- -

Recurrence properties of hypercyclic operators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recurrence properties of hypercyclic operators

Mostrar el registro completo del ítem

Bès, JP.; Menet, Q.; Peris Manguillot, A.; Puig-De Dios, Y. (2016). Recurrence properties of hypercyclic operators. Mathematische Annalen. 366(1):545-572. https://doi.org/10.1007/s00208-015-1336-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/99749

Ficheros en el ítem

Metadatos del ítem

Título: Recurrence properties of hypercyclic operators
Autor: Bès, Juan Pablo Menet, Quentin Peris Manguillot, Alfredo Puig-De Dios, Yunied
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We generalize the notions of hypercyclic operators, U-frequently hypercyclic operators and frequently hypercyclic operators by introducing a new concept in linear dynamics, namely A-hypercyclicity. We then state an ...[+]
Palabras clave: Hypercyclic operators , Recurrence , Chaos
Derechos de uso: Reserva de todos los derechos
Fuente:
Mathematische Annalen. (issn: 0025-5831 )
DOI: 10.1007/s00208-015-1336-3
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s00208-015-1336-3
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//ACOMP%2F2015%2F005/
info:eu-repo/grantAgreement/MINECO//MTM2013-47093-P/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/
Agradecimientos:
This work is supported in part by MEC and FEDER, Project MTM2013-47093-P, and by GVA, Projects PROMETEOII/2013/013 and ACOMP/2015/005. The second author was a postdoctoral researcher of the Belgian FNRS.
Tipo: Artículo

References

Badea, C., Grivaux, S.: Unimodular eigenvalues, uniformly distributed sequences and linear dynamics. Adv. Math. 211, 766–793 (2007)

Bayart, F., Grivaux, S.: Frequently hypercyclic operators. Trans. Amer. Math. Soc. 358, 5083–5117 (2006)

Bayart, F., Grivaux, S.: Invariant Gaussian measures for operators on Banach spaces and linear dynamics. Proc. Lond. Math. Soc. 94, 181–210 (2007) [+]
Badea, C., Grivaux, S.: Unimodular eigenvalues, uniformly distributed sequences and linear dynamics. Adv. Math. 211, 766–793 (2007)

Bayart, F., Grivaux, S.: Frequently hypercyclic operators. Trans. Amer. Math. Soc. 358, 5083–5117 (2006)

Bayart, F., Grivaux, S.: Invariant Gaussian measures for operators on Banach spaces and linear dynamics. Proc. Lond. Math. Soc. 94, 181–210 (2007)

Bayart, F., Matheron, É.: Dynamics of linear operators, Cambridge Tracts in Mathematics, 179. Cambridge University Press, Cambridge (2009)

Bayart, F., Matheron, É.: (Non-)weakly mixing operators and hypercyclicity sets. Ann. Inst. Fourier 59, 1–35 (2009)

Bayart, F., Ruzsa, I.: Difference sets and frequently hypercyclic weighted shifts. Ergodic Theory Dynam. Syst. 35, 691–709 (2015)

Bergelson, V.: Ergodic Ramsey Theory- an update, Ergodic Theory of $$\mathbb{Z}^d$$ Z d -actions. Lond. Math. Soc. Lecture Note Ser. 28, 1–61 (1996)

Bernal-González, L., Grosse-Erdmann, K.-G.: The Hypercyclicity Criterion for sequences of operators. Studia Math. 157, 17–32 (2003)

Bès, J., Peris, A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167, 94–112 (1999)

Bonilla, A., Grosse-Erdmann, K.-G.: Frequently hypercyclic operators and vectors. Ergodic Theory Dynam. Syst. 27, 383–404 (2007)

Bonilla, A., Grosse-Erdmann, K.-G.: Erratum: Ergodic Theory Dynam. Systems 29, 1993–1994 (2009)

Chan, K., Seceleanu, I.: Hypercyclicity of shifts as a zero-one law of orbital limit points. J. Oper. Theory 67, 257–277 (2012)

Costakis, G., Sambarino, M.: Topologically mixing hypercyclic operators. Proc. Amer. Math. Soc. 132, 385–389 (2004)

Furstenberg, H.: Recurrence in ergodic theory and combinatorial number theory. Princeton University Press, Princeton (1981)

Giuliano, R., Grekos, G., Mišík, L.: Open problems on densities II, Diophantine Analysis and Related Fields 2010. AIP Conf. Proc. 1264, 114–128 (2010)

Grosse-Erdmann, K.-G.: Hypercyclic and chaotic weighted shifts. Studia Math. 139, 47–68 (2000)

Grosse-Erdmann, K.-G., Peris, A.: Frequently dense orbits. C. R. Math. Acad. Sci. Paris 341, 123–128 (2005)

Grosse-Erdmann, K.G., Peris, A.: Weakly mixing operators on topological vector spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 104, 413–426 (2010)

Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear chaos, Universitext. Springer, London (2011)

Menet, Q.: Linear chaos and frequent hypercyclicity. Trans. Amer. Math. Soc. arXiv:1410.7173

Puig, Y.: Linear dynamics and recurrence properties defined via essential idempotents of $$\beta {\mathbb{N}}$$ β N (2014) arXiv:1411.7729 (preprint)

Salas, H.N.: Hypercyclic weighted shifts. Trans. Amer. Math. Soc. 347, 993–1004 (1995)

Salat, T., Toma, V.: A classical Olivier’s theorem and statistical convergence. Ann. Math. Blaise Pascal 10, 305–313 (2003)

Shkarin, S.: On the spectrum of frequently hypercyclic operators. Proc. Am. Math. Soc. 137, 123–134 (2009)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem