES
dc.description.references Dieci, L., Eirola, T.: Positive definitness in the numerical solution of Riccati differential quations. Numer. Math. 67, 303–313 (1994) es_ES
dc.description.references Engwerda, J.: LQ dynamic optimization and differential games. Wiley (2005) es_ES
dc.description.references Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations (2nd edition). Springer Series in Computational Mathematics, 31. Springer-Verlag (2006) es_ES
dc.description.references Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numerica 19, 209–286 (2010) es_ES
dc.description.references Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1985) es_ES
dc.description.references Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie group methods. Acta Numerica 9, 215–365 (2000) es_ES
dc.description.references Iserles, A., Nørsett, S.P.: On the solution of linear differential equations in Lie groups. Phil. Trans. R. Soc. Lond. A 357, 983–1019 (1999) es_ES
dc.description.references Jódar, L., Ponsoda, E.: Non-autonomous Riccati-type matrix differential equations: existence interval, construction of continuous numerical solutions and error bounds. IMA. J. Num. Anal. 15, 61–74 (1995) es_ES
dc.description.references Jódar, L., Ponsoda, E., Company, R.: Solutions of coupled Riccati equations arising in differential games. Control. Cybern. 24, 117–128 (1995) es_ES
dc.description.references Kaitala, V, Pohjola, M. In: Carraro, Filar (eds.) : Sustainable international agreement on greenhouse warming. A game theory study. Control and Game Theoretic Models of the Environment, pp 67–87. Birkhauser, Boston (1995) es_ES
dc.description.references Keller, H.B.: Numerical solution of two point boundary value problems. In: CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 24. SIAM, Philadelphia (1976) es_ES
dc.description.references McLachlan, R.I.: Composition methods in the presence of small parameters. BIT 35, 258–268 (1995) es_ES
dc.description.references McLachlan, R.I., Quispel, R.: Splitting Methods. Acta Numer. 11, 341–434 (2002) es_ES
dc.description.references Moler, C.B., Van Loan, C.F.: Nineteen Dubious Ways to Compute the Exponential of a Matrix, twenty-five years later. SIAM Rev. 45, 3–49 (2003) es_ES
dc.description.references Na, T.Y.: Computational methods in engineering boundary value problems. In: Mathematics in Science and Engineering, Vol. 145. Accademic Press, New York (1979) es_ES
dc.description.references Palao, J.P., Kosloff, R.: Quantum computing by an optimal control algorithm for unitry transformations. Phys. Rev. Lett. 28 (2002) es_ES
dc.description.references Peirce, A.P., Dahleh, M.A., Rabitz, H.: Optimal control of quantum-mechanical systems: existence, numerical approximation, and applications. Phys. Rev. A 37, 4950–4967 (1988) es_ES
dc.description.references Reid, W.T.: Riccati Differential Equations. Academic, New York (1972) es_ES
dc.description.references Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994) es_ES
dc.description.references Sidje, R.B.: Expokit: a software package for computing matrix exponentials. ACM Trans. Math. Software 24, 130–156 (1998) es_ES
dc.description.references Speyer, J.L., Jacobson, D.H.: Primer on optimal control theory. SIAM, Philadelphia (2010) es_ES
dc.description.references Starr, A.W., Ho, Y.C.: Non-zero sum differential games. J. Optim. Theory and Appl 3, 179–197 (1969) es_ES
dc.description.references Zhu, W., Rabitz, H.: A rapid monotonically convergent iteration algorithm for quantum optimal control ever the expectation value of a positive definite operator. J. Chem. Phys. 109, 385–391 (1998) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem