Mostrar el registro sencillo del ítem
dc.contributor.author | Desantes, J.M. | es_ES |
dc.contributor.author | Bermúdez, Vicente | es_ES |
dc.contributor.author | Molina, Santiago | es_ES |
dc.contributor.author | Linares Rodríguez, Waldemar Gregorio | es_ES |
dc.date.accessioned | 2018-01-29T09:38:24Z | |
dc.date.available | 2018-01-29T09:38:24Z | |
dc.date.issued | 2011 | es_ES |
dc.identifier.issn | 0957-0233 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/95682 | |
dc.description.abstract | [EN] A study on the sources of variability in the measurement of particle size distribution using a two-stage dilution system and an engine exhaust particle sizer was conducted to obtain a comprehensive and repeatable methodology that can be used to measure the particle size distribution of aerosols emitted by a light-duty diesel engine under transient operating conditions. The paper includes three experimental phases: an experimental validation of the measurement method; an evaluation of the influence of sampling factors, such as dilution system pre-conditioning; and a study of the effects of the dilution conditions, such as the dilution ratio and the dilution air temperature. An examination of the type and degree of influence of each studied factor is presented, recommendations for reducing variability are given and critical parameter values are identified to develop a highly reliable measurement methodology that could be applied to further studies on the effect of engine operating parameters on exhaust particle size distributions. © 2011 IOP Publishing Ltd. | es_ES |
dc.description.sponsorship | The translation of this paper was funded by the Universidad Politecnica de Valencia, Spain. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | IOP PUBLISHING LTD | es_ES |
dc.relation.ispartof | Measurement Science and Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Diesel aerosol | es_ES |
dc.subject | Dilution air temperature | es_ES |
dc.subject | Dilution ratio | es_ES |
dc.subject | Exhaust emissions measurements | es_ES |
dc.subject | Particle size distribution | es_ES |
dc.subject | Transient test | es_ES |
dc.subject | Air temperature | es_ES |
dc.subject | Critical parameter values | es_ES |
dc.subject | Dilution systems | es_ES |
dc.subject | Engine exhaust | es_ES |
dc.subject | Engine test | es_ES |
dc.subject | Exhaust aerosols | es_ES |
dc.subject | Exhaust emission | es_ES |
dc.subject | Exhaust particles | es_ES |
dc.subject | Experimental validations | es_ES |
dc.subject | Light-duty | es_ES |
dc.subject | Measurement methods | es_ES |
dc.subject | Measurement of particles | es_ES |
dc.subject | Operating parameters | es_ES |
dc.subject | Pre-conditioning | es_ES |
dc.subject | Reliable measurement | es_ES |
dc.subject | Sampling factor | es_ES |
dc.subject | Sources of variability | es_ES |
dc.subject | Transient operating condition | es_ES |
dc.subject | Two stage | es_ES |
dc.subject | Atmospheric aerosols | es_ES |
dc.subject | Atmospheric temperature | es_ES |
dc.subject | Diesel engines | es_ES |
dc.subject | Dilution | es_ES |
dc.subject | Exhaust systems (engine) | es_ES |
dc.subject | Particle size analysis | es_ES |
dc.subject | Size distribution | es_ES |
dc.subject | Particle size | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Methodology for measuring exhaust aerosol size distributions using an engine test under transient operating conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/0957-0233/22/11/115101 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Desantes, J.; Bermúdez, V.; Molina, S.; Linares Rodríguez, WG. (2011). Methodology for measuring exhaust aerosol size distributions using an engine test under transient operating conditions. Measurement Science and Technology. 22(11):1-14. doi:10.1088/0957-0233/22/11/115101 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1088/0957-0233/22/11/115101 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.pasarela | S\193881 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | |
dc.description.references | Dobbins, R. A. (2007). Hydrocarbon Nanoparticles Formed in Flames and Diesel Engines. Aerosol Science and Technology, 41(5), 485-496. doi:10.1080/02786820701225820 | es_ES |
dc.description.references | Davidson, C. I., Phalen, R. F., & Solomon, P. A. (2005). Airborne Particulate Matter and Human Health: A Review. Aerosol Science and Technology, 39(8), 737-749. doi:10.1080/02786820500191348 | es_ES |
dc.description.references | McDonald, J. D., Barr, E. B., & White, R. K. (2004). Design, Characterization, and Evaluation of a Small-Scale Diesel Exhaust Exposure System. Aerosol Science and Technology, 38(1), 62-78. doi:10.1080/02786820490247623 | es_ES |
dc.description.references | Brown, D. M., Wilson, M. R., MacNee, W., Stone, V., & Donaldson, K. (2001). Size-Dependent Proinflammatory Effects of Ultrafine Polystyrene Particles: A Role for Surface Area and Oxidative Stress in the Enhanced Activity of Ultrafines. Toxicology and Applied Pharmacology, 175(3), 191-199. doi:10.1006/taap.2001.9240 | es_ES |
dc.description.references | Lighty, J. S., Veranth, J. M., & Sarofim, A. F. (2000). Combustion Aerosols: Factors Governing Their Size and Composition and Implications to Human Health. Journal of the Air & Waste Management Association, 50(9), 1565-1618. doi:10.1080/10473289.2000.10464197 | es_ES |
dc.description.references | Kittelson, D. B. (1998). Engines and nanoparticles. Journal of Aerosol Science, 29(5-6), 575-588. doi:10.1016/s0021-8502(97)10037-4 | es_ES |
dc.description.references | Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., … Speizer, F. E. (1993). An Association between Air Pollution and Mortality in Six U.S. Cities. New England Journal of Medicine, 329(24), 1753-1759. doi:10.1056/nejm199312093292401 | es_ES |
dc.description.references | Sem, G. J. (2002). Design and performance characteristics of three continuous-flow condensation particle counters: a summary. Atmospheric Research, 62(3-4), 267-294. doi:10.1016/s0169-8095(02)00014-5 | es_ES |
dc.description.references | Ankilov, A., Baklanov, A., Colhoun, M., Enderle, K.-H., Gras, J., Julanov, Y., … Zagaynov, V. (2002). Intercomparison of number concentration measurements by various aerosol particle counters. Atmospheric Research, 62(3-4), 177-207. doi:10.1016/s0169-8095(02)00010-8 | es_ES |
dc.description.references | Wiedensohlet, A., Orsini, D., Covert, D. S., Coffmann, D., Cantrell, W., Havlicek, M., … Litchy, M. (1997). Intercomparison Study of the Size-Dependent Counting Efficiency of 26 Condensation Particle Counters. Aerosol Science and Technology, 27(2), 224-242. doi:10.1080/02786829708965469 | es_ES |
dc.description.references | Giechaskiel, B., Ntziachristos, L., & Samaras, Z. (2004). Calibration and modelling of ejector dilutors for automotive exhaust sampling. Measurement Science and Technology, 15(11), 2199-2206. doi:10.1088/0957-0233/15/11/004 | es_ES |
dc.description.references | Cheng, M.-D., Storey, J. M., Wainman, T., & Dam, T. (2002). Impacts of venturi turbulent mixing on the size distributions of sodium chloride and dioctyl-phthalate aerosols. Journal of Aerosol Science, 33(3), 491-502. doi:10.1016/s0021-8502(01)00180-x | es_ES |
dc.description.references | Hueglin, C., Scherrer, L., & Burtscher, H. (1997). An accurate, continuously adjustable dilution system (1:10 to 1:104) for submicron aerosols. Journal of Aerosol Science, 28(6), 1049-1055. doi:10.1016/s0021-8502(96)00485-5 | es_ES |
dc.description.references | Lyyränen, J., Jokiniemi, J., Kauppinen, E. I., Backman, U., & Vesala, H. (2004). Comparison of Different Dilution Methods for Measuring Diesel Particle Emissions. Aerosol Science and Technology, 38(1), 12-23. doi:10.1080/02786820490247579 | es_ES |
dc.description.references | Wong, C. P., Chan, T. L., & Leung, C. W. (2003). Characterisation of diesel exhaust particle number and size distributions using mini-dilution tunnel and ejector–diluter measurement techniques. Atmospheric Environment, 37(31), 4435-4446. doi:10.1016/s1352-2310(03)00571-5 | es_ES |
dc.description.references | Liu, Z. G., Ford, D. C., Vasys, V. N., Chen, D.-R., & Johnson, T. R. (2007). Influence of Engine Operating Conditions on Diesel Particulate Matter Emissions in Relation to Transient and Steady-State Conditions. Environmental Science & Technology, 41(13), 4593-4599. doi:10.1021/es0616229 | es_ES |
dc.description.references | Liu, Z. G., Vasys, V. N., & Kittelson, D. B. (2007). Nuclei-Mode Particulate Emissions and Their Response to Fuel Sulfur Content and Primary Dilution during Transient Operations of Old and Modern Diesel Engines. Environmental Science & Technology, 41(18), 6479-6483. doi:10.1021/es0629007 | es_ES |
dc.description.references | Desantes, J. M., Bermúdez, V., Pastor, J. V., & Fuentes, E. (2004). Methodology for measuring exhaust aerosol size distributions from heavy duty diesel engines by means of a scanning mobility particle sizer. Measurement Science and Technology, 15(10), 2083-2098. doi:10.1088/0957-0233/15/10/019 | es_ES |
dc.description.references | Lapuerta, M., Armas, O., & Gómez, A. (2003). Diesel Particle Size Distribution Estimation from Digital Image Analysis. Aerosol Science and Technology, 37(4), 369-381. doi:10.1080/02786820300970 | es_ES |
dc.description.references | Wiedensohler, A. (1988). An approximation of the bipolar charge distribution for particles in the submicron size range. Journal of Aerosol Science, 19(3), 387-389. doi:10.1016/0021-8502(88)90278-9 | es_ES |
dc.description.references | Wen, H. Y., Reischl, G. P., & Kasper, G. (1984). Bipolar diffusion charging of fibrous aerosol particles—II. charge and electrical mobility measurements on linear chain aggregates. Journal of Aerosol Science, 15(2), 103-122. doi:10.1016/0021-8502(84)90030-2 | es_ES |
dc.description.references | Oh, H., Park, H., & Kim, S. (2004). Effects of Particle Shape on the Unipolar Diffusion Charging of Nonspherical Particles. Aerosol Science and Technology, 38(11), 1045-1053. doi:10.1080/027868290883324 | es_ES |
dc.description.references | Matti Maricq, M. (2007). Chemical characterization of particulate emissions from diesel engines: A review. Journal of Aerosol Science, 38(11), 1079-1118. doi:10.1016/j.jaerosci.2007.08.001 | es_ES |
dc.description.references | Katz, J. L. (1970). Condensation of a Supersaturated Vapor. I. The Homogeneous Nucleation of the n‐Alkanes. The Journal of Chemical Physics, 52(9), 4733-4748. doi:10.1063/1.1673706 | es_ES |
dc.description.references | Burtscher, H. (2005). Physical characterization of particulate emissions from diesel engines: a review. Journal of Aerosol Science, 36(7), 896-932. doi:10.1016/j.jaerosci.2004.12.001 | es_ES |
dc.description.references | Mamakos, A., Ntziachristos, L., & Samaras, Z. (2004). Comparability of particle emission measurements between vehicle testing laboratories: a long way to go. Measurement Science and Technology, 15(9), 1855-1866. doi:10.1088/0957-0233/15/9/024 | es_ES |