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Abstract

The concept of partially topological group was recently introduced in

[3]. In this article, we define partially topological group action on par-
tially topological space and we generalize some fundamental results

from topological group action theory.
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1. Partially topological spaces

In this section, we recall definition of the category GTSpt of partially topo-
logical spaces and strictly continuous mappings which was defined in [4].

Definition 1.1. Let X be any set, τX be a topology on X . A family of open
families CovX ⊆ P(τX) will be called a partial topology if the following
conditions are satisfied:

(i) if U ⊆ τX and U is finite, then U ∈ CovX ;
(ii) if U ∈ CovX and V ∈ τX , then {U ∩ V : U ∈ U} ∈ CovX ;
(iii) if U ∈ CovX and, for each U ∈ U , we have V(U) ∈ CovX such that
⋃

V(U) = U , then
⋃

U∈U V(U) ∈ CovX ;
(iv) if U ⊆ τX and V ∈ CovX are such that

⋃

V =
⋃

U and, for each V ∈ V
there exists U ∈ U such that V ⊆ U , then U ∈ CovX .
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Elements of τX are called open sets, and elements of CovX are called admissi-
ble families. We say that (X,CovX) is a partially topological generalized
topological space or simply partially topological space. For simplicity,
from now on, we shall denote a partially topological space (X,CovX) by X .
LetX and Y be partially topological spaces and let f : X → Y be a function.

Then f is called strictly continuous if f−1(U) ∈ CovX for any U ∈ CovY . A
bijection f : X → Y is called a strictly homeomorphism if both f and f−1

are strictly continuous functions. If we have a strictly homeomorphism between
X and Y we say that they are strictly homeomorphic and we denote that
by X ∼= Y .

Remark 1.2. The above notion of partial topology is a special case of the notion
of generalized topology in the sense of H. Delfs and M. Knebusch considered
in [2, 4, 5, 6, 7], when the family OpX of open sets of the generalized topology
forms a topology.

Definition 1.3. Let (X,CovX) be a partially topological space and let Y be
a subset of X . Then the partial topology

CovY = (〈CovX ∩2 Y 〉Y )pt,

that is: the smallest partial topology containing CovX∩2Y , is called a subspace
partial topology on Y , and (Y,CovY ) is a subspace of (X,CovX). (It is also
the smallest generalized topology containing CovX ∩2 Y .)

Fact 1.4. Let ϕ : X → X ′ be a mapping between partially topological spaces
and let Y be a subspace of X. Then the following are equivalent:

a) ϕ is strictly continuous,
b) the restriction mapping ϕ|Y : Y → X

′ is strictly continuous.

Definition 1.5. Let (X,CovX) and (Y,CovY ) be two partially topological
spaces. The product partial topology on X × Y is the partial topology
CovX×Y = (〈CovX ×2 CovY 〉X×Y )pt in the notation of Definition 4.6 of [7]; in
other words: the smallest partial topology inX×Y that contains CovX×2CovY .

Recall that a mapping f : X → Y is said to be an open mapping if for every
open set U of X , the set f(U) is open in Y . It is said to be a closed mapping
if for every closed set A of X , the set f(A) is closed in Y . Also, recall that a
surjective mapping f : X → Y is said to be a quotient mapping provided a
subset U of Y is open in Y if and only if f−1(U) is open in X .

2. Partially Topological Groups

In this section, we recall the definition of partially topological group. This
notion was recently introduced in [3].

Definition 2.1. A partially topological group G is an ordered pair ((G, ∗),
CovG) such that (G, ∗) is a group, while CovG is a generalized topology on G
such that

⋃

CovG is a T1 topology on G and the multiplication mapping of
(G × G,CovG×G) into (G,CovG), which sends ordered pair (x, y) ∈ G × G
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to x ∗ y, is strictly continuous and the inverse mapping from (G,CovG) into
(G,CovG), which sends each x ∈ G to x

−1, is strictly continuous. For simplicity,
from now on, we shall denote a partially topological group ((G, ∗),CovG) by
G.

Definition 2.2. Any subgroup H of a partially topological group G is a par-
tially topological group and it is called a partially topological subgroup of
G.

Definition 2.3. Let ϕ : G→ G′ be a function. Then ϕ is called a morphism
of partially topological groups if ϕ is both strictly continuous and group ho-
momorphism. Moreover, ϕ is an isomorphism if it is strictly homeomorphism
and group isomorphism.
If we have an isomorphism between two partially topological groups G and

G′, then we say that they are isomorphic and we denote that by G ∼= G′.

Remark 2.4. Obviously composition of two morphisms of partially topological
groups is a morphism. In addition, the identity mapping is an isomorphism. So
partially topological groups and their morphisms form a category PTGr.

3. Partially Topological Group Action On Partially
Topological Space

In this section, we introduce partially topological group action on partially
topological space and we extend some fundamental results in [1] of action of a
topological group on a topological space to this new concept.

Definition 3.1. If G is a partially topological group with identity e and X is a
partially topological space, then an action of G onX is a mapping G×X → X ,
with the image of (g, x) being denoted by g(x), such that (gh)(x) = g(h(x))
and e(x) = x for all g, h ∈ G and x ∈ X .

If this mapping is strictly continuous, then the action is said to be strictly
continuous.
The space X , with a given strictly continuous action of G on X , is called

partially G-space.
For a point x ∈ X , the set G(x) = {gx : g ∈ G} is called the orbit of x.

Definition 3.2. Let G be a partially topological group and X a partially
topological space. Let G act on X . For a point x of X , the set

Gx = {g ∈ G : gx = x} (or Gx = {g ∈ G : xg = x})

is called the stabilizer of x.

Fact 3.3. The stabilizer Gx of any point x ∈ X is a subgroup of G.

Definition 3.4. Let G be a partially topological group and X a partially
topological space. Let G act on X . For a point x of X , we define a mapping

µx : G→ X

by µx(g) = gx (or µx(g) = xg).

c© AGT, UPV, 2018 Appl. Gen. Topol. 19, no. 1 3



M. A. Al Shumrani

Note that µx is strictly continuous by strictly continuity of the action. The
action is called transitive if for each x ∈ X , Gx = X . Then Obviously we have
the following fact.

Fact 3.5. µx is surjective iff G acts transitively on X.

Proposition 3.6. Every strictly continuous action θ : G×X → X of a partially
topological group G on a partially topological space X is an open mapping.

Proof. It suffices to prove that the images under θ of the elements of some base
for G×X are open in X. Let O = U × V ⊂ G ×X, where U and V are open

sets in G and X , respectively. Then θ(O) =
⋃

g∈G

θg(V ) is open in X since every

θg is a strictly homeomorphism of X onto itself. Since the open sets U × V
form a base for G×X , the mapping θ is open. �

Proposition 3.7. The strictly continuity of an action θ : G × X → X of a
partially topological group G with identity e on a partially topological space X is
equivalent to the strictly continuity of θ at the points of the set {e}×X ⊂ G×X.

Proof. Let g ∈ G and x ∈ X be arbitrary and U be a neighborhood of gx in
X . Since θh is a homeomorphism of X for each h ∈ G, the set V = θg−1(U)
is a neighborhood of x in X . By the strictly continuity of θ at (e, x), we can
find a neighborhood O of e in G and a neighborhood W of x in X such that
hy ∈ V for all h ∈ O and y ∈ W . Clearly, if h ∈ O and y ∈ W , then
(gh)(y) = g(hy) ∈ gV = θg(V ) = U . Thus, ky ∈ U , for all k ∈ gO and all
y ∈ W , where O′ = gO is a neighborhood of g in G. Hence, the action θ is
strictly continuous. �

Next we present two examples of strictly continuous actions of partially
topological groups.

Example 3.8. Any partially topological group G acts on itself by left transla-
tions, that is, θ(x, y) = xy for all x, y ∈ G. The strictly continuity of this action
follows from the strictly continuity of the multiplication in G.

Example 3.9. Let G be a partially topological group, H a closed subgroup of
G, and let G/H be the corresponding left coset space. The action φ of G on
G/H , defined by the rule φ(g, xH) = gxH , is strictly continuous. Indeed, let
y0 ∈ G/H , and fix an open neighborhood O of y0 in G/H . Choose x0 ∈ G such
that π(x0) = y0, where π : G → G/H is the quotient mapping. There exist
open neighborhoods U and V of the identity e in G such that π(Ux0) ⊂ O and
V 2 ⊂ U . Clearly, W = π(V x0) is open in G/H and y0 ∈ W. By the choice of
U and V , if g ∈ V and y ∈ W , then φ(g, y) ∈ O. Indeed, let x1 ∈ V x0 with
π(x1) = y. Then y = x1H and φ(g, y) = gx1H ∈ V V x0H ⊂ π(Ux0) ⊂ O.
Therefore, φ is continuous at (e, y0) ∈ G×G/H . Hence, φ is strictly continuous
by Proposition 3.7.

Suppose that a partially topological group G acts strictly continuously on a
partially topological space X and that X/G is the corresponding orbit set. Let
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X/G have the partially quotient topology generated by the orbital projection
π : X → X/G (a subset U ⊂ X/G is open in X/G if and only if π−1(U) is
open in X). The partially topological space X/G is called the orbit space or
the orbit space of the partillay G-space X .
The following result shows that the orbital projection is always an open

mapping.

Proposition 3.10. If θ : G × X → X is a strictly continuous action of a
partially topological group G on a partially topological space X, then the orbital
projection π : X → X/G is an open mapping.

Proof. For any open set U ⊂ X , consider the set π−1π(U) = GU . Every
left translation θg is a strictly homeomorphism of X onto itself, so the set

GU =
⋃

g∈G

θg(U) is open in X . Since π is a quotient mapping, π(U) is open in

X/G. Hence, π is an open mapping. �

Theorem 3.11. Suppose a compact partially topological group H acts strictly
continuously on a Hausdorff partially space X, then the orbital projection π :
X → X/H is both open and perfect mapping.

Proof. First note that π is open by Proposition 3.10. Next we show that π is
perfect. Let y ∈ X/H, choose x ∈ X such that π(x) = y. Note that π−1(y) =
Hx is the orbit of x in X . Since the mapping of H onto Hx assigning to every
g ∈ H the point gx ∈ X is strictly continuous, the image Hx of the compact
group H is also compact. Hence, all fibers of π are compact.
We show that the mapping π is closed. Let y ∈ X/H and x ∈ X such

that π(x) = y. Let O be an open set in X containing π−1(y) = Hx. Since
the action of H on X is strict continuous, we can find, for every g ∈ H ,
open neighborhoods g ∈ Ug and x ∈ Vg in H and X , respectively, such that
UgVg ⊂ O. By the compactness of H and of the orbit Hx, there exists a finite

set F ⊂ H such that H =
⋃

g∈F

Ug and Hx ⊂
⋃

g∈F

gVg. Then V =
⋂

g∈F

Vg is an

open neighborhood of x in X , and we claim that HV ⊂ O. Indeed, if h ∈ H
and z ∈ V , then h ∈ Ug, for some g ∈ F , so that hz ∈ UgV ⊂ UgVg ⊂ O.
Thus, W = π(V ) is an open neighborhood of y in X/H , and we have that
π−1π(V ) = HV ⊂ O. Hence, π is closed. �

Definition 3.12. Let X and Y be partially G-spaces with strictly continuous
actions θX : G×X → X and θY : G× Y → Y. A strictly continuous mapping
f : X → Y is called partially G-equivariant if θY (g, f(x)) = f(θX(g, x)),
that is, gf(x) = f(gx), for all g ∈ G and all x ∈ X . Clearly, f is partially
G-equivariant if and only if the following diagram
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G×X
θX−−−−→ X





y

F





y

f

G× Y
θY−−−−→ Y

commutes, where F = idG × f is the product of the identity mapping idG of
G and the mapping f .

Example 3.13. Let H be a closed subgroup of a partially topological group
G, and Y = G/H be the left coset space. Denote by θG the action of G on
itself by left translations, and by θY the natural strictly continuous action of
G on Y . Then the quotient mapping π : G → G/H defined by π(x) = xH for
each x ∈ G is equivariant. Indeed, the equality g(π(x)) = gxH = π(gx) holds
for all g, x ∈ G. Equivalently, the following diagram

G×G
θG−−−−→ G





y

Π





y

π

G× Y
θY−−−−→ Y

commutes, where Π = idG × π.

Let η = {Xi : i ∈ I} be a family of partially G-spaces. Then the product
spaceX =

∏

i∈I Xi, ifX is Hausdorff, is a partiallyG-space. To define an action
of G on X , take any g ∈ G and any x = (xi)i∈I ∈ X , and put gx = (gxi)i∈I .
Thus, G acts on X coordinatewise.
The following result shows the strictly continuity of this action.

Proposition 3.14. The coordinatewise action of G on the product X =
∏

i∈I Xi
of partially G-spaces is strictly continuous, that is, X is a partially G-space, if
X is Hausdorff.

Proof. By Proposition 3.7, it suffices to verify the continuity of the action of G
on X at the neutral element e ∈ G. Let x = (xi)i∈I ∈ X be an arbitrary point
and O ⊂ X a neighborhood of gx in X . Since canonical open sets form a base of
X , we can assume that O =

∏

i∈I Oi, where each Oi is an open neighborhood
of xi in Xi and the set F = {i ∈ I : Oi 6= Xi} is finite. Since all factors are
partially G-spaces, we can choose, for every i ∈ F , open neighborhoods e ∈ Ui
and xi ∈ Vi in G and Xi, respectively, such that UiVi ⊂ Oi. Put U =

⋃

i∈F

Vi

and W =
∏

i∈IWi, where Wi = Vi if i ∈ F and Wi = Xi otherwise. Therefore,
it follows from the definition of the sets U and W that UW ⊂ O. Hence, the
action of G on X is strictly continuous. �

Theorem 3.15. Let G be a partially topological group and X a partially topo-
logical space. Let G act on X. Suppose that both G and X/G are connected,
then X is connected.
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Proof. Suppose that X is the union of two disjoint nonempty open subsets
U and V . Now π(U) and π(V ) are open in X/G. Since X/G is connected,
π(U) and π(V ) cannot be disjoint. If π(x) ∈ π(U) ∪ π(V ), then both U ∪O(x)
and V ∪ O(x) are nonempty, where O(x) is the orbit of x. It means O(x) is a
disjoint union of two nonempty open sets. But O(x) is the image of G under
the strictly continuous function f : G→ X defined by f(g) = g(x). Therefore,
O(x) is connected which is a contradiction. Hence, X is connected. �

Theorem 3.16. If X is a compact partially topological group and G a closed
subgroup acting on X by left translation, then X/G is regular.

Proof. SinceG is closed subgroup and the left translation mapping Lx : X → X
is strictly homeomorphism then π−1π(x) = xG = Lx(G) is closed. Thus every
point π(x) of X/G is closed, and it follows that X/G is T1 space.
Now we show that for a closed subset F of X/G and a point p /∈ F there are

open sets U, V satisfying p ∈ U,F ⊂ V, U ∩ V = ∅. Since X acts transitively
on X/G, we may assume that p is an element of the class eG = G of the
identity element e. Since F is closed, there exists an open set U0 such that
F ∩ U0 = ∅ and p ∈ U0. From the strictly continuity of group action of
X , there is an open set W such that e ∈ W and W−1W ⊂ π−1(U0). The set

Wπ−1(F ) =
⋃

x∈π−1(F )

Wx is open. Since π is an open mapping, both U = π(W )

and V = π(Wπ−1(F )) are open sets and p ∈ U and F ⊂ V .
Next we show that U ∩ V = ∅. Suppose that there exists y ∈ U ∩ V . Then

there exist x1, x2 ∈W and x ∈ π
−1(F ) such that y = π(x2) = π(x1x). Thus, we

have g ∈ G such that x2g = x1x, from which we deduce that π(xg
−1) ∈ F∩U0 =

∅ from xg−1 = x1
−1x2 ∈W

−1W ⊂ π−1(U0). Therefore, U ∩ V = ∅. �
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