- -

Joint identification of contaminant source location, initial release time, and initial solute concentration in an aquifer via ensemble Kalman filtering

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Joint identification of contaminant source location, initial release time, and initial solute concentration in an aquifer via ensemble Kalman filtering

Mostrar el registro completo del ítem

Xu, T.; Gómez-Hernández, JJ. (2016). Joint identification of contaminant source location, initial release time, and initial solute concentration in an aquifer via ensemble Kalman filtering. Water Resources Research. 52(8):6587-6595. https://doi.org/10.1002/2016WR019111

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/98067

Ficheros en el ítem

Metadatos del ítem

Título: Joint identification of contaminant source location, initial release time, and initial solute concentration in an aquifer via ensemble Kalman filtering
Autor: Xu, Teng Gómez-Hernández, J. Jaime
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Fecha difusión:
Resumen:
[EN] When a contaminant is detected in a drinking well, source location, initial contaminant release time, and initial contaminant concentration are, in many cases, unknown; the responsible party may have disappeared and ...[+]
Palabras clave: Ensemble Kalman filter , Contaminant source identification, Inverse modeling , Normal-score transform
Derechos de uso: Reserva de todos los derechos
Fuente:
Water Resources Research. (issn: 0043-1397 )
DOI: 10.1002/2016WR019111
Editorial:
John Wiley & Sons
Versión del editor: http://doi.org/10.1002/2016WR019111
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CGL2014-59841-P/ES/¿QUIEN HA SIDO?/
Agradecimientos:
Financial support to carry out this work was received from the Spanish Ministry of Economy and Competitiveness through project CGL2014-59841-P. All data used in this analysis are available from the authors.
Tipo: Artículo

References

Aral, M. M., Guan, J., & Maslia, M. L. (2001). Identification of Contaminant Source Location and Release History in Aquifers. Journal of Hydrologic Engineering, 6(3), 225-234. doi:10.1061/(asce)1084-0699(2001)6:3(225)

Butera, I., Tanda, M. G., & Zanini, A. (2012). Simultaneous identification of the pollutant release history and the source location in groundwater by means of a geostatistical approach. Stochastic Environmental Research and Risk Assessment, 27(5), 1269-1280. doi:10.1007/s00477-012-0662-1

Chen, Y., Oliver, D. S., & Zhang, D. (2009). Data assimilation for nonlinear problems by ensemble Kalman filter with reparameterization. Journal of Petroleum Science and Engineering, 66(1-2), 1-14. doi:10.1016/j.petrol.2008.12.002 [+]
Aral, M. M., Guan, J., & Maslia, M. L. (2001). Identification of Contaminant Source Location and Release History in Aquifers. Journal of Hydrologic Engineering, 6(3), 225-234. doi:10.1061/(asce)1084-0699(2001)6:3(225)

Butera, I., Tanda, M. G., & Zanini, A. (2012). Simultaneous identification of the pollutant release history and the source location in groundwater by means of a geostatistical approach. Stochastic Environmental Research and Risk Assessment, 27(5), 1269-1280. doi:10.1007/s00477-012-0662-1

Chen, Y., Oliver, D. S., & Zhang, D. (2009). Data assimilation for nonlinear problems by ensemble Kalman filter with reparameterization. Journal of Petroleum Science and Engineering, 66(1-2), 1-14. doi:10.1016/j.petrol.2008.12.002

Cupola, F., Tanda, M. G., & Zanini, A. (2014). Laboratory sandbox validation of pollutant source location methods. Stochastic Environmental Research and Risk Assessment, 29(1), 169-182. doi:10.1007/s00477-014-0869-4

Evensen, G. (2003). The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynamics, 53(4), 343-367. doi:10.1007/s10236-003-0036-9

Gorelick, S. M., Evans, B., & Remson, I. (1983). Identifying sources of groundwater pollution: An optimization approach. Water Resources Research, 19(3), 779-790. doi:10.1029/wr019i003p00779

Gzyl, G., Zanini, A., Frączek, R., & Kura, K. (2014). Contaminant source and release history identification in groundwater: A multi-step approach. Journal of Contaminant Hydrology, 157, 59-72. doi:10.1016/j.jconhyd.2013.11.006

Franssen, H. J. H., & Kinzelbach, W. (2009). Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems. Journal of Hydrology, 365(3-4), 261-274. doi:10.1016/j.jhydrol.2008.11.033

Ma, R., Zheng, C., Zachara, J. M., & Tonkin, M. (2012). Utility of bromide and heat tracers for aquifer characterization affected by highly transient flow conditions. Water Resources Research, 48(8). doi:10.1029/2011wr011281

Mahar, P. S. (2000). Water Resources Management, 14(3), 209-227. doi:10.1023/a:1026527901213

McDonald , M. A. Harbaugh 1988

Michalak, A. M., & Kitanidis, P. K. (2003). A method for enforcing parameter nonnegativity in Bayesian inverse problems with an application to contaminant source identification. Water Resources Research, 39(2). doi:10.1029/2002wr001480

Michalak, A. M., & Kitanidis, P. K. (2004). Application of geostatistical inverse modeling to contaminant source identification at Dover AFB, Delaware. Journal of Hydraulic Research, 42(sup1), 9-18. doi:10.1080/00221680409500042

Neupauer, R. M., & Lin, R. (2006). Identifying sources of a conservative groundwater contaminant using backward probabilities conditioned on measured concentrations. Water Resources Research, 42(3). doi:10.1029/2005wr004115

Neupauer, R. M., & Wilson, J. L. (1999). Adjoint method for obtaining backward-in-time location and travel time probabilities of a conservative groundwater contaminant. Water Resources Research, 35(11), 3389-3398. doi:10.1029/1999wr900190

Woodbury, A., Sudicky, E., Ulrych, T. J., & Ludwig, R. (1998). Three-dimensional plume source reconstruction using minimum relative entropy inversion. Journal of Contaminant Hydrology, 32(1-2), 131-158. doi:10.1016/s0169-7722(97)00088-0

Woodbury, A. D., & Ulrych, T. J. (1996). Minimum Relative Entropy Inversion: Theory and Application to Recovering the Release History of a Groundwater Contaminant. Water Resources Research, 32(9), 2671-2681. doi:10.1029/95wr03818

Xu, T., & Gómez-Hernández, J. J. (2015). Probability fields revisited in the context of ensemble Kalman filtering. Journal of Hydrology, 531, 40-52. doi:10.1016/j.jhydrol.2015.06.062

Xu, T., Jaime Gómez-Hernández, J., Zhou, H., & Li, L. (2013). The power of transient piezometric head data in inverse modeling: An application of the localized normal-score EnKF with covariance inflation in a heterogenous bimodal hydraulic conductivity field. Advances in Water Resources, 54, 100-118. doi:10.1016/j.advwatres.2013.01.006

Yeh, H.-D., Chang, T.-H., & Lin, Y.-C. (2007). Groundwater contaminant source identification by a hybrid heuristic approach. Water Resources Research, 43(9). doi:10.1029/2005wr004731

Zheng , C. 2010 MT3DMS v5. 3 Supplemental User's Guide Technical Report to the US Army Engineer Research and Development Center

Zhou, H., Gómez-Hernández, J. J., Hendricks Franssen, H.-J., & Li, L. (2011). An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering. Advances in Water Resources, 34(7), 844-864. doi:10.1016/j.advwatres.2011.04.014

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem