- -

Methodology for measuring exhaust aerosol size distributions using an engine test under transient operating conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Methodology for measuring exhaust aerosol size distributions using an engine test under transient operating conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Desantes, J.M. es_ES
dc.contributor.author Bermúdez, Vicente es_ES
dc.contributor.author Molina, Santiago es_ES
dc.contributor.author Linares Rodríguez, Waldemar Gregorio es_ES
dc.date.accessioned 2018-01-29T09:38:24Z
dc.date.available 2018-01-29T09:38:24Z
dc.date.issued 2011 es_ES
dc.identifier.issn 0957-0233 es_ES
dc.identifier.uri http://hdl.handle.net/10251/95682
dc.description.abstract [EN] A study on the sources of variability in the measurement of particle size distribution using a two-stage dilution system and an engine exhaust particle sizer was conducted to obtain a comprehensive and repeatable methodology that can be used to measure the particle size distribution of aerosols emitted by a light-duty diesel engine under transient operating conditions. The paper includes three experimental phases: an experimental validation of the measurement method; an evaluation of the influence of sampling factors, such as dilution system pre-conditioning; and a study of the effects of the dilution conditions, such as the dilution ratio and the dilution air temperature. An examination of the type and degree of influence of each studied factor is presented, recommendations for reducing variability are given and critical parameter values are identified to develop a highly reliable measurement methodology that could be applied to further studies on the effect of engine operating parameters on exhaust particle size distributions. © 2011 IOP Publishing Ltd. es_ES
dc.description.sponsorship The translation of this paper was funded by the Universidad Politecnica de Valencia, Spain. en_EN
dc.language Inglés es_ES
dc.publisher IOP PUBLISHING LTD es_ES
dc.relation.ispartof Measurement Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Diesel aerosol es_ES
dc.subject Dilution air temperature es_ES
dc.subject Dilution ratio es_ES
dc.subject Exhaust emissions measurements es_ES
dc.subject Particle size distribution es_ES
dc.subject Transient test es_ES
dc.subject Air temperature es_ES
dc.subject Critical parameter values es_ES
dc.subject Dilution systems es_ES
dc.subject Engine exhaust es_ES
dc.subject Engine test es_ES
dc.subject Exhaust aerosols es_ES
dc.subject Exhaust emission es_ES
dc.subject Exhaust particles es_ES
dc.subject Experimental validations es_ES
dc.subject Light-duty es_ES
dc.subject Measurement methods es_ES
dc.subject Measurement of particles es_ES
dc.subject Operating parameters es_ES
dc.subject Pre-conditioning es_ES
dc.subject Reliable measurement es_ES
dc.subject Sampling factor es_ES
dc.subject Sources of variability es_ES
dc.subject Transient operating condition es_ES
dc.subject Two stage es_ES
dc.subject Atmospheric aerosols es_ES
dc.subject Atmospheric temperature es_ES
dc.subject Diesel engines es_ES
dc.subject Dilution es_ES
dc.subject Exhaust systems (engine) es_ES
dc.subject Particle size analysis es_ES
dc.subject Size distribution es_ES
dc.subject Particle size es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Methodology for measuring exhaust aerosol size distributions using an engine test under transient operating conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0957-0233/22/11/115101 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Desantes, J.; Bermúdez, V.; Molina, S.; Linares Rodríguez, WG. (2011). Methodology for measuring exhaust aerosol size distributions using an engine test under transient operating conditions. Measurement Science and Technology. 22(11):1-14. doi:10.1088/0957-0233/22/11/115101 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1088/0957-0233/22/11/115101 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\193881 es_ES
dc.contributor.funder Universitat Politècnica de València
dc.description.references Dobbins, R. A. (2007). Hydrocarbon Nanoparticles Formed in Flames and Diesel Engines. Aerosol Science and Technology, 41(5), 485-496. doi:10.1080/02786820701225820 es_ES
dc.description.references Davidson, C. I., Phalen, R. F., & Solomon, P. A. (2005). Airborne Particulate Matter and Human Health: A Review. Aerosol Science and Technology, 39(8), 737-749. doi:10.1080/02786820500191348 es_ES
dc.description.references McDonald, J. D., Barr, E. B., & White, R. K. (2004). Design, Characterization, and Evaluation of a Small-Scale Diesel Exhaust Exposure System. Aerosol Science and Technology, 38(1), 62-78. doi:10.1080/02786820490247623 es_ES
dc.description.references Brown, D. M., Wilson, M. R., MacNee, W., Stone, V., & Donaldson, K. (2001). Size-Dependent Proinflammatory Effects of Ultrafine Polystyrene Particles: A Role for Surface Area and Oxidative Stress in the Enhanced Activity of Ultrafines. Toxicology and Applied Pharmacology, 175(3), 191-199. doi:10.1006/taap.2001.9240 es_ES
dc.description.references Lighty, J. S., Veranth, J. M., & Sarofim, A. F. (2000). Combustion Aerosols: Factors Governing Their Size and Composition and Implications to Human Health. Journal of the Air & Waste Management Association, 50(9), 1565-1618. doi:10.1080/10473289.2000.10464197 es_ES
dc.description.references Kittelson, D. B. (1998). Engines and nanoparticles. Journal of Aerosol Science, 29(5-6), 575-588. doi:10.1016/s0021-8502(97)10037-4 es_ES
dc.description.references Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., … Speizer, F. E. (1993). An Association between Air Pollution and Mortality in Six U.S. Cities. New England Journal of Medicine, 329(24), 1753-1759. doi:10.1056/nejm199312093292401 es_ES
dc.description.references Sem, G. J. (2002). Design and performance characteristics of three continuous-flow condensation particle counters: a summary. Atmospheric Research, 62(3-4), 267-294. doi:10.1016/s0169-8095(02)00014-5 es_ES
dc.description.references Ankilov, A., Baklanov, A., Colhoun, M., Enderle, K.-H., Gras, J., Julanov, Y., … Zagaynov, V. (2002). Intercomparison of number concentration measurements by various aerosol particle counters. Atmospheric Research, 62(3-4), 177-207. doi:10.1016/s0169-8095(02)00010-8 es_ES
dc.description.references Wiedensohlet, A., Orsini, D., Covert, D. S., Coffmann, D., Cantrell, W., Havlicek, M., … Litchy, M. (1997). Intercomparison Study of the Size-Dependent Counting Efficiency of 26 Condensation Particle Counters. Aerosol Science and Technology, 27(2), 224-242. doi:10.1080/02786829708965469 es_ES
dc.description.references Giechaskiel, B., Ntziachristos, L., & Samaras, Z. (2004). Calibration and modelling of ejector dilutors for automotive exhaust sampling. Measurement Science and Technology, 15(11), 2199-2206. doi:10.1088/0957-0233/15/11/004 es_ES
dc.description.references Cheng, M.-D., Storey, J. M., Wainman, T., & Dam, T. (2002). Impacts of venturi turbulent mixing on the size distributions of sodium chloride and dioctyl-phthalate aerosols. Journal of Aerosol Science, 33(3), 491-502. doi:10.1016/s0021-8502(01)00180-x es_ES
dc.description.references Hueglin, C., Scherrer, L., & Burtscher, H. (1997). An accurate, continuously adjustable dilution system (1:10 to 1:104) for submicron aerosols. Journal of Aerosol Science, 28(6), 1049-1055. doi:10.1016/s0021-8502(96)00485-5 es_ES
dc.description.references Lyyränen, J., Jokiniemi, J., Kauppinen, E. I., Backman, U., & Vesala, H. (2004). Comparison of Different Dilution Methods for Measuring Diesel Particle Emissions. Aerosol Science and Technology, 38(1), 12-23. doi:10.1080/02786820490247579 es_ES
dc.description.references Wong, C. P., Chan, T. L., & Leung, C. W. (2003). Characterisation of diesel exhaust particle number and size distributions using mini-dilution tunnel and ejector–diluter measurement techniques. Atmospheric Environment, 37(31), 4435-4446. doi:10.1016/s1352-2310(03)00571-5 es_ES
dc.description.references Liu, Z. G., Ford, D. C., Vasys, V. N., Chen, D.-R., & Johnson, T. R. (2007). Influence of Engine Operating Conditions on Diesel Particulate Matter Emissions in Relation to Transient and Steady-State Conditions. Environmental Science & Technology, 41(13), 4593-4599. doi:10.1021/es0616229 es_ES
dc.description.references Liu, Z. G., Vasys, V. N., & Kittelson, D. B. (2007). Nuclei-Mode Particulate Emissions and Their Response to Fuel Sulfur Content and Primary Dilution during Transient Operations of Old and Modern Diesel Engines. Environmental Science & Technology, 41(18), 6479-6483. doi:10.1021/es0629007 es_ES
dc.description.references Desantes, J. M., Bermúdez, V., Pastor, J. V., & Fuentes, E. (2004). Methodology for measuring exhaust aerosol size distributions from heavy duty diesel engines by means of a scanning mobility particle sizer. Measurement Science and Technology, 15(10), 2083-2098. doi:10.1088/0957-0233/15/10/019 es_ES
dc.description.references Lapuerta, M., Armas, O., & Gómez, A. (2003). Diesel Particle Size Distribution Estimation from Digital Image Analysis. Aerosol Science and Technology, 37(4), 369-381. doi:10.1080/02786820300970 es_ES
dc.description.references Wiedensohler, A. (1988). An approximation of the bipolar charge distribution for particles in the submicron size range. Journal of Aerosol Science, 19(3), 387-389. doi:10.1016/0021-8502(88)90278-9 es_ES
dc.description.references Wen, H. Y., Reischl, G. P., & Kasper, G. (1984). Bipolar diffusion charging of fibrous aerosol particles—II. charge and electrical mobility measurements on linear chain aggregates. Journal of Aerosol Science, 15(2), 103-122. doi:10.1016/0021-8502(84)90030-2 es_ES
dc.description.references Oh, H., Park, H., & Kim, S. (2004). Effects of Particle Shape on the Unipolar Diffusion Charging of Nonspherical Particles. Aerosol Science and Technology, 38(11), 1045-1053. doi:10.1080/027868290883324 es_ES
dc.description.references Matti Maricq, M. (2007). Chemical characterization of particulate emissions from diesel engines: A review. Journal of Aerosol Science, 38(11), 1079-1118. doi:10.1016/j.jaerosci.2007.08.001 es_ES
dc.description.references Katz, J. L. (1970). Condensation of a Supersaturated Vapor. I. The Homogeneous Nucleation of the n‐Alkanes. The Journal of Chemical Physics, 52(9), 4733-4748. doi:10.1063/1.1673706 es_ES
dc.description.references Burtscher, H. (2005). Physical characterization of particulate emissions from diesel engines: a review. Journal of Aerosol Science, 36(7), 896-932. doi:10.1016/j.jaerosci.2004.12.001 es_ES
dc.description.references Mamakos, A., Ntziachristos, L., & Samaras, Z. (2004). Comparability of particle emission measurements between vehicle testing laboratories: a long way to go. Measurement Science and Technology, 15(9), 1855-1866. doi:10.1088/0957-0233/15/9/024 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem