Mostrar el registro sencillo del ítem
dc.contributor.author | Muñoz-Galeano, Nicolás | es_ES |
dc.contributor.author | Orts-Grau, Salvador | es_ES |
dc.contributor.author | Segui-Chilet, Salvador | es_ES |
dc.contributor.author | Gimeno Sales, Francisco José | es_ES |
dc.contributor.author | López-Lezama, Jesús M. | es_ES |
dc.date.accessioned | 2018-03-04T05:09:52Z | |
dc.date.available | 2018-03-04T05:09:52Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/98766 | |
dc.description.abstract | [EN] This paper proposes a deterministic algorithm to scale the reference currents of a shunt active power compensator (SAPC) based on IEEE Std. 1459 power decomposition when SAPC maximum output compensating current is going to be exceeded. The selective SAPC is proposed to improve power quality and energy efficiency in power networks by means of the cancelation or reduction of the non-efficient powers (Q1+, SU1, SeN). The non-efficient powers can be reduced in six possible sequences according to the priority of compensation. When SAPC maximum output current capacity is exceeded, the proposed algorithm limits the SAPC output compensating currents and the non-efficient currents can only be partially reduced in the power network. The reduction of the non-efficient powers depends on the selected compensation sequence. Experimental results for several compensation sequences demonstrate the appropriate operation of the selective SAPC using the proposed scaling algorithm. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge the Universidad de Antioquia (UdeA) for the support of "Convocatoria Programatica 2016, codigo 2015-7747" and the Ministerio de Economia y Competitividad (Spain) for the support of DPI2011-28606. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Selective compensation | es_ES |
dc.subject | Shunt active power compensator | es_ES |
dc.subject | IEEE Std. 1459 power terms | es_ES |
dc.subject | Power quality | es_ES |
dc.subject | Non-efficient currents | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Deterministic Algorithm for Selective Shunt Active Power Compensators According to IEEE Std. 1459 | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en10111791 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-28606/ES/SISTEMAS DE COMPENSACION ACTIVA PARA EL AHORRO ENERGETICO Y LA MEJORA DE LA CALIDAD DEL SUMINISTRO ELECTRICO./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Muñoz-Galeano, N.; Orts-Grau, S.; Segui-Chilet, S.; Gimeno Sales, FJ.; López-Lezama, JM. (2017). Deterministic Algorithm for Selective Shunt Active Power Compensators According to IEEE Std. 1459. Energies. 10(11):1-14. https://doi.org/10.3390/en10111791 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en10111791 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\348605 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Routimo, M., Salo, M., & Tuusa, H. (2007). Comparison of Voltage-Source and Current-Source Shunt Active Power Filters. IEEE Transactions on Power Electronics, 22(2), 636-643. doi:10.1109/tpel.2006.890005 | es_ES |
dc.description.references | Mishra, M. K., Ghosh, A., Joshi, A., & Suryawanshi, H. M. (2007). A Novel Method of Load Compensation Under Unbalanced and Distorted Voltages. IEEE Transactions on Power Delivery, 22(1), 288-295. doi:10.1109/tpwrd.2006.881579 | es_ES |
dc.description.references | Salmeron, P., & Herrera, R. S. (2006). Distorted and Unbalanced Systems Compensation Within Instantaneous Reactive Power Framework. IEEE Transactions on Power Delivery, 21(3), 1655-1662. doi:10.1109/tpwrd.2006.874115 | es_ES |
dc.description.references | Tey, L. H., So, P. L., & Chu, Y. C. (2005). Improvement of Power Quality Using Adaptive Shunt Active Filter. IEEE Transactions on Power Delivery, 20(2), 1558-1568. doi:10.1109/tpwrd.2004.838641 | es_ES |
dc.description.references | Cheng-Che Chen, & Yuan-Yih Hsu. (2000). A novel approach to the design of a shunt active filter for an unbalanced three-phase four-wire system under nonsinusoidal conditions. IEEE Transactions on Power Delivery, 15(4), 1258-1264. doi:10.1109/61.891512 | es_ES |
dc.description.references | Shukla, S., Mishra, S., Singh, B., & Kumar, S. (2017). Implementation of Empirical Mode Decomposition Based Algorithm for Shunt Active Filter. IEEE Transactions on Industry Applications, 53(3), 2392-2400. doi:10.1109/tia.2017.2677364 | es_ES |
dc.description.references | Brenna, M., Lazaroiu, G. C., Superti-Furga, G., & Tironi, E. (2008). Bidirectional Front End Converter for DG With Disturbance Insensitivity and Islanding-Detection Capability. IEEE Transactions on Power Delivery, 23(2), 907-914. doi:10.1109/tpwrd.2007.915997 | es_ES |
dc.description.references | Briz, F., Garcia, P., Degner, M. W., Diaz-Reigosa, D., & Guerrero, J. M. (2013). Dynamic Behavior of Current Controllers for Selective Harmonic Compensation in Three-Phase Active Power Filters. IEEE Transactions on Industry Applications, 49(3), 1411-1420. doi:10.1109/tia.2013.2253537 | es_ES |
dc.description.references | Freijedo, F. D., Doval-Gandoy, J., Lopez, O., Fernandez-Comesana, P., & Martinez-Penalver, C. (2009). A Signal-Processing Adaptive Algorithm for Selective Current Harmonic Cancellation in Active Power Filters. IEEE Transactions on Industrial Electronics, 56(8), 2829-2840. doi:10.1109/tie.2009.2013844 | es_ES |
dc.description.references | Wang, Y. F., & Li, Y. W. (2013). Three-Phase Cascaded Delayed Signal Cancellation PLL for Fast Selective Harmonic Detection. IEEE Transactions on Industrial Electronics, 60(4), 1452-1463. doi:10.1109/tie.2011.2162715 | es_ES |
dc.description.references | Orts-Grau, S., Gimeno-Sales, F. J., Segui-Chilet, S., Abellan-Garcia, A., Alcaniz, M., & Masot-Peris, R. (2008). Selective Shunt Active Power Compensator Applied in Four-Wire Electrical Systems Based on IEEE Std. 1459. IEEE Transactions on Power Delivery, 23(4), 2563-2574. doi:10.1109/tpwrd.2008.923414 | es_ES |
dc.description.references | Sawant, R. R., & Chandorkar, M. C. (2009). A Multifunctional Four-Leg Grid-Connected Compensator. IEEE Transactions on Industry Applications, 45(1), 249-259. doi:10.1109/tia.2008.2009704 | es_ES |
dc.description.references | Czarnecki, L. S. (2009). Effect of Supply Voltage Harmonics on IRP-Based Switching Compensator Control. IEEE Transactions on Power Electronics, 24(2), 483-488. doi:10.1109/tpel.2008.2009175 | es_ES |
dc.description.references | Singh, B., & Verma, V. (2008). Selective Compensation of Power-Quality Problems Through Active Power Filter by Current Decomposition. IEEE Transactions on Power Delivery, 23(2), 792-799. doi:10.1109/tpwrd.2007.911108 | es_ES |
dc.description.references | D’Arco, S., Ochoa-Gimenez, M., Piegari, L., & Tricoli, P. (2017). Harmonics and Interharmonics Compensation With Active Front-End Converters Based Only on Local Voltage Measurements. IEEE Transactions on Industrial Electronics, 64(1), 796-805. doi:10.1109/tie.2016.2588462 | es_ES |
dc.description.references | Alfonso-Gil, J., Perez, E., Arino, C., & Beltran, H. (2014). Optimization Algorithm for Selective Compensation in a Shunt Active Power Filter. IEEE Transactions on Industrial Electronics, 1-1. doi:10.1109/tie.2014.2378751 | es_ES |
dc.description.references | Seguí-Chilet, S., Gimeno-Sales, F. J., Orts, S., Alcañiz, M., & Masot, R. (2007). Selective Shunt Active Power Compensator in Four Wire Electrical Systems Using Symmetrical Components. Electric Power Components and Systems, 35(1), 97-118. doi:10.1080/15325000600817635 | es_ES |
dc.description.references | Muñoz-Galeano, N., Alfonso-Gil, J. C., Orts-Grau, S., Seguí-Chilet, S., & Gimeno-Sales, F. J. (2015). Instantaneous approach to IEEE Std. 1459 power terms and quality indices. Electric Power Systems Research, 125, 228-234. doi:10.1016/j.epsr.2015.04.012 | es_ES |
dc.description.references | Alfonso-Gil, J. C., Vague-Cardona, J. J., Orts-Grau, S., Gimeno-Sales, F. J., & Segui-Chilet, S. (2013). Enhanced Grid Fundamental Positive-Sequence Digital Synchronization Structure. IEEE Transactions on Power Delivery, 28(1), 226-234. doi:10.1109/tpwrd.2012.2219559 | es_ES |
dc.description.references | Orts-Grau, S., Gimeno-Sales, F. J., Abellan-Garcia, A., Segui-Chilet, S., & Alfonso-Gil, J. C. (2010). Improved Shunt Active Power Compensator for IEEE Standard 1459 Compliance. IEEE Transactions on Power Delivery, 25(4), 2692-2701. doi:10.1109/tpwrd.2010.2049033 | es_ES |
dc.description.references | Orts, S., Gimeno-Sales, F. J., Abellan, A., Segui-Chilet, S., Alcaniz, M., & Masot, R. (2008). Achieving Maximum Efficiency in Three-Phase Systems With a Shunt Active Power Compensator Based on IEEE Std. 1459. IEEE Transactions on Power Delivery, 23(2), 812-822. doi:10.1109/tpwrd.2007.915910 | es_ES |
dc.description.references | Orts-Grau, S., Munoz-Galeano, N., Alfonso-Gil, J. C., Gimeno-Sales, F. J., & Segui-Chilet, S. (2011). Discussion on Useless Active and Reactive Powers Contained in the IEEE Standard 1459. IEEE Transactions on Power Delivery, 26(2), 640-649. doi:10.1109/tpwrd.2010.2096519 | es_ES |