- -

Deterministic Algorithm for Selective Shunt Active Power Compensators According to IEEE Std. 1459

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deterministic Algorithm for Selective Shunt Active Power Compensators According to IEEE Std. 1459

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz-Galeano, Nicolás es_ES
dc.contributor.author Orts-Grau, Salvador es_ES
dc.contributor.author Segui-Chilet, Salvador es_ES
dc.contributor.author Gimeno Sales, Francisco José es_ES
dc.contributor.author López-Lezama, Jesús M. es_ES
dc.date.accessioned 2018-03-04T05:09:52Z
dc.date.available 2018-03-04T05:09:52Z
dc.date.issued 2017 es_ES
dc.identifier.uri http://hdl.handle.net/10251/98766
dc.description.abstract [EN] This paper proposes a deterministic algorithm to scale the reference currents of a shunt active power compensator (SAPC) based on IEEE Std. 1459 power decomposition when SAPC maximum output compensating current is going to be exceeded. The selective SAPC is proposed to improve power quality and energy efficiency in power networks by means of the cancelation or reduction of the non-efficient powers (Q1+, SU1, SeN). The non-efficient powers can be reduced in six possible sequences according to the priority of compensation. When SAPC maximum output current capacity is exceeded, the proposed algorithm limits the SAPC output compensating currents and the non-efficient currents can only be partially reduced in the power network. The reduction of the non-efficient powers depends on the selected compensation sequence. Experimental results for several compensation sequences demonstrate the appropriate operation of the selective SAPC using the proposed scaling algorithm. es_ES
dc.description.sponsorship The authors gratefully acknowledge the Universidad de Antioquia (UdeA) for the support of "Convocatoria Programatica 2016, codigo 2015-7747" and the Ministerio de Economia y Competitividad (Spain) for the support of DPI2011-28606. en_EN
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Selective compensation es_ES
dc.subject Shunt active power compensator es_ES
dc.subject IEEE Std. 1459 power terms es_ES
dc.subject Power quality es_ES
dc.subject Non-efficient currents es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Deterministic Algorithm for Selective Shunt Active Power Compensators According to IEEE Std. 1459 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en10111791 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2011-28606/ES/SISTEMAS DE COMPENSACION ACTIVA PARA EL AHORRO ENERGETICO Y LA MEJORA DE LA CALIDAD DEL SUMINISTRO ELECTRICO./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Muñoz-Galeano, N.; Orts-Grau, S.; Segui-Chilet, S.; Gimeno Sales, FJ.; López-Lezama, JM. (2017). Deterministic Algorithm for Selective Shunt Active Power Compensators According to IEEE Std. 1459. Energies. 10(11):1-14. https://doi.org/10.3390/en10111791 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en10111791 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\348605 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Routimo, M., Salo, M., & Tuusa, H. (2007). Comparison of Voltage-Source and Current-Source Shunt Active Power Filters. IEEE Transactions on Power Electronics, 22(2), 636-643. doi:10.1109/tpel.2006.890005 es_ES
dc.description.references Mishra, M. K., Ghosh, A., Joshi, A., & Suryawanshi, H. M. (2007). A Novel Method of Load Compensation Under Unbalanced and Distorted Voltages. IEEE Transactions on Power Delivery, 22(1), 288-295. doi:10.1109/tpwrd.2006.881579 es_ES
dc.description.references Salmeron, P., & Herrera, R. S. (2006). Distorted and Unbalanced Systems Compensation Within Instantaneous Reactive Power Framework. IEEE Transactions on Power Delivery, 21(3), 1655-1662. doi:10.1109/tpwrd.2006.874115 es_ES
dc.description.references Tey, L. H., So, P. L., & Chu, Y. C. (2005). Improvement of Power Quality Using Adaptive Shunt Active Filter. IEEE Transactions on Power Delivery, 20(2), 1558-1568. doi:10.1109/tpwrd.2004.838641 es_ES
dc.description.references Cheng-Che Chen, & Yuan-Yih Hsu. (2000). A novel approach to the design of a shunt active filter for an unbalanced three-phase four-wire system under nonsinusoidal conditions. IEEE Transactions on Power Delivery, 15(4), 1258-1264. doi:10.1109/61.891512 es_ES
dc.description.references Shukla, S., Mishra, S., Singh, B., & Kumar, S. (2017). Implementation of Empirical Mode Decomposition Based Algorithm for Shunt Active Filter. IEEE Transactions on Industry Applications, 53(3), 2392-2400. doi:10.1109/tia.2017.2677364 es_ES
dc.description.references Brenna, M., Lazaroiu, G. C., Superti-Furga, G., & Tironi, E. (2008). Bidirectional Front End Converter for DG With Disturbance Insensitivity and Islanding-Detection Capability. IEEE Transactions on Power Delivery, 23(2), 907-914. doi:10.1109/tpwrd.2007.915997 es_ES
dc.description.references Briz, F., Garcia, P., Degner, M. W., Diaz-Reigosa, D., & Guerrero, J. M. (2013). Dynamic Behavior of Current Controllers for Selective Harmonic Compensation in Three-Phase Active Power Filters. IEEE Transactions on Industry Applications, 49(3), 1411-1420. doi:10.1109/tia.2013.2253537 es_ES
dc.description.references Freijedo, F. D., Doval-Gandoy, J., Lopez, O., Fernandez-Comesana, P., & Martinez-Penalver, C. (2009). A Signal-Processing Adaptive Algorithm for Selective Current Harmonic Cancellation in Active Power Filters. IEEE Transactions on Industrial Electronics, 56(8), 2829-2840. doi:10.1109/tie.2009.2013844 es_ES
dc.description.references Wang, Y. F., & Li, Y. W. (2013). Three-Phase Cascaded Delayed Signal Cancellation PLL for Fast Selective Harmonic Detection. IEEE Transactions on Industrial Electronics, 60(4), 1452-1463. doi:10.1109/tie.2011.2162715 es_ES
dc.description.references Orts-Grau, S., Gimeno-Sales, F. J., Segui-Chilet, S., Abellan-Garcia, A., Alcaniz, M., & Masot-Peris, R. (2008). Selective Shunt Active Power Compensator Applied in Four-Wire Electrical Systems Based on IEEE Std. 1459. IEEE Transactions on Power Delivery, 23(4), 2563-2574. doi:10.1109/tpwrd.2008.923414 es_ES
dc.description.references Sawant, R. R., & Chandorkar, M. C. (2009). A Multifunctional Four-Leg Grid-Connected Compensator. IEEE Transactions on Industry Applications, 45(1), 249-259. doi:10.1109/tia.2008.2009704 es_ES
dc.description.references Czarnecki, L. S. (2009). Effect of Supply Voltage Harmonics on IRP-Based Switching Compensator Control. IEEE Transactions on Power Electronics, 24(2), 483-488. doi:10.1109/tpel.2008.2009175 es_ES
dc.description.references Singh, B., & Verma, V. (2008). Selective Compensation of Power-Quality Problems Through Active Power Filter by Current Decomposition. IEEE Transactions on Power Delivery, 23(2), 792-799. doi:10.1109/tpwrd.2007.911108 es_ES
dc.description.references D’Arco, S., Ochoa-Gimenez, M., Piegari, L., & Tricoli, P. (2017). Harmonics and Interharmonics Compensation With Active Front-End Converters Based Only on Local Voltage Measurements. IEEE Transactions on Industrial Electronics, 64(1), 796-805. doi:10.1109/tie.2016.2588462 es_ES
dc.description.references Alfonso-Gil, J., Perez, E., Arino, C., & Beltran, H. (2014). Optimization Algorithm for Selective Compensation in a Shunt Active Power Filter. IEEE Transactions on Industrial Electronics, 1-1. doi:10.1109/tie.2014.2378751 es_ES
dc.description.references Seguí-Chilet, S., Gimeno-Sales, F. J., Orts, S., Alcañiz, M., & Masot, R. (2007). Selective Shunt Active Power Compensator in Four Wire Electrical Systems Using Symmetrical Components. Electric Power Components and Systems, 35(1), 97-118. doi:10.1080/15325000600817635 es_ES
dc.description.references Muñoz-Galeano, N., Alfonso-Gil, J. C., Orts-Grau, S., Seguí-Chilet, S., & Gimeno-Sales, F. J. (2015). Instantaneous approach to IEEE Std. 1459 power terms and quality indices. Electric Power Systems Research, 125, 228-234. doi:10.1016/j.epsr.2015.04.012 es_ES
dc.description.references Alfonso-Gil, J. C., Vague-Cardona, J. J., Orts-Grau, S., Gimeno-Sales, F. J., & Segui-Chilet, S. (2013). Enhanced Grid Fundamental Positive-Sequence Digital Synchronization Structure. IEEE Transactions on Power Delivery, 28(1), 226-234. doi:10.1109/tpwrd.2012.2219559 es_ES
dc.description.references Orts-Grau, S., Gimeno-Sales, F. J., Abellan-Garcia, A., Segui-Chilet, S., & Alfonso-Gil, J. C. (2010). Improved Shunt Active Power Compensator for IEEE Standard 1459 Compliance. IEEE Transactions on Power Delivery, 25(4), 2692-2701. doi:10.1109/tpwrd.2010.2049033 es_ES
dc.description.references Orts, S., Gimeno-Sales, F. J., Abellan, A., Segui-Chilet, S., Alcaniz, M., & Masot, R. (2008). Achieving Maximum Efficiency in Three-Phase Systems With a Shunt Active Power Compensator Based on IEEE Std. 1459. IEEE Transactions on Power Delivery, 23(2), 812-822. doi:10.1109/tpwrd.2007.915910 es_ES
dc.description.references Orts-Grau, S., Munoz-Galeano, N., Alfonso-Gil, J. C., Gimeno-Sales, F. J., & Segui-Chilet, S. (2011). Discussion on Useless Active and Reactive Powers Contained in the IEEE Standard 1459. IEEE Transactions on Power Delivery, 26(2), 640-649. doi:10.1109/tpwrd.2010.2096519 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem