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Abstract  
The development of optimal trajectory planning algorithms for autonomous 

robots is a key issue in order to efficiently perform the robot tasks. This problem 

is hampered by the complex environment regarding the kinematics and 

dynamics of robots with several arms and/or degrees of freedom (dof), the 

design of collision-free trajectories and the physical limitations of the robots. 

This paper presents a review about the existing robot motion planning 

techniques and discusses their pros and cons regarding completeness, 

optimality, efficiency, accuracy, smoothness, stability, safety and scalability. 
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1. Introduction 

Trajectory planning is moving a robot between two different configurations over 

time in order to perform a certain task while fulfilling robot’s constraints. A certain 

configuration entails a set of joint angles of the robot manipulator and the set of all possible 

joint angles is called the configuration space. The constraints encompass the physical 
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limitations of the robot. They include geometric constraints, which can be expressed in 

terms of the robot joint angles (i.e., bounds on the joint angles, avoidance of collision with 

the environment). They also cover kinematics and dynamics constraints that include 

higher-order time derivatives of the joint angles (i.e., bounds on the joint velocities, 

accelerations, torques, or motor current inputs).  

Furthermore, the task should be performed between the successive configurations 

in an efficiently and accurately way while optimizing a certain objective, such as 

minimizing the path traveling distance or execution time, energy consumption (or actuator 

effort) and jerk or maximizing the smoothness ([1], [2], [3], [4], [5]). 

This article reviews the most significant methodologies in trajectory planning of 

mobile robots with kinematics and dynamics constraints and optimization objectives. 

On the one hand, inverse kinematics finds a continuous set of intermediate joint 

angles of the robot arms between the starting and goal joint angles that allow achieving the 

desired end-effector position and orientation while avoiding collisions. On the other hand, 

through a time parameterization the algorithms allow to meet the torque bounds and/or 

optimizing the execution time or the energy consumption. Finally, a controller takes the 

inputs and adjusts its outputs by defining a sequential motion law so that the robot can carry 

out its task. The inputs cover the geometric path, the kinematic and dynamic constraints, 

while the output are the trajectory of the joints, expressed as a time sequence of position, 

velocity and accelerations. 

 

2. Trajectory planning algorithms 

2.1. Classic approaches 

Path planning entails the generation of a geometric path without a time law, while 

the trajectory planning assigns a time law to the geometric path. Two main categories of 

trajectory planning algorithms can be distinguished in accordance to the available 

https://doi.org/10.4995/muse.2018.9867


 
Multidisciplinary Journal for Education,                                               https://doi.org/10.4995/muse.2018.9867 
Social and Technological Sciences                                                                                         ISSN: 2341-2593 

 
 

 
 

                                Llopis-Albert et al. (2018) 
http://polipapers.upv.es/index.php/MUSE/    Mult. J. Edu. Soc & Tec. Sci.         Vol. 5 Nº 1 (2018):   1-16 |  3 

 

information, namely off-line and on-line. Off-line robots compute the entire trajectory to 

the goal before motion begins (i.e., information about obstacles is known in advance), and 

may lead to globally optimal solutions when the environment is fully known.  In this 

category different issues are analyzed, such as optimality (local and global), complete (a 

solution will be found if exists), and computational cost and efficiency (allow changes 

without recomputing or replanning everything). 

On-line robots generate the trajectory to the goal incrementally during motion, and 

lead to locally optimal solutions at best. In this case, the mobile robot obtains the 

information through sensors while it moves through the environment. In this category the 

issues raised are completeness (is the robot guaranteed to reach the goal if a solution exists), 

computational cost and efficiency at each step, and optimality (how far is a solution from 

the optimal and is it bounded by an upper limit). 

There exists a large variety of approaches to trajectory planning. The most 

important classical techniques are bug-like algorithms, the combinatorial methods, 

potential field methods and sampling-based methods. 

The bug-like algorithms are among the earliest and simplest sensor-based 

algorithms with reasonable results [6]. Robot is assumed to be a point in the plane with 

perfect positioning and with the workspace bounded. They have a contact sensor, which 

detects the obstacle boundary if it touches it. They are straightforward to implement since 

entail a movement towards the goal, unless an obstacle is encountered. In that case, they 

circumnavigate the obstacle until motion toward the goal is again allowable. This is 

achieved by measuring the distance between any two points. 

Combinatorial methods are geometric representation planners, based on the 

configuration space as the fundamental concept, which are used by most off-line robots. 

The geometric representations of the environment may consist of roadmaps or 

graphs that capture the topology of the free space, generated by different well-known 

methods such as a Voronoi diagram ([7], [8]); a visibility graph ([9], [10], [11], [12]), a 
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tangent graph [13]; cell decomposition and grid method ([14], [15], [16], [17], [18], [19], 

[20], [21]); Silhouette [22], and the Subgoal Network [23]. 

They differ in the way it represents the free space (non-collision space), but all are 

based on a connected network of path segments that can be traversed from start to goal. 

The main computational effort in these approaches is the representation of the free space, 

which includes the mapping of obstacles. Once the roadmap is constructed, the search for 

the shortest trajectory is carried out by using standard graph search techniques such as 

Dijkstra’s search [24] or A* [25].  

These methods have the advantage of providing that the general motion planning 

problem is NP-complete, but they have the disadvantages of being too slow to be used in 

practice, especially in high-dimensional problems, and to require an explicit representation 

of obstacles, which is very complicated to obtain in most practical problems. 

Another approach is to overlay a uniform grid over the search space and represent 

the entire space by an undirected graph [2]. These methods assign high costs to edges that 

intersect obstacles, which allows to effectively separate between inaccessible nodes and 

nodes in the free space. The resolution of this method is complete, as all approaches based 

on a discrete representation of the search space, which implies that at low grid resolutions 

paths that pass through tight spaces between obstacles can be disregarded. Instead an 

increase in the graph resolution would lead to high computational effort. As a disadvantage, 

the number of nodes for the uniform grid representation is much greater than for the 

roadmap-based algorithms. However, this approach is applicable to problems where 

obstacles are not clearly defined, such as for mobile robots. 

The potential field method constructs a potential field which is high near the 

obstacles and low at the goal configuration ([1], [26]). The robot is guided towards the goal 

configuration while avoiding the obstacles by letting its configuration evolve in that 

potential field. That is, the robot is attracted towards the goal configuration and repulsed 

from the obstacles. The gradient is a vector which points in the direction that locally 
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maximally increases the artificial potential field and the local variations of the robot reflect 

the structure of the free space.  

This method allows real-time control, but the possibility of getting trapped in a local 

minimum of the potential field prevents its use in highly cluttered environments. 

Sampling-based methods probably are the most widely used methods for trajectory 

planning because they are efficient and robust algorithms.  

Contrary to previous algorithms, the sampling-based planners accepts probabilistic 

completeness, i.e., the goal may not be reached in a finite time; accepts any solution, not 

necessarily the optimal; and neglects the explicit geometric representation of the free 

configuration space in terms of roadmaps or graphs. A roadmap is a graph whose vertices 

are configurations of free space and connects them by a path entirely contained in the free 

space. There are two ways of building the roadmap, i.e., by a deterministic or probabilistic 

approach. 

In the Probabilistic Roadmap planner (PRM) instead of following a regular grid, 

samples are taken at random in free space. Since there is no a priori grid structure, there 

are several methods for choosing the pairs of vertices to make the connection. This 

approach works very well for a wide variety of problems ([27], [28]), and it is based on the 

fact that checking if a single robot configuration is in the free space is less computationally 

expensive. PRM creates a roadmap in the free space using a coarse sampling to obtain the 

nodes of the roadmap and a fine one to obtain the roadmap edges (i.e., the free paths 

between node configurations). Then, planning queries can be answered by connecting the 

initial and goal configurations to the roadmap. A uniform random distribution ensures the 

probabilistic completeness of the planner [29]. There are other sampling-based planners 

depending on the node sampling scheme that may be more effective for single-query 

planning, such as the Expansive-Spaces Tree planner (EST) [30] and the Rapidly-exploring 

Random Tree planner (RRT) [24]. There are also methods based on a combination of the 

previous methods, such as the Sampling-Based Roadmap of Trees (SRT) method, which 
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constructs a roadmap using a PRM and single-query trees. It has been observed that for 

very difficult path planning problems, single-query planners need to construct large trees 

in order to find a solution. In some cases, the computational cost of constructing a large 

tree may be high and it is worthy to use a multiple-query planning. 

Sampling-based methods are able to deal with robots with many degrees of freedom 

and constraints. For instance, kinematic and dynamic constraints, energy and stability 

constraints, closed-loop kinematics, visibility and constraints, and reconfigurable robots. 

As a summary, the main disadvantages of classic approaches that make them 

inefficient in practice are that they entail a high computational cost to determine a feasible 

collision-free path in high dimensions; tend to get locked in local optimal solution; lead to 

non-deterministic polynomial time hard problems (NP-hard) for trajectory planning of 

mobile robots with multiple obstacles [22]; and the solution is quite complicated when the 

environment is dynamic and complex [31]. These drawbacks prevent their use in complex 

environments. 

 

2.2. Heuristic approaches 

To solve the aforementioned drawbacks of classic approaches the heuristic and 

metaheuristic approaches have been developed. They encompass methods such as 

Probabilistic Roadmaps (PR); Rapidly-exploring Random Trees (RRT); Ant Colony 

Optimization (ACO), that relies on the foraging behavior of ants for finding the shortest 

path to the food source ([32], [33], [34]); Simulated Annealing (SA), which is a heuristic 

random search approach that resembles the cooling process of molten metals through 

annealing ([35], [36]); Neural Network [37]; Genetic Algorithms (GA), which are based 

on the mechanics of natural genetics and selection ([38], [39], [40]); Particle Swarm 

Optimization (PSO), which are inspired by social behavior of bird flocking or fish 

schooling and are easier to implement than GA and with a fewer parameters to be adjusted 

([41], [42], [43], [44], [45], [46]); Stigmergy, which is a mechanism of indirect 
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coordination, through the environment, between agents or actions [47]; Wavelet, which is 

based on wave-like oscillation theory [48]; Fuzzy Logic, which is a form of many-valued 

logic where the truth values of variables may be any real number between 0 and 1 [49]; 

and Tabu Search, which is a local-search method used for mathematical optimization [36]. 

Heuristic algorithms do not ensure to find a solution, but when they do it is 

performed much faster than deterministic methods. 

 

2.3. Decision-making process techniques for trajectory planning 

There are several approaches for tackling the problem of predicting the trajectory 

of a moving object when its exact geometric description and information about its 

environment is not available. In such cases, the information about the environment derives 

from measurements provided by a set of imperfect noisy sensors. Therefore, the trajectory 

planning is carried out under uncertainty, which needs to be modelled. 

This uncertainty has an effect on the predictability about the current and future 

states (in either discrete or continuous state spaces and continuous time) of the robot and 

its environment. Those states are based on the initial conditions, sensors, and the memory 

of formerly applied actions. Therefore, trajectory planning methods under uncertainty 

cover problems such as localization, map building, pursuit-evasion and manipulation [2]. 

Some methods are able to account for the uncertainty and the decision-making 

process in a greater or lesser extent. For instance, the worst-case, expected-case or 

probabilistic models, game theory analyses (with players with conflicting goals) and more 

complex techniques such as sequential decision making (which is a sequence of basic 

decision-making problems), control theory and artificial intelligence. 

Probabilistic estimation methods rely on probability density function (PDF) of the 

robot location over the space instead of a deterministic location, which allows dealing with 

uncertainties. The aim is to keep a position PDF over all possible robot poses. An efficient 
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example is the Kalman filter, which provides a recursive method for estimating the state of 

a noisy dynamical systems [50]. This is carried out by means of Bayesian inference and 

estimating a joint probability distribution over the variables for each timeframe. Its output 

is a Gaussian probability density function (PDF) of likely robot positions instead of a single 

position estimate, with the mean and covariance of the error covariance matrix a 

distribution.  

Another approach for tracking mobile robots under dynamic environments is by 

means of the Markov process or Markov decision process (MDP), which also make use a 

probabilistic framework for dealing with decision making in situations where outcomes are 

partly random and partly under the control of a decision maker It has the advantage of 

generating an optimal path, but has the disadvantage of limiting the robot to choose from 

a finite set of action. This lead to a non-smooth path. However, Fuzzy Markov decision 

processes (FDMPs) are able to generate smooth trajectories using a fuzzy inference system 

[51]. 

Bayesian methods uses the same iterative prediction-update process than in the 

Kalman filter, but they do not rely on its restrictive assumptions [52]. The pros are that they 

can use nonlinear models for both trajectory planning and sensing and an arbitrary 

distribution instead of a Gaussian. However, this may lead to higher computational cost 

compared to Kalman filters. 

 

2.4. Mathematical programming 

The methods based on mathematical programming deal with obstacle avoidance by 

means of a set of inequalities on the configuration parameters. Then the motion planning 

is posed as a mathematical optimization problem that finds a curve between the start and 

goal configurations minimizing or maximizing a certain objective function, such as 

minimizing the path traveling distance or execution time, energy consumption (or actuator 

effort) and jerk or maximizing the smoothness (e.g., [53], [54], [55]). This leads to a 
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complex non-linear optimization problem with many inequality and differential 

constraints, which needs be solved by a numerical method. Furthermore, multi-objective 

optimization problems have been developed in the literature through Pareto optimal 

solutions ([56], [57]). 

 

3. Comparison of approaches 

The pros and cons of the different approaches are presented in Table 1. They cover 

aspects such as completeness (if the path exists, the path and the trajectory are found), 

optimality (the plan obtained is optimal regarding some parameter, not trapped in a local 

minimum), efficiency (computational cost of the algorithm, i.e., if it can change world and 

queries without recomputing everything or replannig from scratch), accuracy (high 

precision path tracking and control even at high speed), smoothness (i.e., chattering 

avoidance), stability (dynamically-stable motion planning), safety (for the robot, its 

environment and humans), scalability (the problem scales well when increasing 

configuration space dimensions), and execution time (lower times are desirable). However, 

the optimization approaches for robot trajectory planning are in continuous developing 

(e.g., [59], [60], [61]). 

 

Table 1. Approaches comparison. 

Approach Pros Cons 

Potential fields Real-time, good scalability 
Not complete, not efficient world and queries 
updates, path not optimal (local minimum), 

potential field forces must be set 

Cell 
decomposition 

Complete, robust High computational cost, and high execution time 

Visibility graph 
Complete and yields 

minimum 
length paths, optimal 

High computational cost, and high execution 
time, bad dof scalability, not efficient world and 

queries updates 

Voronoi 
diagram 

Complete and generates 
roadmap with maximum 

Possibly inefficient paths, time, bad dof 
scalability, path not optimal 
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distance, efficient world and 
queries updates 

Heuristic 
approaches 

Low execution time, parallel 
search 

Not complete, possibility of providing smooth 
paths 

Exact cell 
decomposition 

Complete High computational cost, high execution time 

Approximate 
cell 

decomposition 

Robust and useful when 
only 

a coarse representation of 
workspace is available 

Not complete 

Bug (bug 1 and 
bug 2) 

Complete, easy 
implementation, parameters 

easy to adjust 
Long paths, high execution time 

A* Complete, optimal grid 
Not efficient, bad dof scalability, not efficient 

world and queries updates 

Rapidly 
exploring 

random tree 
(RRT) 

Complete, semi-efficient 
world and queries updates, 

good scalability 
Path not optimal 

Probabilistic 
roadmaps 

(PRMs) 

Complete, semi-efficient 
queries updates, optimal 

graph, good scalability 
Not efficient world updates 

 

 

4. Conclusions 

This paper provides a review about optimal trajectory planning algorithms for 

autonomous robots. They cover a wide range of aspects such as the kinematics and 

dynamics of robots, the achievement of collision-free trajectories and the consideration of 

the physical limitations of the robots. The different motion planning techniques are 

discussed, and their advantages and disadvantages presented. As a consequence of these 

pros and cons, diverse solutions can be used for the wide variety of robot’s applications. 
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