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Abstract

In this article, we propose a symbolic technique that can be used for au-
tomatically inferring software contracts from programs that are written in
a non-trivial fragment of C, called KERNELC, that supports pointer-based
structures and heap manipulation. Starting from the semantic definition
of KERNELC in the K semantic framework, we enrich the symbolic execu-
tion facilities recently provided by K with novel capabilities for contract
synthesis that are based on abstract subsumption. Roughly speaking, we
define an abstract symbolic technique that axiomatically explains the ex-
ecution of any (modifier) C function by using other (observer) routines in
the same program. We implemented our technique in the automated tool
KINDSPEC 2.1, which generates logical axioms that express pre- and post-
condition assertions which define the precise input/output behavior of the
C routines. Thanks to the integrated support for symbolic execution and
deductive verification provided by K, some synthesized axioms that can-
not be guaranteed to be correct by construction due to abstraction can
finally be verified in our framework with little effort.

Keywords contract inference, symbolic execution, abstract subsumption, de-
ductive verification

1 Introduction

Checking software contracts is one of the most promising techniques for achiev-
ing software reliability [29]. Contracts typically consist of essential requirements
that are imposed on the arguments and result values when functions are invoked.
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Given its interest, considerable effort has recently been invested in achieving au-
tomatic support for equipping programs with extensive contracts, yet the current
contract inference tools are still often unsatisfactory in practice [13].

Given a program P, the contract synthesis problem for P is generally de-
scribed as the problem of inferring a likely specification for every function m in
P (hereinafter referred to as method) that uses I/O primitives and/or modifies
the state. By automating the tedious and time-consuming process of generat-
ing contract assertions, programmers can reap the benefits of assertion—based
debugging and verification methods with reasonable effort.

In this article, we develop a contract synthesis methodology that is based
on symbolic computation and that applies to heap-manipulating programs that
are written in a non-trivial fragment of C, called KERNELC [I6], which includes
functions, I/O primitives, dynamically allocated structures, and pointer manip-
ulation. The contracts that we synthesize essentially consist of logical assertions
that characterize the function behavior and that are expressed as method pre-
conditions (imposed on the arguments) and post-conditions (relating the argu-
ments and the result for a method). As a by-product of the synthesis process,
for each method we also infer the list of references to memory locations whose
value might be affected by the execution of the method, which can be key for
sound usage of contracts as, for instance, in compositional verification [I1].

In [T}, 2], a preliminary technique for inferring method contracts was proposed
that is based on the classification scheme for data abstractions developed in [26],
where a function may be either a constructor, a modifier, or an observer. The
intended behavioral specification of any modifier function m of P is expressed as
a set of logical assertions that characterize the pre- and post-states of the execu-
tion of m by using the observer functions in P. The inference technique of [ 2]
relies on symbolic execution (SE), a well-known program analysis technique that
allows programs to be executed using symbolic input values instead of actual
(concrete) data so that the program execution manipulates symbolic expressions
involving the symbolic values [25] [33]. More precisely, for each pair (s, s’) of ini-
tial and final states in the symbolic execution of m, an implicative axiom p = ¢
is synthesized where both the antecedent p and the consequent ¢ are expressed in
terms of the (sub-)set of program observers that explain (i.e., characterize) s and
s’. For instance, for the case of a modifier method push that adds the element x
at the top of a given bounded stack t (and assuming the traditional meaning for
the observer functions top, isfull, and size), a typically expected logical ax-
iom describing the effect of running the call push(x,t) could be: isfull(t)=0
A size(t)=n = top(t)=x A size(t)=n+1 (i.e. starting from an initial com-
putation state where the input stack t is not full, at the final state the top stack
element is x and the stack size has been increased by 1), where the value 0 is
used to represent in C the Boolean false value. In the methodology of [1I 2],
this axiom is generated by analyzing the results of symbolically executing each
observer method o (such as top, isfull, size, ...) from initial configurations
that symbolically represent the pre-state s and the post-state s’ of the execution
of method m.

The symbolic infrastructure developed in [I] was built on top of the rewriting-



based, programming language definitional framework K, which facilitates the
development of executable semantics of programming languages and related
formal analysis techniques and tools [36]. However, it was developed by reusing
spare features of a hand—crafted, formal verifier called MATCHC [37] that was
formerly provided within K but is currently unsupported since the current de-
ductive verification infrastructure of K, which is language-independent, can be
instantiated with the operational semantics of any programming language to
automatically generate a program verifier for that language [42]. On the other
hand, the underlying methodology in [I] was rather limited since a fixed thresh-
old for loop unrolling was imposed on the symbolic computations in order to
avoid non-termination risks. The methodology in [2] was already based on the
current, language-independent native extension of K that supports symbolic ex-
ecution [B] but inherited the loop unrolling strategy based on depth bounds from
.

In this work, we improve the inference power of [Il 2] by endowing K’s
symbolic execution with modern subsumption techniques based on abstraction
[4] and lazy initialization [24]. The fact that this symbolic infrastructure is
much more flexible and (potentially) language-independent allows us to define
a generic, more accurate, easily maintainable and robust framework for the
inference of program contracts that could be adapted to other languages defined
within the K framework with little effort. A preliminary version of the abstract
contract synthesis algorithm developed in this article first appeared in [3].

1.1 Contributions

The main contributions of this paper are as follows.

1. We define a symbolic technique that synthesizes contracts for heap-ma-
nipulating code while coping with infinite computations. This is done by

(a) augmenting K’s symbolic execution with lazy initialization [24] and
a widening operator based on abstract subsumption [4], and

(b) synthesizing method pre- and post-conditions by means of a contract
synthesis algorithm that explains the (initial and final) abstract sym-
bolic execution states by using the program observers.

In comparison to [3], in this article we provide a detailed formalization
of the symbolic heap subsumption and abstract heap subsumption tech-
niques that are essential for developing (a). Regarding (b), because of the
abstraction, some inferred axioms for method m cannot be guaranteed
to be correct and are kept apart as candidate (or overly general) axioms.
A refinement post-processing is then formalized that first removes every
candidate axiom for which an instance is refuted and then filters out any
redundant elements from the surviving axioms.

2. As a complement to the symbolic contract synthesis technique, we pro-
vide a novel methodology that distills a set of formal verification rules



(written in K’s verification syntax) from the deployed symbolic execution
trees. This allows some correct axioms that were roughly categorized as
candidates because of the abstraction to be automatically verified within
the very same deductive verification infrastructure provided by K [42].
This may yield more concise specifications since other (more specialized
axioms) might be subsumed by the new discovered correct axioms.

3. The proposed techniques are implemented in the KINDSPEC 2. IEI system,
which builds on the capabilities of the SMT solver Z3 [31] for the infer-
ence. The synthesized contracts are further simplified by applying dupli-
cate elimination and subsumption checking, to be given a compact repre-
sentation that abstracts the user from any implementation details.

1.2 Plan of the paper

This paper is organized as follows. In Section [2] we introduce a KERNELC
program that is used throughout the paper as the leading example to discuss
the effectiveness and adequacy of our contract synthesis methodology. In Sec-
tion [3] we summarize the key concepts of the K framework that are crucial for
this work. Section [4] explains how we augmented the symbolic machinery of
K with lazy initialization and abstract subsumption to support the execution
of programs with symbolic data structures and unbounded loops. Section
formalizes our contract synthesis technique together with a key postprocessing
refinement that improves the quality of the contracts that we infer. Section [f]
outlines an extension of our technique that provides for (semi-)automated axiom
verification, which may further better the learned contracts. Section [7] presents
the prototype tool that we implemented to evaluate the proposed techniques to-
gether with some experimental results on a set of benchmark programs. Finally,
in Section [8, we discuss the related work and we conclude.

2 Method Specification: A Running Example

By abuse, we use the standard terminology for contracts of object-oriented pro-
gramming and speak of methods when we refer to KERNELC functions. Like
many state-of-the-art formal specification approaches, we assume to work in a
contract-based setting [29], where the granularity of specification units is at the
level of one method. Our inference technique relies on the classification scheme
developed for data abstractions in [26], where a function (method) may be ei-
ther a constructor, a modifier, or an observer. A constructor returns a new data
object from scratch (i.e., without taking any object as an input parameter); a
modifier alters an existing object (i.e., it changes the state of one or more of its
attributes); and an observer inspects the object and returns a value character-
izing one or more of its state attributes. Since the C language does not enforce
data encapsulation, we cannot presume purity of any function; thus, we do not

Thttp://safe-tools.dsic.upv.es/kindspec2_1/
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assume the traditional premise which states that observer functions do not cause
side effects. In other words, any function can potentially be a modifier, and we
simply define an observer as any function whose return type is different from
void.

Let us introduce the leading example that we use to describe our infer-
ence methodology: a KERNELC implementation of an abstract data type for
representing sets by using linked lists. The example is composed of 7 meth-
ods: one constructor (new), one modifier (insert), and five observers (isnull,
isempty, isfull, contains, and length). Note that the program observers do
not modify any program objects, even if purity of observers is not required in
our framework. As is usual in C, logical observers return value 1 (resp. 0) to
represent the traditional boolean value true (resp. false).

Example 1 Consider the program fragmenﬂ given in F'igure where we define
set operations over a data structure (struct set) that records the number of
elements contained in the set (field size), the mazimum number of elements that
can be held (field capacity), and a pointer to a list that stores the set elements
(field elems). Fach node of the list is a record data structure (struct lnode)
that contains an integer value (field value) and a pointer to the subsequent list
element (field next ).

A call insert(s,x) to the insert function proceeds as follows. It first
checks that the pointer s to the set structure is different from NULL, that the set
is not full, and that x is not in the set yet. Then, a new list node *new_node
1s allocated, filled with the value x, and inserted as the first element of the list;
also, the size of the set is increased by 1 and the call returns 1. Otherwise, 0 is
returned and s is not modified.

The following observers return 0 unless explicitly stated otherwise. isnull(s)
returns 1 only if the pointer s references to NULL memory; isempty returns 1
if s is initialized but its elems field is NULL; isfull(s) returns I if the size
of s is greater than or equal to its capacity; and contains(s,x) returns I if
the value x is found in s. The function length(s) incrementally counts up the
number of elements (nodes) in the set s by traversing the list s->elems and
returns this number; it returns 0 in the case when the pointer to the set s is
NULL.

From the source code of the program, for each modifier function m, we aim
to synthesize a contract of the form < P, @, L > where P is the method pre-
condition, @) is the method postcondition, and L is the set of program locations
(local variables, data-structure pointers and fields, and method parameters)
that are (potentially) affected by the method execution. We first compute a
set of implication formulae of the form p = ¢, where p and ¢ are conjunctions
of equations [ = r. The left-hand side [ of each equation can be either: 1)
a call to an observer function, and then r represents the return value of that
call; or 2) the keyword ret, and then r represents the value returned by the
modifier function m being observed. Then, given the set of implication formulae

2For the sake of completeness, the full program code is given in Appendix
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#include <stdlib.h> 29  while(n !'= NULL) {

30 if (n->value == x)
struct lnodeq{ 31 found = 1;
int value; 32 n = n->next;
struct lnode *next; 33 }
3 34
35 if(found)
struct set { 36 return O; /* element already in
int capacity; the set */
int size; 37
struct lnode *elems; 38 new_node = (struct lnode*) malloc(
}; sizeof (struct lnode));
39 if(new_node == NULL)
struct set* new(int capacity) 40 return O; /* no memory left */
{...} 41 new_node->value = x;

42  new_node->next = s->elems;
int insert(struct set *s, int x) 48

struct lnode *new_node; 44 s->elems = new_node;

struct lnode *n; 45 s->size += 1;

int found; 46 return 1; /* element added */
47 '}

if (s==NULL) 48

return 0; /* NULL set */ 49 int isnull(struct set *s) {...}

if (s->size >= s->capacity) 50 int isempty(struct set *s) {...}

return O; /# no space left */ 51 int isfull(struct set *s) {...}
52 int contains(struct set *s, int x)

n = s->elems; {...}

found = 0; 53 int length(struct set *s) {...}

Figure 1: Fragment of the KERNELC implementation of a set data type.

{p1 = ¢1,-.-,Pn = ¢}, P is defined as p; V...V p,, the postcondition @ is
the formulaﬂ (p1 = @) A-.. A (Pn = @n), and the elements of £ refer to loca-
tions whose value might be affected by the execution of m, that is, all memory
locations of the pre-state that do not belong to the set £ remain allocated and
are left unchanged in the post-state.

Example 2 The intended postcondition @ for the modifier function insert (s,x)
of Example (1| contains five axioms (each one given by an implication), which
are shown in Figure[d We adopt the standard primed notation to distinguish
variable values after the execution of the method from their value before the
execution.

The first axiom can be read as follows: if the outcome of isnull(s) is 1
before the call to insert (s,x), then, after execution, the set is still null and the
value returned by insert(s,x) is 0, which means that the element x was not

3This is similar to the idea of contracts with named behaviors as provided in the ACSL
contract specification language for C [7].



(isnull(s) =1 ) = ( isnull(s’)=1 A ret=0)

contains(s’,x) = contains(s, x) A
( isfull(s ) = | length(s’) = length(s) A
isfull(s’) =1 A ret =0
( contains(s,x) ) = contalns s'x) =1/
length(s’) = length(s) A ret =0
) isempty(s’) =0 A contains(s’,x) =1A
(isempty(s) =1 A isfull(s )= ( length(s length(s)+1 A ret =1

0 A isempty(s’) =0A
x)=1A
length(s) +1 Aret =1

: B ; - contains
isfull(s) =0 A contains(s,x) =0 length(s’

)
( isnull(s) =0 A isempty(s) =0 A ) . ( isnull(s ()s
)

Figure 2: Expected postcondition axioms for the insert method

inserted. As for the last axiom, it can be read as follows: if the set is not null,
not full, and not empty, and there is no node in the list with value x, then, after
execution, the set remains non-null and non-empty, the value x is now in the
set, the length is increased by 1, and the call to insert(s,x) returns 1, which
denotes a successful insertion.

3 The (symbolic) K Framework

K is a rewriting-based framework for engineering language semantics [36]. Pro-
vided that the syntax and semantics of a programming language are formalized
in the internal language of K, the system automatically generates a parser, an
interpreter, and formal analysis tools such as model checkers and deductive the-
orem provers and verifiers. Complete formal program semantics are currently
available in K for Scheme, Java 1.4, JavaScript, Python, Verilog, and C among
others [36].

A language definition in K consists of three parts: the BNF language syn-
tax, the structure of program configurations, and the semantic rules. Program
configurations are represented in K as potentially nested structures of labeled
cells (or containers) that represent the program state. Similarly to the classic
operational semantics, program configuration cells include a computation stack
or continuation (named k), one or more environments (env, heap), and a call
stack (stack) among others, and are represented as algebraic datatypes in K.
That is, K cells can be lists, maps, (multi)sets of computations, or a multiset of
other cells.

The part of the K program configuration structure for the KERNELC seman-
tics that is relevant to this work is

< <K> k <Map>env <Map> heap >cfg

)

)



where the env cell is a mapping of variable names to their memory positions, the
heap cell binds the active memory positions to the actual values (i.e., it stores
information about pointers and data structures), and the k cell represents a
stack of computations waiting to be run, with the left-most element of the stack
being the next computation to be undertaken. For example, the configuration

(lint y = x + 25 =)lx = &x)eny (&x = tv(int, 5))heap ), (1)

models a computation state where the subsequent program instruction to be in-
terpreted (by the KERNELC semantics defined in K) is the assignment
int y = x + 2. At the same time, program variable x (stored in the env cell)
has the integer value 5 (stored in the memory address given by &x in the heap
cell). The symbol tv is a semantic construct aimed to encapsulate typed values.
Variables representing symbolic memory addresses are written in sans-serif font
preceded by the & symbol.

The semantic rules in K state how configurations (terms) evolve through-
out the computation. Similarly to configurations, rules can also be graphically
represented and are split into two levels. Changes in the current configuration
(which is shown in the upper level) are explicitly represented by underlining the
part of the configuration that changes. The new value that substitutes the one
that changes is written below the underlined part.

As an example, consider the KERNELC rule for assigning a value V of type
T to the variable X. This rule uses three cells: k, env, and heap.

(X =tv(T, V) = hl o X 3 &K o e (= &X > e )
tv(T, V) tv(T, V)

The rule states that, if the next pending computation consists of an assign-
ment X = tv(T, V), then we look for X in the environment (X +— &X) and we
update the associated mapping in the memory with the new value V of type T
(tv(T, V)). The underscore _ represents that the actual value that is mapped
to the address &X is irrelevant. The value tv(T, V) is kept at the top of the
stack since it might be used in the evaluation of a bigger expression. The rest
of the cell’s content in the rule does not undergo any modification (this is repre-
sented by the - card). This reveals a useful feature of K, known as configuration
abstraction: «rules only need to mention the minimum part of the configuration
that is relevant for their operation».

For symbolic reasoning, K uses a particular class of first-order formulae with
equality (encoded as boolean non-ground terms with constraints over them).
These formulae, called patterns, specify those configurations that match the
pattern algebraic structure and that satisfy its constraints. For instance, the
pattern



(tv(int,0))«
< (= x> &X, 8 &S ~)eny >
(-~ &s +— (size > 7s.size, capacity — ?s.capacity) =)neap

( &s # NULL A ?s.size > ?s.capacity )

cfg
path-condition

specifies the configurations satisfying that: 1) the k cell only contains the integer
value O (i.e., it corresponds to a final state with return value 0); 2) in the env cell,
program variable x (in typographic font) is associated to the memory address
&x, while s is bound to the pointer &s; and 3) in the heap cell, the field size
of (the data structure pointed by) &s (resp. its capacity field) contains the
symbolic Valudﬂ 7s.size (resp. 7s.capacity). Additionally, &s is not null and the
value of its size field is greater than or equal to its capacity field value.

Since patterns allow logical variables and constraints over them, by using
patterns, the K execution principle (which is based on term rewriting) becomes
symbolic execution. Unlike concrete execution, where the path taken is deter-
mined by the input, in symbolic execution the program can take any feasible
path and each possible path is associated to a path condition, which represents
the conditions that input values have to satisfy in order to follow that path.
The path condition is formed by constraints that are gathered along the path
taken by the execution to reach the current program point, so each symbolic
execution path stands for many actual program runs (in fact, for exactly the set
of runs whose concrete values satisfy the logical constraints).

Symbolic execution in K relies on an automated transformation of K configu-
rations and K rules into corresponding symbolic K configurations (i.e., patterns)
and symbolic K rules that capture all required symbolic ingredients: symbolic
values for data structure fields and program variables; path conditions that
constrain the variables in cells; multiple branches when a condition is reached
during execution, etc [5]. The transformed, symbolic rules define how symbolic
configurations are rewritten during computation. Roughly speaking, by sym-
bolically executing a program statement, the configuration cells are updated
by mapping fields and variables to new symbolic values that are represented as
symbolic expressions, while the path conditions (stored in a new path-condition
cell) are correspondingly updated at each branching point.

In 2], an inference procedure for KERNELC programs was defined using
the K symbolic execution infraestructure described above. In order to avoid
the exponential blow-up that is inherent to path enumeration, the symbolic
procedure of [2] follows the standard approach of exploring loops up to a specified
number of unfoldings. This ensures that symbolic execution ends for all explored
paths, thus delivering a finite (partial) representation of the program behavior.
Given a method call m(args) and an initial path condition ¢, and assuming
an unspecified unrolling bound for loops, we denote by SE(m(args){¢}) the
symbolic execution of method m with input arguments args as described in
[2], which returns the set of leaves (patterns) of the symbolic execution tree

4Symbolic values are in sans-serif font preceded by a question mark.



for m under the constraints given by ¢. For any function f, by f(args){¢} we
represent the K pattern ((f(args))x =)cfe (@) path-condition that is built by inserting
the call f(args) at the top of the k cell and by initializing the path condition
cell with ¢.

4 Improving Symbolic Execution in K

In this section, we extend K’s symbolic execution machinery with lazy initial-
ization techniques and abstract subsumption checking in order to support the
synthesis of contracts for methods that require refined loop finitization together
with C pointer dereference and initialization.

4.1 Lazy initialization

Structured data types (struct) in C are aggregate types that define non-empty
sets of sequentially allocated member Objectﬂ called fields, each of which has
a name and a type. In our symbolic setting, pointer arithmetics and memory
layout of C programs are abstracted by: 1) operating with symbolic addresses
instead of concrete addresses; and 2) mapping each structure object into a single
element of the heap cell that groups all object fields (and associated values). A
specific field is then accessed by combining the identifier of the structure object
with the name of the field, mimicking how the concrete access would be done in
C (i.e., s->elems).

Symbolic execution for complex data uses lazy initialization to avoid requir-
ing any a priori bound on the size of the input structures [4]. This is because the
symbolic execution of a method that takes structurally complex inputs starts
with inputs that have uninitialized fields of reference types, and these fields need
to be (lazily) initialized when they are (first) accessed during the method’s sym-
bolic execution. We adapt the lazy initialization approach of [24] to our setting
as follows: when a symbolic address (or address expression) is accessed for the
first time, two cases are considered: the case in which the memory stores a null
pointer, and the case in which the memory is initialized and it stores an object
of its respective type. This implies that the mapping in the heap cell is updated
by assigning a new symbolic value (given by the very name of the symbolic ad-
dress of the accessed field) that symbolically represents the assumptions made
on the dynamic data structure. In order to deal with cyclic data structures, like
circular lists and lassos, a third possibility needs to be considered: the case in
which the symbolic memory references an already existing object in the heap
(aliasing). Since this generates a new path for every single object of the same
type existing in the memory heap, in order to avoid state blow-up we enable
lazy initialization to consider aliasing only on demand.

Example 3 The main idea of lazy initialization is graphically represented in
Figure[3 Consider the execution state that is depicted on the left-hand side of

5An object in C is a region of data storage in the execution environment.
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the figure, where n points to an uninitialized memory address (represented by
a cloud), and assume that the program instruction to be executed next accesses
n for reading (e.g., if(n '= NULL) { ... }). When the expression involving
uninitialized memory is evaluated, two branches are generated in the symbolic
execution tree as depicted on the right-hand side of the figure: in the first branch
(upper picture), n points to null, and, in the the second branch (lower picture),
n points to a full-fledged object of the corresponding type (struct lnode in this
example). Note that only the primitive type fields (value) of the instantiated ob-
ject are initialized, whereas the reference type fields (next) point to uninitialized
memory.

L

7size elems

n 2 ; I
l fcapacity

7size elems

. n

?capacity

?size elems . next
?capacity v

Figure 3: Lazy initialization example.

To keep track of the constraints that are introduced by the lazy initialization,
anew cell ()inicheap is added to the configuration that represents the initialization
assumptions on the heap memory at a given program point. In other words, at
every leaf of the symbolic execution tree, the init-heap cell records the constraints
that define the set of initial heaps that lead the execution to reach the given
final symbolic configuration.

4.2 Abstract subsumption

Symbolic execution traditionally undergoes non-termination problems in the
presence of loops or recursion: the exhaustive exploration of all program paths
is generally unaffordable because the search space may be infinite and, con-
sequently, the number of symbolic execution paths may be unbounded. This
situation arises when the end of a loop or a recursive call depends on uncon-
strained properties over the symbolic data.

Different approaches have been proposed in the literature to overcome this
problem or mitigate its effects. A classical solution (used in [I}2]) is to establish
a bound to the depth of the symbolic execution tree by specifying the maximum
number of unfoldings for each loop and recursive function. As a better approach,
the abstract subsumption approach of [4] determines the length of the symbolic
execution paths in a dynamic way. Intuitively, symbolic execution with abstract
subsumption checking proceeds as standard symbolic execution, except that,
before entering a loop, it is checked that the current (abstract) state has not

11



already been explored; otherwise, the execution of the loop stops. Supporting
this check does not require whole execution paths to be recorded; only symbolic
states that correspond to the evaluation of loop guards need to be recorded and
checked for subsumption.

4.2.1 A constrained representation of symbolic states

In order to formalize the notion of state subsumption and abstract state sub-
sumption, we first introduce a simple notion of symbolic heap and symbolic
state, similarly to [4].

Definition 4 (Symbolic heap) A symbolic heap is a graph H = (N, E) where
N is a set of nodes and E is a set of edges. The set of nodes N is then split
into N = OWRW U with U = {null, uninit} where:

e O is the set of initialized heap objects, with associated type (o), and a
corresponding set F' of field names;

e R is the set of reference variables in the program; and

e null and uninit are distinguished nodes used to represent null objects and
uninitialized memory positions, respectively.

Furthermore, the set E of edges is itself split into E = Er W Ep, where

e Ep : R x (O U U), i.e., edges that connect reference variables with
memory objects.

e Ep: Ox Fx(0UU), ie., edges that connect two objects through one
of the reference fields of the origin node.

For example, the edge (r,0) € Er denotes that program variable r of ref-
erence type points to the object o, while the edge (o1, f, 02) € Er means that
pointer field f of object 0, references to object os.

Now we are ready to introduce the symbolic states.

Definition 5 (Symbolic state) A symbolic program state is defined as a tuple
S = (Cf, 1), where: the first component Cf = {H,o,¢} is a symbolic program
configuration with symbolic heap H, symbolic valuation o, and extended path-
condition ¢; and the second component i is a simplistic program counter that
corresponds to the line number in the source code of the subsequent instruction
to be executed, or the return statement if the configuration Cf is final.

The valuation of a symbolic state o is split into the valuation of structured
objects in the heap (denoted ¢”) and the valuation of primitive variables (de-
noted o%).

12



Definition 6 (Symbolic valuation) A symbolic valuation is a mapping of the
form o = o™ W o™ where o" is the evaluation mapping for the non-reference
fields of nodes and o® is the evaluation mapping for the non-reference program
variables (stored in the env cell). That is, o = {e}? — v | f is a primitive type
field of node n and v is a value of the corresponding type} and o® = {e; — v |
T 18 a program variable of primitive type T and v is a value of type T}.

Note that the reference fields, reference variables, and objects are part of
the shape of the heap and are represented in the H component of the state.

Moreover, each symbolic state S = (Cf, ) has an associate state constraint
SC(S), which is given by the conjunction of all constraints over the symbolic
values of primitive-type variables and structure fields expressed in the env cell,
the heap cell (represented by the valuation o), and the extended path condi-
tion ¢ in Cf that conjuncts the constraints on primitive input variables (given
by the path-condition cell) and the the heap constraints imposed by the lazy
initialization (given by init-heap cell).

In the following, we adopt a logical constraint representation & for the val-
uation o, with & = {z = zo|z € Dom(c)}. We also denote by V the set of all
variables in the domain of the valuations o and &, by V [, the restriction of V
to the set of variables ef associated to the fields of o, and by Vo= Uoco Vo
the natural extension to object sets. Similarly, we also represent the restriction
of the mappings in o to the fields of 0 as o [,.

We let State denote the set of all symbolic program states. Intuitively, a
symbolic state S represents the set of all program states s whose concrete values
satisfy the symbolic constraints in S. We also say that the state s matches
the symbolic state S. Similarly, we say that the program heap h matches the
symbolic heap H if its concrete shape and values satisfy the symbolic constraints
in H.

4.2.2 Symbolic subsumption

Let us formalize the notion of symbolic state subsumption by leaning on a
simpler notion of symbolic heap subsumption.

Definition 7 (Symbolic Heap subsumption) Given two symbolic heaps Hy
and Hy, we say that Hy subsumes Hy, written Hy T Hy, if the set of program
heaps that match Hy includes the set of program heaps that match Hs.

Formally, given two program heaps H; = (N1, E1), with Ny = {O1WR WU, },
and Hy = (N, Ey), with Ny = {O3 W Ry W U}, the subsumption relationship
Hs; T H, is given by: Hy CE Hy <> Vng € (NQ\RQ),VT € Ry,dnqg € (Nl\Rl)
such that

corresponding _root(r,ny,ng) A compatible _shape(ny,ng)

where
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true if (r,ny) € By implies (r,ny) € Ey

corresponding _root(r,ny,ng) = {false otherwise

niy = uninit V
true if < ny = null Ang = null vV

ny € O1 Ang € Os A71(ny) = 7(n2)
false otherwise

compatible _shape(ni,ng) =

Roughly speaking, for every node ns in the less general heap Hs, there must
exist a corresponding node n; in H; such that, for all program variables r (also
called roots) for which the pair (r,n1) is contained in the transitive closure of
the set of edges Fj, the pair (r,n2) also belongs to the transitive closure of
FE5. This means that, in both heap graphs H; and Hs, there is a path starting
from the root r that eventually reaches the nodes n; and no, respectively. This
is represented in our formalization by the predicate corresponding root. In
addition, the shapes of n; and no must be compatible, which is represented by
the predicate compatible shape. Two nodes n; and my are considered to be
compatible whenever they are not roots (i.e., ny € (N1\R1) Ang € (N2\Rz)),
and one of the following conditions holds:

e 17 = uninit, which means that any node in ny is subsumed by the most
general type of node uninit in the more general heap H;. Note that, since
the subsumption relation is not commutative, a uninit node in Hs could
only be compatible with a uninit node in H;.

e n1 = null A\ no = null; that is, null nodes are only compatible with other
null nodes. Hence, shapes are not compatible if only one of the nodes is
null.

e 17 and no are non-null, non-uninit objects of the same structured type
7(n1) = 7(n2).

In the case when the requirements above are not fulfilled, we conclude Hy IZ
H;. This notion was first formulated in [4] in an algorithmic style. However,
our formalization gets rid of complex data structures and any implementation
details, so it is much simpler and closer to the related, stronger notion of graph
simulation [30].

For subsumption checking, a symbolic heap H is represented as a directed
graph whose nodes are either objects (subset O of H in the formalization above)
or reference variables (subset R), also called pointers. The graph edges (subset
E) connect either a reference with an object (meaning that the program variable
points to that memory object) or two object nodes (meaning that a reference
field of the origin object points to the destination object). To make the visu-
alization of symbolic heaps easier, we adapt to our symbolic setting a classical
graphical representation for heaps based on UML object diagrams [21], where
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null nodes are rendered as ellipses, uninitialized nodes are drawn as clouds, and
references are depicted as arrows.
Now let us formalize symbolic state subsumption as follows.

Definition 8 (Symbolic State subsumption) Given two symbolic states Sy =
({H1,01,¢1},41) and S2 = ({Ha, 02, ¢2},i2), we say that Sy subsumes Sy, writ-
ten So C Sl, Zf 1) 11 = 1o, 2) Hy; C H1, and 3) SCy = SCl, i.e., (82 /\QSQ) =
(G1 A ¢1).

Example 9 Consider the following symbolic states Sy and Sy (depicted in Fig-
ure with program counter 29, such that SC'y = SC;:
Sy = ({Hu, {es;, — Tsize, eiap > Pcapacity, €2y — o, e — 7X, esa — 0}, ?size < ?capacity}, 29)
So = ({Ha, {e;iz — 7size, eiap — ?capacity, €2, — Vo, e — V1, ep — X, er — 0},
7size < ?capacity A ?vg # ?7x},29)

51 52
P029 nil; PO29 ng;
new_node —Q new_node —Q
s
S n n
1, l 3 nl . \[ 4
ni: n% ny: 2 ,n% ng. ns:
?size_ elems Wnext ?size- elems Wnext Wnext
?capacity 110 ?capacity L] L]
¢ : Tsize < ?capacity ¢ : Tsize < 7capacity A 7vg # ?x
o ek, =7size A eiap =7?capacity A o ek, =7size A eiap =7?capacity A e2,; =7vo A
e%al:?vo/\ez:?x/\efd:O ezal:?V1/\€z:?X/\efd:O

Figure 4: Symbolic state subsumption example.

Let us describe how the heap subsumption checking is performed for this
execution scenario. For each of the non-root nodes in Hy (which we labeled to
be easily identified), we check the existence of at least one corresponding node in
H, that can be reached from the exact same roots and have compatible shapes.
This way, we can find that node n3 from Ho (the object of type struct lnode
that holds the symbolic value Tvg) has a compatible shape with and only with
the node n? in Hy. However, while n? can be reached from the roots s and n,
n3 cannot be accessed through n in any number of steps. This means that a
correspondence cannot be established for node n3, and since there is a node for
which the relation corresponding _root does not hold, we conclude that Ho [Z H;.
Consequently, So I Sy for this example.
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4.2.3 Abstract subsumption

In order to ensure termination and improve scalability of symbolic execution
with subsumption, we enhance symbolic state subsumption by means of abstract
interpretation [12]. We abstract both primitive domains and heaps by using a
source-to-source abstraction function « : State — State that essentially consists
of a heap shape transformation that collapses two or more nodes into a summary
node (i.e., a single node which corresponds to one or more individual nodes
in a concrete state represented by the abstract state [28]). The valuation for
each primitive field in the summary node is given by the disjunction of the
corresponding valuations for this field in the original nodes.

Definition 10 (Summary node) A summary node n* represents a finite set
of uninterruptedly linked nodes in the heap graph such that, for each node n in
the set,

o n # null
e 1 £ uninit

e n ¢ {m|(r,m) € Egr}, i.e., n is not pointed to by any reference variable,
and

e fni,no,ny # nost. {(n1, fi,n), (na, f2,n)} € Ep, i.e., n is not pointed
to by two or more different reference fields.

Roughly speaking, nodes can be collapsed when they are in a sequence and can
only be accessed by traversing all of their predecessors. The resulting summary
node is then consistently re-connected to the rest of nodes in the heap.

Example 11 Figure [J illustrates shape abstraction for the given state. The
circled nodes are abstracted into a summary node. Then, the first node of the
list points to this new summary node and, in turn, the summary node points
to the node referenced by n. Moreover, the valuation for the field value of the

summary node (identified by €2,,) is €2, = g V €2, = vy.

Definition 12 (Abstract state) Given the symbolic state S = ({H, o, ¢},1),
with H = (N,E), N=OWRWU and E = EgRWEF, we define the corresponding
abstract state S* = a(S), where the abstraction function a(S) is formalized as
follows.

Consider the set MS(O) of mazimal ordered subsets {o1,...,0n} of O whose
elements o; are uninterrupted linked nodes that form a summarizable segment
(i.e., none of them is pointed to by a program variable nor by more than one
object). Formally:

MS(0) ={M ={o1,...,0,} CO|Vo € M not_rooted(o)Anot_heap shared(o)Noy = 0 = on}

where the predicate not_rooted(o) states that o is not pointed to by any root
node; the predicate not _heap shared (o) assures that there are not two different
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PC:29
new_node

s n
Summary node
| |

?size elems next next next
2capaci ¢ Vo Vi X) Vo
{capacity \ 7

¢ : Tsize < 7capacity A Tvg # X A vy # X

1 : 1 : 2 2 3
T ey, = Isize A egy, = Tcapacity A (e, = Vo V ey, = V1) Aeyy = Vo Aex = TxAepg =0

Figure 5: Shape abstraction example.

nodes o, and o, pointing to o through one of their reference fields; and the
ordering relation < is given by the precedence of connected nodes in the heap
graph, that is, o1 < o means that either oy = o, or there is an edge from o1 to
0. Whenever all of the three conditions hold, the nodes in M are summarizable
into a single abstract node. Formally:

true if Br € R such that (r,0) € Eg

false otherwise

not_rooted(o) = {

true  if Yoz, 0y € O{(0g, ,0),(0y, ,0)} C Ep implies 0, = o
not_heap_shared(o) = {false otherwisye ' ’

Then, we define the abstract state S* by a(S) = ({H*, 0%, ¢}, i), where:

Ht = ({O'w RW U}, {Ep W EL})

Og = (O\ UMeMS(O) M)u U{ol,...,on}eMS(O)(Olv -5 0n)

Er = (Er\Uneums(o) Ep)u
U{ol,...,on}eMS(O) ni,ne €N, fi € Fn,, fn € Fon{(ni’ i (017 T On))’ ((01’ s 7071)’ fmn€>}’
where E% = erM{(07 _ _) € EF} U {(_a _70) S EF}

ot = (o rvf ) /\MeMS(O) \/oeM(e =v) € (0,), where V]\_/[S(O) =V\V rUMEMS(()) M

MS(0)

In other words, the new abstract state S* is constructed in the following way.
First, for all M = {o1,...,0,} € MS(O), we take out from O the individual
nodes o1, ...,0, of M and add a single abstract node (o, ...,0,) to the set O
of abstract memory objects.

With regard to the edges, since we are transforming list segments into indi-
vidual nodes, we need to reformulate the incoming edge to the first node of each
segment, o1, as well as the outgoing edge from the last node of the segment, o,
for consistency. The identifiers n; and n. represent the arbitrary nodes that may
be respectively pointing to 0; and pointed from o,, through the corresponding
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reference fields f; and f,,. Furthermore, in order to fully consider the summary
nodes as individuals, we also need to dispense with the inner references between
nodes that have been abstracted (represented by EM). This way, we substitute
all the original references in Er to the concrete nodes o4, ..., 0, with just two
new ones incoming to and outgoing from each abstract node (o1, ...,0,). Note
that the sets of roots and null and uninitialized objects, R and U, as well as the
program variable references E'r from the original heap H of S remain unaltered.

As for the heap valuation o, a new abstract valuation ¢! is built that pre-
serves the equations regarding the heap nodes that are not affected by the sum-
mary node abstraction (i.e., the restriction of the set of variables in the original
valuation V to the ones that are not related to the objects in the subsets of
MS(0), given by V;/[S(O)). For each subset M of MS(O) (i.e., for each sum-
mary node), it also contains a disjunction of all the equations that correspond
to the objects of M in the original valuation o. These disjuncts represent the
individual valuations of the summary nodes since they are now treated as single
objects.

The abstract state S is ultimately built by joining together the abstract
ingredients H* and of with the path condition ¢ of S. With this notion of
state abstraction, let us finally define the abstract subsumption relation between
symbolic states as follows.

Definition 13 (Abstract subsumption) Given two symbolic states S and
Sa, the abstract symbolic subsumption relation S Ct S is given by 52ji C Slﬁ.

The abstract subsumption approach improves the classical solution (apply-
ing thresholds to limit the unrolling of loops and the number of recursive calls)
in several ways. Since the completeness of the symbolic analysis is highly de-
pendent on the chosen threshold, it is not generally possible to ascertain the
optimal number of iterations that subsume all possible behaviors by inspecting
the source code. Applying abstract subsumption alleviates the user from the
burden of determining the best threshold for each loop in each problem, which
often becomes unaffordable. Moreover, it usually covers much more significant
behaviors and avoids exploring unnecessary program paths due to excessive un-
rolling of loops.

4.2.4 Symbolic execution with abstract subsumption

The symbolic execution with abstract subsumption and lazy initialization (which
we call abstract symbolic execution, for short) of a given method m with argu-
ments args and initial path condition ¢, written SE*(m(args){¢}), is defined
as an approximation of the SE mechanism of [2] where, each time a symbolic
state Sy is visited that corresponds to a recursive call or loop guard evaluation
with the same program counter as a previously visited state S, the abstract
subsumption S, C! S is checked. If there is more than one state with the same
program counter as Sz, the most recent one (in the same branch) is checked
first. If the test succeeds, a final call or loop iteration is then performed such
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that the heap is transformed (by means of lazy initialization) into an instance
that makes the recursion or iteration end. This is essential to ensure that every
final state of the symbolic execution tree corresponds to a real execution.

Example 14 The uncontrolled symbolic execution SE of the function insert
from Example generates an infinite state space. In contrast, its SE* terminates
after three iterations of the loop. Figure[§ illustrates a fragment of the symbolic
execution tree for insert(s,x) where the subsumption between two abstract
states occurs. The state Sig corresponds to the execution point where the loop
guard n '= NULL (with program counter 29) is to be checked for the second
time. This requires evaluating n, which points to an uninitialized node; hence,
lazy initialization is applied. This results in two children nodes, S11 and Sis,
with the same program counter because the guard has not been evaluated yet.
The left child S11 corresponds to the case when the loop guard is not satisfied
(the object pointed to by n is null); thus the loop is exited. On the contrary, the
right child Si3 represents entering the loop iteration since the guard evaluates
to true (the object pointed to by n is an initialized object of the corresponding
type). Program counter 29 is reached again at state Sis in the right branch after
lazy initialization, and then the abstract subsumption check Sig C# S5 succeeds.

Assuming that appropriate abstractions are defined to ensure termination
of SE?, the call SE*(f(args){¢}) returns the set of final patterns obtained from
the abstract symbolic execution of the pattern f(args){¢} (i.e., the leaves of
the deployed abstract symbolic execution tree). A new, (abstract subsumption)
cell ()asubriag identifies with a ¢rue value those final abstract configurations end-
ing any branch that was folded (at some intermediate configuration) by the
application of abstract subsumption. This is used for the inference process to
distinguish the inferred axioms that are ensured to hold (because no approx-
imation was done to extract them) from the plausible, candidate axioms that
are not demonstrably correct because of the potential precision loss caused by
the abstraction. Furthermore, in order to obtain the set of locations that may
be affected by the execution of f (the component £ of the contract), those lo-
cations have to be harvested during symbolic execution. To this end, we add
a new cell ()ocations to the symbolic engine of K. Then, whenever a program
location is overwritten, it is recorded in the new cell locations. At the end of the
symbolic execution, the program locations recorded for each final configuration
in their respective locations cells are all joined by union to obtain a global set
with every program location that is potentially modifiable by a call to the func-
tion f. Thus, assignable locations are obtained as a by-product of the symbolic
execution.

5 The Synthesis Algorithm

Let us introduce the basic notions that we use in our formulation. Given an
input program P, we distinguish the set of observers O and the set of modifiers
M in P. A function can be considered to be an observer if it explicitly returns

19



S10 \
PC : 29
new _node
s n
?size elems next
2 .  E— ?Vo
‘capacity
Vo A ey :?X/\Cﬁ[:O

¢ : ?size < ?capacity A Pvg # ?x
= ?capacity A eial =

1 . 1
: =7
0 ey, = Isize ey,

S13

Ll L1
S11
PC : 29 PC : 29
new_node new_node
s s
| | | !
. ?size elems| next next
?size elems next v V1
. ———— ?vo ?capacity
?capacity
¢ : 7size < ?capacity A Tvg # 7x
: ?size < ?capacity A ?v, 7x . .
¢ 1 e P ly 70 7 . o eiu = 7size A eiaw = ?capacity A eial = v A~ <
0 ey, = Isize Ae,, = fcapacity A 3 i A A o S o
€, = vy €, = IX erq = ~
eﬁal:?vo/\ew =™™ANey =0 val z £ AN
\
S12 \
* \
PC : 46 l g \
new node n 15 \\
s l PC : 29 \
N new _node \
7size + 1 - next \
?capacity Vo s n |
l |
. ?si ? i ? ? 1
¢: .sl|ze < ..capaC|ty A 1'V0 7 ™ . 7size elems next next i
o ey, = Isize+ 1 A e, = ?capacity A ?capacity —1{"vo vy !
53(11 =MoANer =TxNey =0 /
¢ : Psize < Pcapacity A Pvg # Tx A Pvp # ?x ,’
o ebl,iz = 7size \ eiup = 7capacity A egu, = 7vo A ,’
3
€ =ViANexz ="™ANeq =0 I’
!
!
/
/

7size elpfn/s next
; ?
?capacity NN - '

Summary node

=) A

¢ : ?size < Pcapacity A Pvg # Tx A vy # ?x
1 . 1 . 2 2
o ey, = Tsize Ae,,, = Tcapacity A (e, = Vo V e, =

=M2Ae, =7xANep =0

3
€yal =

Figure 6: Fragment of the abstract symbolic execution of insert(s,x)
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a value, whereas any method can be considered to be a modifier. Thus, the set
O N M is generally non-empty.

5.1 The basic inference algorithm

Our contract inference methodology is formalized in Algorithm [1] Let @, de-
note the list of fresh symbolic variables aq,...,a,. First, the modifier method
of interest m is symbolically executed with argument list @, and empty path
constraint true, and the set F of final configurations is retrieved from the leaves
of the abstract symbolic execution tree. For each final configuration, the corre-
sponding path condition ¢ is simplified by calling the automated theorem prover
Z3 to avoid redundancies and simplify the analysis.

Algorithm 1 Contract Synthesis
Input: m € M : a modifier function with arity n
Output: C': a specification contract for m
Output: Qﬂ/ : a set of candidate contract axioms
. root := m(an,)
. F :=SEf(root{true})
: P:= false Q := true Q% := true L := ()
: forall F' € -7:’ with F' = <<v>k<(p>init—heap "'>cfg<¢>path—condition <ﬁ>a5ubF\ag<L>locations
do
@' =78 _simplify(d)
b= €$Plam(l7@)’ where I = <<T00t>k<§0>heap "'>cfg<¢/>pathfcondition
q := explain(F’,a,) A (ret = v), where F' = F[(¢') path-condition]
ar(—r) = (p=q)
if § then Q' := Q* U {az(;_p)} else Q := QU {az_r}
100 L:=LU{L}
11: end for
12: (Q', Q) := refine(Q, Q%)
13: P := \/ P
(r=q)eQ’
14: C:=<P,Q, L >
15: return C, Qﬁ/

B W N =

After initializing the contract components (line 3), we proceed to compute
one axiom for each (abstract) symbolic configuration F' in F. First, the path
condition ¢ is simplified into ¢’ by using the SMT Solver Z3 to reduce the com-
plexity of the symbolic execution. Next, the premise p of the axiom p = ¢ is
computed (line 6) by means of the function explain(I,as) given in Algorithm
This function receives as argument the pattern I, which expresses the initial
symbolic configuration leading to F' in the execution tree for m (i.e., an in-
stance of the initial configuration for m(a,) that is obtained by assuming the
constraints ¢ and ¢’ in the corresponding init-heap and path-condition cells of
I). The consequent ¢ of the axiom is then computed (line 7) as the conjunction
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of ret = v, which specifies the return value v of the method m as recorded in the
k cell of F', and the equations given by explain(F’, ay,), where the configuration
F’ is obtained by replacing ¢ with ¢’ in F. At this point, the initial and final
configurations have been characterized in terms of the observers by invoking
the function ezplain and we can build the axiom (line 8). By using the abused
notation ax;_py, we implicitly record the initial and final configurations I and
F from which a given axiom is derived.

It is important to note that, in the axioms, the different function calls in
the antecedent (resp. consequent) of every implication formula are run indepen-
dently of each other under the same initial configuration. This is achieved by the
explain algorithm by using the same initial state when considering the different
observer functions to explain I and F. This avoids making any assumptions
about function purity or side-effects.

Depending on the boolean value of the abstract subsumption flag § in F
(line 9), the synthesized axiom az(;_p) is directly added to the postcondition
Q (when t is false) or to the conjunction Q* (when # is true) that collects all
candidate axioms extracted from branches that contain at least one node that
was folded by abstract subsumption.

Note that, due to the under-approximation introduced by abstract subsump-
tion [4], there may be some behaviors (real trace fragments) beyond the abstract
folded states that are not captured by the deployed symbolic abstract traces.
Therefore, axioms in Q? could have spurious instances and must be double-
checked. We apply a post-processing refinement refine(Q, Q) which essentially
tries to find those spurious instances and discards the axioms that present them,
while keeping in Q% any axioms that remain overly general (i.e., that might
have both true and false instances). We postpone to Section |§| a description
of how those remaining candidate axioms can be eventually verified. A further
subsumption checking over the resulting sets of axioms is included in the refine-
ment post-processing that purges @ and Q* from less general axioms in order
to obtain a minimal contract that summarizes all the input/output behavior of
the modifier method.

When Algorithm [1] terminates, the generated contract C is < P, Q', L >
where: 1) the method precondition P is the disjunction of all axiom premises;
2) the method postcondition is the final, simplified set of correct axioms given
by refine(Q, Q%); and 3) L records all program locations that are (potentially)
modifiable by m. This global set of locations £ is built by joining all the local
sets of modified program locations that are recorded in the locations cell of each
final configuration.

Let us compute a specification for the insert modifier function of Example[]]
by applying Algorithm

Example 15 We first compute SEf(insert(&s, ?x){true}) with &s being a
symbolic address with initial value uninit and with 7x being a symbolic inte-
ger value. Since there are no constraints in the initial symbolic configuration,
the execution covers all possible initial concrete configurations. Then, the ab-
stract symbolic execution computes 17 final configurations. Figure 7 shows the
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(tv(int, 1)),
< s +— &s,new_node — &new_node,n — null,x — &x, found — 1 >

env
&s +— (capacity — 7s.capacity, size — 7s.size, elems — &s.elems),
&s.elems — (value — ?vo,next — &s.elems.next),
&s.elems.next — (value — ?vi,next — &s.elems.next.next),
&s.elems.next.next — (value — ?vg,next — null), ithean
&s +— (capacity — 7s.capacity, size > ?s.size + 1, elems — &new_node),
&new node — (value — 7x,next — &s.elems),
&s.elems — (value — ?vp,next — &s.elems.next),
&s.elems.next — (value — 7vi,next — &s.elems.next.next),
&s.elems.next.next — (value — ?vg,next — null),
&x — x

(?s.size < ?s.capacity A Pvo # Tx A vt # Ix A Tva # I,

path-condition

heap

Figure 7: Final configuration corresponding to the branch where the element is
inserted, in Example

final configuration for the case when the element is actually inserted and the
while loop stops due to abstract subsumption between the states associated to
two consecutive iterations (nodes Si3 and Sis of Example , The graphical
representation for the init and final heaps in such a final configuration is de-
picted in Figures[§ and[9, respectively.

S

| e

7size elems 2 next [ next ; next
N . L Vo vy S v null
?capacity R B

¢ : Ts.size < Ps.capacity A Pvo # X A Tvi #£ IX A Tvg # X

Figure 8: Graphical representation of the initial heap of the configuration in
Figure [7]

The circled nodes are the nodes that collapse, as a summary node, in the
corresponding abstract state. Roughly speaking, the execution of this path cor-
responds to the case when the element x (with symbolic value 7x) is effectively
inserted at the beginning of a list that contains three elements. Thus, the return
value (k cell) of the call insert(&s, 7x) is the integer 1 (standing for success);
the symbolic (initial) value ?s.size of the field size of s is increased by 1 and
now the field elems of s points to an object &new node with value ?x as the
first node of the set. For the sake of simplicity, we omit any configuration com-
ponents that are irrelevant for the discussion.
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Figure 9: Graphical representation of the final heap of of the configuration in
Figure [7}

Let us now describe Algorithm [2| which defines the function ezplain(p, as).
Given a K configuration p and a list of symbolic variables as, this function
describes p by means of an equational conjunction that is obtained by executing
the observer functions o € O with the constraints in p. Each equation relates
the call to an observer function with the symbolic value that the call returns.
Intuitively, to express a partial observational abstraction or explanation for (the
constraints in) a given state in terms of the observer o, our criterion is that o
computes the same symbolic values at the end of all its symbolic execution
branches. In the algorithm, As C as means that the list of elements As is a
permutation of a sublist of as.

Algorithm 2 Computing explanations: ezplain(p, as)

Input: p: the K pattern to be explained (with path condition ¢)
Input: as : a list of symbolic variables
Output: eqConj : conjunction of equations that explain p
1: eqConj = true
2: for all o(As) € C, with As C as do
3. F,:= SE*(0(As){})
40 V(= (0 =)erg = f = (V) =)ctg =) € Fp : v # v — (v = uninit v
v/ = uninit) then

5 if 3f, = ((uninit), ), ~€ F, then

6 eqConj := eqConj A (0(As) = v)

7: else

8 eqConj := eqConj N (0(As) = fresh _symbolic_value())
9: end if

10: end if

11: end for

12: return eqConj

Roughly speaking, explain(p, as) explores the universe of observer execution
calls C, which consists of all the function calls o(As) that satisfy: 1) o € O;
and 2) the argument list As C as respects the type and arity of o. Then, for
each call o(As) € C, Algorithm [2|checks whether the symbolic execution of o(As)
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stemming from an initial configuration that is constrained by the path condition
¢ returns the same value in all the final symbolic configurations. When the call
satisfies this requirement, an equation is generated (line 6). Line 8 represents
the case when uninit return values are involved and is explained later. In any
other case, the observation is inconclusive and no explanation is delivered in
terms of the executed observer function. This algorithm runs symbolic execution
with abstract subsumption but without lazy initialization as we discuss later.
The algorithm finally returns the conjunction of all the explanatory equations
previously inferred.

Let us show how we compute the explanation for the final configuration
shown in Example

Example 16 Given the observer functions isnull, isempty, isfull, length,
and contains, and the symbolic arguments &s and ?x, The universe of observer
calls is C = {isnull(&s), isempty(&s), isfull(&s), length(&s), contains(&s,
7x)}. Let us consider, for instance, the call contains(&s,7x) in detail.

When we symbolically erecute contains(&s,?x) on the final configuration
shown in Ezample [I5, we obtain a single final configuration that is shown in
Figure[10, whose heap is graphically depicted in Figure [T1]

(tv(ing, 1)),
(s — &s,x +— ?x,n — &new_node).,

&s — (capacity > ?s.capacity, size — ?s.size + 1, elems — &new_node),
&new node — (value — ?x,next > &s.elems),
&s.elems — (value — ?vp,next — &s.elems.next),
&s.elems.next — (value — ?vi,next — &s.elems.next.next),
&s.elems.next.next — (value — ?va,next — null),
&X = ™ init-heap
&s — (capacity — 7?s.capacity, size — ?s.size + 1, elems — &new_node),

&new node — (value — 7x,next > &s.elems),

&s.elems — (value — ?vp,next — &s.elems.next),
&s.elems.next — (value — ?vi,next — &s.elems.next.next),
&s.elems.next.next — (value — ?vo,next — null),

&x — 7%

{7s.size < ?s.capacity A ?vg # IxX A vy # X A Tva # 7x)

heap

path-condition

Figure 10: Final after the execution of contains(&s,?x) in Example

Note that the initial heap of the call to the observer contains (&s,?x) cor-
responds to the final heap of the resulting configuration after the execution of
insert (&s,?x) (the configuration shown in Example @ Since no observer
execution path returns different values and the only return value is the integer
1, then the equation contains(s,x)=1 is generated as a part of the explanation

of p.
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I —

7size+1 |elems néxt next next next
\

. ? / / v
?capacity T ! 2 null

@ : Ts.size < ?s.capacity A Tvg # IX A Tvy # XA Tvg # X

Figure 11: Graphical representation of the heap of the configuration in Fig-
ure [0

As we noted before, lazy initialization is not applied when symbolically ex-
ecuting the observer functions. This is because we want to start from an initial
configuration whose dynamic memory satisfies (or is given by) ¢, and if any
uninitialized addresses are expanded by lazy initialization, such an initial con-
figuration (and thus the target of the observation) would be altered. This implies
that some final patterns in the symbolic execution trees for the given observer
may contain uninit return values, meaning that we know nothing regarding
the dynamic memory from that point on. When this occurs (and the rest of
the branches either return other uninit values or the same concrete value), the
erplain algorithm generates a conjunct where the observer call is equated to a
fresh symbolic value (line 8 in Algorithm [2)).

Another particular case regarding state abstraction must be considered when
running the observer calls for explanation. Whenever an abstraction is applied
to end a loop, the final (abstract) state for the loop somehow generalizes the
set of symbolic traces that have not been unrolled; i.e., it can be thought of as
a representative of the set of program states that have been collapsed. Since
the observer calls that are symbolically executed by algorithm explain start
from such an abstract state when the abstract subsumption flag is true, the
observer function may try to access summary nodes that represent sets of nodes
of unknown length (for instance, while traversing a list). Then, an abstract
(symbolic) value is assigned as the partially computed result for the observer
and the observer execution proceeds.

Example 17 Let us compute the result of the observer function length(&s) on
the final state of the symbolic execution trace for insert (&s, ?x) that was pruned
by abstract subsumption, shown in Example[I5 When length starts traversing
the list at the initial state, it immediately finds a summary node (which includes
the nodes with values ?vy and vy ). Since a summary node actually represents a
set of nodes with arbitrary length, the execution computes a symbolic value, say
71, as (the partially accumulated) length. The list traversal then goes on until
the execution of the loop ends, producing as a result the equations length(s) =
?1 + 1 for the initial state and length(s’) = 7?1 + 2 for the final state.

26



5.2 The postprocessing refinement algorithm

The refinement postprocessing refine(Q, Q') for method m is formalized in Al-
gorithm [3]

Algorithm 3 Contract refinement algorithm: refine(Q, Q%)
Input: @ : set of demonstrably correct axioms
Input: Q! : set of overly general, candidate axioms
Output: a refined, final set Q' of correct contract axioms, and a refined set
Q”/of candidate axioms
1: QJH = drop__duplicates(Q*)
C Q= testingibasediﬁltermg(Qﬁ)

- (Q, Qﬂ/) = subsumption_filtering(Q, Q%)
return (Q’, Qﬁ/)

=W N

Roughly speaking, we first apply a drop duplicates function that gets rid
of any duplicates from the axiom set QF and returns the repetition-free set
Qﬁ Next, for each candidate axiom p = ¢ in ch, the testing based _filtering
function works as follows: 1) a number of test cases (initial configurations) that
satisfy the axiom antecedent p are randomly generated; 2) the modifier method
m is run on those initial configurations; 3) satisfiability of the (correspondingly
instantiated) axiom consequent ¢ is checked; and 4) the candidate axiom set Q?
is returned that contains those survival candidate axioms for which no refuted
instances were obtained. In order to obtain a compact, minimal, and easily
readable set of axioms, we apply a further subsumption__ filtering postprocessing
that independently tests the axiom sets @ and Qg for subsumption (modulo
associativity and commutativity of the logical conjunction A) so that the pair
of sets (@, Qﬂ/) that only contains the more general elements from each set is
returned.

Let us illustrate the refinement postprocessing on our running example.

Example 18 After the for loop of Algom'thm one aziom for each of the (17)
final patterns is synthesized. After removing duplicates, 7 axioms are kept (see
Figure @), together with three candidate axioms (labelled as C1, C2 and C3),
where C3 derives from the final configuration discussed in Ezample [15

Axioms A3 and A4 are simple instances of the more general candidate axiom
C1, while axioms A6 and A7 are instances of the more general candidate axiom
C3. However, because candidate axioms can be spurious, we cannot get rid
of {A1, A2, A3, A7} yet. Moreover, C1 is a correct specialized version of the
(incorrect) candidate axiom C2: if contains(s,x) is 1 before the execution
of insert (meaning that the element x is already in the original set s), the
length of the resulting list is the same as before. However, due to the summary
node abstraction that happens when not all the summarized nodes contain the
element but at least one does, the explanation of the initial pattern through
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isnull(s) =1 Aisempty(s) =0A isnull(s’) =1 A isempty(s’) =0 A

A1 | isfull(s) =0 Acontains(s,x) =0A = | isfull(s’) =0 A contains(s’,x) =0A
length(s) =0 length(s’) =0 Aret =0
isnull(s) = 0 Aisempty(s) = vl A isnull(s’) = 0 Aisempty(s’) = vl A

A2 [ isfull(s)=1 A contalns(s x)=_0v2A = | isfull(s’) =1 Acontains(s’,x)= v2A
length(s) = length(s’) = v3 Aret=0
isnull(s) =0 A 1sempty( )=0A isnull(s’) = 0 A isempty(s’) =0 A

A3 | isfull(s) =0 A contains(s,x)=1A = | isfull(s’) =0 Acontains(s’,x) =1A
length(s) =1 length(s’) =1 Aret =0
isnull(s) =0 A isempty(s) =0 A isnull(s’) = 0 A isempty(s’) =0 A

A4 | isfull(s) =0 Acontains(s,x) =1A = | isfull(s’) =0 Acontains(s’,x)=1A
length(s) = 2 length(s’) =2 Aret =0
isnull(s) =0 Aisempty(s) =1A isnull(s’) = 0 A isempty(s’) =0 A

A5 [ isfull(s) =0 A contains(s,x) =0 A = | contains(s’,x) =1 Alength(s’)=1A
length(s) =0 ret =1
isnull(s) =0 A isempty(s) =0A isnull(s’) =0 Aisempty(s’) =0 A

A6 | isfull(s) =0 A contains(s,x) =0 A = | contains(s’,x) =1 Alength(s’) =2A
length(s) =1 ret =1
isnull(s) =0 A isempty(s) =0A isnull(s’) =0 Aisempty(s’) =0 A

A7 | isfull(s) =0 A contains(s,x) =0 A = | contains(s’,x) =1 Alength(s’) =3 A
length(s) =2 ret =1
isnull(s) = 0 A isempty(s) =0A isnull(s’) = 0 A isempty(s’) =0 A

C1| isfull(s) =0 A contains(s,x)=1A = | isfull(s) =0 Acontains(s’,x)=1A
length(s) =71+ 1 length(s’) =71+ 1 Aret =0
isnull(s) = 0 A isempty(s) =0A isnull(s’) = 0 A isempty(s’) =0 A

C2 | isfull(s) =0 Acontains(s,x)= vl A = | isfull(s) =0 Acontains(s’,x)= vl A
length(s) =71+ 1 length(s’) =71+1 Aret =0
isnull(s) = 0 A isempty(s) =0A isnull(s’) = 0 A isempty(s’) =0 A

€3 | isfull(s) =0 A contains(s,x) =0A = | contains(s’,x) =1A
length(s) = 71+ 1 length(s’) =714+ 2 Aret =1

Figure 12: Set of axioms and candidate axioms of Example

the observer contains(s,x) in C2 cannot conclude that the element x is or
is not yet in s. Consequently, the return value equated to contains(s,x) in
the precondition of the axiom is the symbolic value _wv1, which stands for any
possible value that the function may return (in this example program, either 0
or 1).

The refinement process is then triggered over the candidate axioms to check
whether they can be falsified. We find that this is actually the case for C2; given
the binary domain 0/1 of the contains(s,x) function, the axiom is straight-
forwardly falsified (e.g., by the test case where, for instance, s is a non-full set
containing a single element with value 5, and x is 3). The final state does not
satisfy the postcondition of axiom C2 because, since the set s did not initially
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contain the desired element, the modifier insert (s,x) does not return 0 and
the length does not remain unaltered (since it is increased) after the execution.
Since the axiom has been falsified (for the instance with contains(s,x)=0), it
is automatically ruled out.

Having falsified the candidate C2, we proceed to repeat the same process with
axioms C1 and C3. Despite the fact that these candidate axioms do not suffer
from any information loss and are indeed not falsifiable, we cannot remove the
candidate mark from them, which prevents us from comparing any candidates
with their corresponding instances while looking for subsumption. Therefore,
the specification cannot get any more compact for now. In the next section, we
show how this drawback can be overcome by deductively verifying candidate
axioms, which finally yields an optimal synthesized contract.

As for the last element of the contract, the set of assignable program lo-
cations L is obtained as the union of the location sets that are recorded in
the ()iocations cells of the final symbolic execution states, which for our run-
ning example is £ = {s,n,new_node, new_node — value, new_node > next,
s — elems,s — size}.

In the following section, we introduce a semi-automated axiom verification
technique that can be used to further improve the inferred contracts: if a can-
didate axiom can be proved to be correct, we can move it to the set @) of
demonstrably correct axioms, and this usually leads to a more concise specifi-
cation since other (more specialized axioms) might be subsumed by this newly
added correct axiom.

6 Axiom Verification

The key idea of this section is to reuse the K verification infrastructure to
formally prove correctness of some candidate axioms so that our synthesized
contracts can eventually be improved. The proposed method is based on the
deductive verification infrastructure recently added to the K framework. In
[35, 42], a language-independent, coinductive and deductive verification infras-
tructure is proposed that allows coinductive, properties (that are expressed in
terms of operatons that observe (rather than construct) the state to be proved.
Coinductive (or coalgebraic) specifications [34] are typically used to describe
state-based dynamical systems in general, and object-oriented programming
languages in particular, where the state space of the system is considered as
a black box and where nothing is assumed about the way that the observable
behavior is realized.

The verification infrastructure of K is built on top of Reachability Logic (RL)
[411, B8, 40], whose formulae (called reachability rules) can be seen as a general-
ization of both rewrite rules and Hoare triples. Hence, Reachability Logic uni-
fies operational and axiomatic semantics by using reachability rules to express
dynamic properties of programs. To improve readability, in the following we
distinguish the reachability rules that represent the program semantics (called
operational reachability rules) from the reachability rules that express program
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properties a la Hoare (that we simply call reachability logic formulae).

Roughly speaking, reachability rules of RL have the form 7w A ¢ = 7’ A/,
where 7 and 7’ are configuration patterns (i.e., non-ground configuration terms),
and ¢ (resp. ¢') is a first-order logic formula on the variables in 7 (resp. 7).
The semantics of reachability rules captures the intuition of partial correctness
in axiomatic semantics, i.e., whenever the execution of the program reaches a
concrete configuration ¢ that is an instance of 7 and provided v holds in ¢, then,
upon termination, the execution reaches a configuration which is an instance of
7’ and where 1)’ holds, either in one of the possible computation paths stemming
from ¢ (one-path reachability [38]) or in all of them (all-path reachability [40]).
In tool-supported K verification syntax, i is expressed as a requires clause,
whereas 1)’ is expressed as an ensures clause.

The K verification infrastructure is based on a proof system that has been
proven to be sound (partially correct) and relatively complete in [42]. Given the
rewriting-based (operational) semantics of a programming language written in
K, the semantics is used (through the K proof system) to derive correct program
properties, without giving the language any other (axiomatic) semantics.

6.1 From (candidate) contract axioms to RL formulae

Let us now describe how we can generate the to-be-proven reachability logic
formulae that specify dynamic program properties that conform to the candidate
axioms we would like to verify in K. One might naively think that this can be
straightforwardly achieved by a direct translation of the (candidate) axioms into
RL rules. However, such an immediate translation would not work because the
observer methods appearing in the axioms that specify the behavior of method m
are defined in the original program P, but the proof system cannot evaluate the
program observers when verifying an RL formula on a fragment of P (namely,
the piece of C source code where the modifier m is defined). This is why we
do not depart from the candidate axiom itself but from the initial and final
(abstract) symbolic configurations from which it derives.

Roughly speaking, given the (candidate) axiom az;_ ), we generate a pair
of corresponding patterns m and 7’ that respectively represent the information
in the configurations I and F' that is needed for verification. The configuration
cells of I and F' that are relevant for the verification process are:

1. Iy: the k cell of I, which contains the initial call to the modifier m with
arguments args;

2. Fy: the k cell of F', which represents the returned value of the execution
of m;

3. Iheap: the heap cell of I, which characterizes the precondition on the heap
(note that it coincides with the init-heap cell of F');

4. Fieap: the heap cell of F, which represents the final heap; and
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5. Flath-condition: the path-condition cell of F', which characterizes the precon-
dition on the input (primitive) arguments that, together with the init-heap
cell, guarantees that the final configuration F' is reached.

Hence, given the modifier call m(args), the reachability rule # A ¢ = 7’ is
defined as{]

< <Ik>k<Iheap>heap ”'>cfg /\E = < <Fk>k<Fheap “;,w,>heap "'>cfg

where the k cell of 7 contains the call m(args) (in 1)) whereas the k cell of 7’
contains the final return value given by F|, and the heap cell of 7 contains the
initial heap I.., whereas the heap cell of 7’ contains the restriction of Fi., to
the entries in Ij,..,. Finally, the formula 1 corresponds to the path-condition cell
of F (with some straightforward adaptations that we describe below).

6.2 Proving the candidate axiom correct

Consider again the final configuration F' that we analyzed in Example [I5] In
the following, we show how we can characterize as a reachability formula the
execution of insert(s,x) along the path leading from I to F'. Remember that
this path corresponds to the general case when the element z is indeed inserted
in the list but the loop execution was approximated by abstract subsumption.
Therefore, we could not derive a demonstrably correct axiom from it but only
a candidate axiom (C3 in Example .

Following the method described above, a corresponding reachability logic
formula is obtained that we represent in Figure The identifiers in upper-

(insert(S, X)), (tv(ing, 1)),
capacity — CAPACITY, capacity — CAPACITY,
S — size +— SIZE, R - S+ size — SIZE + 1, ,
elems — object(SE) elems — object(?NN)
Iseg(object(SE), null)(L : List) lseg(object(?NN), null)(ListItem(X) L)
e heap e heap

requires SIZE < CAPACITY AX not in L

Figure 13: Reachability logic formula associated to the candidate axiom C3.

case and typographic font (e.g., SIZE) are pattern variables that are used to
represent in RL syntax the symbolic values appearing in the given configuration
F at the corresponding positions (e.g., ?s.size). Pattern variables preceded by
question marks, such as 7NN, are existentially quantified and represent memory

6Note that the reachability logic formulae we construct do not include a formula postcon-
dition 7’.
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addresses and values that do not appear in the initial pattern © but are relevant
for reasoning about the final pattern n’. We note that pattern variables are
truly variables that are used to match actual, defined elements in program
configurations that satisfy the pattern = during the verification; hence, pattern
variables are different from symbolic addresses and values.

The Iseg construct in Figure is a built-in K abstract pattern that ap-
proximates a set of memory addresses that conform a list segment. Its profile
is lseg(P1, P2)(L), where P1 is the pointer to the first object of the segment,
P2 is the pointer to the last object of the segment, and L is a list contain-
ing the data values of the nodes in the given list segment. K abstractions of
this kind are intended to represent commonly-used data structures (and frag-
ments of them) in order to make verification independent from low-level details
of any program implementation. Note that our summary node abstraction in
Section [£:2.3] transfers almost literally to the Iseg K abstraction.

As is common in deductive program verification, in order to successfully
prove a given property, it is generally necessary to first prove some auxiliary
properties (e.g., loop invariants). An algorithm is presented in [27] that infers
loop invariants for imperative list-processing programs, together with a pro-
totype implementation for a C-like language that successfully generates loop
invariants for a variety of programs. For the while loop involved in the ex-
ecution of insert(s,x), the invariant we need to prove (in tool-supported K
syntax) is:

rule [loop-inv]:

<struct> ... STRUCT:Map ... </struct>
<k>
while(n != NULL) {
if (n->value == x) {
found = 1;
}
n = n->next;
}
=>
.K
</k>
<env>
s |-> tv(struct set **, object(VS:Int))
x |-> tv(int *, object(PX:Int))
n |-> tv(struct listNode **, object(PN:Int))
found |-> tv(int *, object(PF:Int))
</env>
<heap>

object(VS) |-> tv(struct set *, object(S:Int))
object(S) |-> (capacity |-> tv(int, SC:Int)
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size |-> tv(int, SS:Int)

elems |-> tv(struct listNode *, object(SE:Int)))
object(PN) |-> tv(struct listNode *, (object(P1l:Int) => null))
(1seg(object(SE), object(P1)) (A:List)
lseg(object(P1), null) (B:List)

=>

lseg(object(SE), null) (?C:List)

object (PX) |-> tv(int, X:Int)

object(PF) |-> tv(int, (lessOneVariable(PFV:Id) => ?PFV2:Int))
</heap>

ensures A B ==K ?C andBool ((ListItem(X) not in ?C andBool ?PFV2 ==Int 0) orBool
(ListItem(X) in ?C andBool ?PFV2 ==Int 1))

All we have to do now is to put the two rules above in a file insert_spec.k,
and then verify them both with the command krun insert.c --prove
insert_spec.k. The --prove option uses the all-path version of the reach-
ability proof system to check that, for each rule in the file, on all terminating
execution paths beginning with a configuration satisfying the left-hand side of
the rule there exists some configuration satisfying the right-hand side of the rule
[35].

6.3 Contract simplification by candidate axiom verifica-
tion

Let us now consider a version of Algorithm [I| where, by following the verification
methodology outlined above, a subset S of QF can be verified before the call
refine(Q, Q*) at line 12 of Algorithm [1|is undertaken. Since the proof system
of reachability logic is sound, by replacing such a line 12 with (Q’, Qﬁ/) =
refine(Q U S, Q* — ), in the case when the newly added correct axioms in
S subsume other (more specialized axioms) in @, we achieve a more precise
contract C =< P, Q', L >.

For instance, by applying this version of Algorithm [I] since the RL formula
of Figure [13| (that corresponds to the candidate axiom C3) can be verified, C3
can be removed from the set of candidate axioms Qf and then added as a new
axiom (A8) to the set of correct axioms (. Similarly, candidate C1 can be also
proven correct and then can be reclassified as axiom A9. Now, axioms A6 and
A7 are removed by subsumption checking since they are instances of A8, and
A3 and A4 are also removed because they are instances of A9. Therefore, the
final contract that is synthesized for the running example (shown in Figure
contains just five axioms, as expected according to the intended specification
provided in Figure

We think the verification methodology improves our technique in several
ways. On the one hand, we get an alternative specification of the program
behavior as RL rules. On the other hand, it can be also used to prove non-
candidate axioms, serving as a mechanism to (re-)assure correctness. Finally,
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isnull(s) =1 A isempty(s) =0 A isnull(s’) =1 Aisempty(s’) =0A
A1 | isfull(s) =0 A contains(s,x) =0 A = | isfull(s’) =0 A contains(s’,x) =0A
length(s) =0 length(s’) =0 Aret =0
isnull(s) =0 Aisempty(s) = vlA isnull(s’) =0 Aisempty(s’) = wlA
A2 | isfull(s)=1 A contalns(s x)= 02 A = | isfull(s’) =1 Acontains(s’,x)= v2A
length(s) = _ length(s’) = v3 Aret =0
isnull(s) =0 A 1sempty( Y)=1A isnull(s’) = 0 A isempty(s’) =0 A
A5 [ isfull(s) =0 Acontains(s,x) =0 A = | contains(s’,x) =1 Alength(s’)=1A
length(s) =0 ret =1
isnull(s) = 0 A isempty(s) =0A isnull(s’) = 0 A isempty(s’) =0 A
A8 | isfull(s) =0 A contains(s,x)=0A = | contains(s’,x) =1A
length(s) =71+ 1 length(s’) =71 +2 Aret =1
isnull(s) =0 A isempty(s) =0A isnull(s’) =0 Aisempty(s’) =0 A
A9 | isfull(s) =0 Acontains(s,x) =1A = | isfull(s) =0 Acontains(s’,x) =1A
length(s) =71 +1 length(s’) = '71 +1 Aret=0

Figure 14: Final contract for insert(s,x).

we CO}ﬂd even think of verifying specialized versions of the overly general axioms
in Q% (which remained candidates after the post-processing refinement), which
may lead to more complete specifications.

7 Implementation

We have developed a prototype implementation of the extended K symbolic
machinery and contract inference algorithm described in the previous sections,
which we used to mechanize our running example. The KINDSPEC 2.1 tool
has been developed in Java and contains about 3000 lines of Java source code,
and 600 lines of HTML5 and JavaScript code. The tool is publicly available
together with more detailed experiments at http://safe-tools.dsic.upv.
es/kindspec2_1.

We evaluated our prototype in classical contract inference and verification
benchmark programs. Our main objective was to probe the quality of the dis-
covered contracts as well as the precision and viability of the method on a variety
of programs with loops and recursion that are commonly used in the literature
on shape analysis and program verification with automatic inference of con-
tracts |9, 20} [42]. Specification inference is notoriously expensive for accurate
and strong properties; hence, research in the field usually uses test programs
that size in the hundreds or tens of lines of code. Other techniques sacrifice
precision or coverage in order to gain scalability, which is an important matter
for future research.

Currently, K 4.0 does not include all the symbolic execution facilities of K

4 (for instance, instrumentation). Therefore, we run the axiom inference on
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K 3.4 and then feed the verification infrastructure of K 4.0 with the computed
output.

Our test platform was an Intel Core2 Quad CPU Q9300(2.50GHz) with 6
Gigabytes of RAM running K v3.4 on Maude v2.6, for inference tasks, and
K v4.0 for verification. Table [I] summarizes the figures that we obtained for
benchmark programs that contain (both cyclic and acyclic) data structures. In
the LOC column, we describe the program size (in lines of code), while the
Modifiers and Observers columns list the names of the symbolically executed
functions in each category. The Paths explored column shows the number of
final symbolic execution configurations that are automatically generated for
each benchmark program (i.e., the total number of root-to-leave paths in the
deployed symbolic execution trees), while the Extracted axioms column reflects
how many different axioms are retrieved from those final configurations. The
Overly general axioms column indicates the number of candidate axioms (i.e.,
potentially spurious); the Discarded falsified axioms column states how many of
these candidate axioms were falsified and could not be specialized during the
refinement process, so they were discarded; and Verifiable candidate axioms are
the number of candidate axioms that are actually correct. The Final contract
column indicates the total number of axioms that are distilled as a result of
the whole process, including subsumption checking and verification. Assuming
an appropriate set of observer functions, we are able to infer accurate (even
complete) contracts for all our benchmarks.

With respect to the time cost of the inference, we distinguish between the
amount of time taken for the symbolic execution of methods performed by K
(which can be heavy considering both the modifier and the observers) and the
elapsed time of the processing applied by our inference algorithm. The time
spent in K’s symbolic execution ranges from 1 min. to 5 min., depending on the
quantity and complexity of the method definitions. On the other hand, the time
taken for actual inference of contracts (once the symbolic execution trees have
been deployed) ranges from approximately 150 ms to 300 ms. Our preliminary
results are very encouraging since they show that general correct axioms can be
inferred, leading to quite compact, clear, and correct specifications.

8 Related work and Conclusion

The wide interest in formal specifications as helpers for other analysis, val-
idation, and verification tools has resulted in numerous approaches for (semi-
)Jautomatically computing different kinds of specifications that can take the form
of contracts, snippets, summaries, assumptions, invariants, properties, process
models, rules, graphs, automata, interfaces, or component abstractions. In this
work, we focus on input-output relations; given a precondition for the state, we
infer which modifications in the state are implied, and we express the relations
as logical implications that reuse the program functions themselves.

Let us briefly discuss those strands of research that have influenced our
work the most. A detailed description of the related literature can be found
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Overly | Discarded | Verifiable .
Program LOC | Modifiers | Observers Paths Extracted general | falsified |candidate Final
explored | axioms . . . contract
axioms | axioms axioms
isnull
insert.c isempty
(running 112 | insert isfull 17 10 3 1 2 5
example) contains
length
delete.c 122;111 "
(sequence of 131 | delete-lseg bty 28 11 3 0 3 6
loops) contains_node
interval length
deallocate.c isnull
(reduction of 56 | deallocate leneth 5 5 0 0 0 5
heap size) g
. isnull
delete-all-cire.c| ool 3 10te all | isempty 12 10 4 3 1 4
(cyclic lists) -
length-circular
two symbolic appen
boli 60 d | peme 12 12 2 1 1 4
lists, 1 loop) sth
sum_ sizes
merge.c isnull
two symbolic merge
ymbolic | 129 | merg isemg’}fy 124 18 1 0 1 6
lists, 2 loops) ongsh
sum _sizes
treeinsert.c 122;11 "
(trees and 80 | insert aoPy 32 6 2 2 0 4
recursion) depth

Table 1: Experimental results for KINDSPEC 2.1 on programs manipulating

lists and trees
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in [I 03] 20, B2, 45]. Our axiomatic representation is inspired by [44], which
relies on a model checker for (bounded) symbolic execution of .NET programs
and generates either Spec# specifications or parameterized unit tests. Similarly
to [44], we aim to infer high-level (rich) information that is easily understand-
able by the programmer; however, we take advantage of K symbolic capabilities
to generate simpler and more accurate formulas that avoid reasoning with the
global heap because the different pieces of the heap that are reachable from the
function argument addresses are kept separate. Unlike our symbolic approach,
Daikon [I7] and DIDUCE [22] detect program assertions by extensive testing.
QUICKSPEC [39)] relies on the automated testing tool QuickCheck to distill gen-
eral laws that a Haskell program satisfies. Whereas Daikon discovers invariants
that hold at existing program points, QUICKSPEC discovers equations between
arbitrary terms (laws) that are constructed by using an API. This is similar to
the approach of Henkel and Diwan [23], which generalizes the results of running
tests on Java class interfaces as an algebraic specification. A combination of
symbolic execution with dynamic testing is used in DySy [14]. By combining
the concrete execution of actual test cases with a simultaneous symbolic execu-
tion of the same tests, DySy determines program properties that generalize the
observed behaviors. Starting from simple, partial contracts previously written
by the programmer, rich post-conditions involving quantification are defined in
[45] by using random testing. By relying on symbolic execution and abstrac-
tion, our approach is able to guarantee completeness/correctness under some
conditions. This is different from testing-based approaches such as [39] 23],
which are limited to delivering properties that have not been previously falsified
by a (finite) number of tests. An alternative approach to software specification
discovery is based on inductive machine learning: rather than using test cases
to validate a tentative specification, they are used as examples to induce the
specification (e.g., [46, [19]). ABSSPEC [6] is a semantic-based inference method
that relies on abstract interpretation and generates laws for Curry programs in
the style of QUICKSPEC. A different abstract interpretation approach to infer
approximate specifications is that of Taghdiri and Jackson [43]. Finally, Ghezzi
et. al. [18] infer specifications for container-like classes and express them as
finite state automata that are supplemented with graph transformation rules.
Another related thread of research concerns the inference of Hoare triples
(and invariants) that summarize a heap manipulating program. Existing ap-
proaches usually infer low-level specifications that are intended to be used later
by automated verification or optimization tools. For instance, given a program
procedure P that manipulates dynamic lists, [9, [32] combine abstract interpre-
tation and weakest precondition computation to infer Hoare-like summaries of
the form [@] P [@] that are aimed to verify low-level properties such as memory
access safety (e.g., not to reference a dangling pointer). The triple [#] P [@]
specifies that when P runs in a state satisfying [®] (the discovered precondi-
tion), it terminates without any memory error (such as null dereference) in a
state satisfying [®] (the discovered postcondition). Also, [27] combines symbolic
execution with predicate abstraction in order to infer invariants that are almost
limited to describing the mutation of the dynamic data structures. This is in
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contrast to our approach, which infers richer (human-readable) assertions.
This work improves existing approaches in the literature in several ways.
Thanks to the handling of K’s algebraic laws by means of equational attributes
[10], algebraic axioms such as associativity, commutativity, or identity are nat-
urally supported in our approach. This leads to simpler and more efficient
specifications and also makes it easy to reason about typed data structures such
as lists (list concatenation is associative with identity element nil), multisets
(bag insertion is associative-commutative with identity @), and sets (set inser-
tion is associative-commutative-idempotent with identity §). In addition, we do
not need to fix the size of arrays and dynamic structures or limit the number
of iterations to ensure termination in the presence of loops; instead, we handle
unbounded structures by means of lazy initialization and ensure termination
by using abstraction. Our experiments show that our method can infer rich
summaries that advance the state of the art of competing tools. For example,
our tool infers contracts for challenging programs having recursive predicates,
tree-like structures, and cyclic lists, which are not handled by competing tools,

e.g., [9,[20].
Enhanced generality is achieved by inference tools by dealing with inter-
mediate code (bytecode, CIL, ...). However, this is achieved at the expense

of some additional precision loss [I3]. We achieve generality thanks to the K
Framework. Note that since our technique is not tied to the K semantics specifi-
cation of KERNELC, we expect that the methodology developed in this work can
be easily extended to other languages for which a K semantics is given. More-
over, the correctness of the delivered specifications can be ensured by using the
existing K formal tools. The contracts generated by our tool may be easily
translated to richer (but also heavier) notations for behavioral interface C spec-
ifications such as ACSL or to the native syntax of some SMT solvers, which is
planned as future work. We also plan to explore other existing abstract domains
for structured data [8 [I5] and integrate them in our tool to improve accuracy
and applicability. Finally, in order to improve the level of automation of the
verification, we are working towards providing the system with some facility to
establish a correspondence between: 1) abstractions defined for contract synthe-
sis that may appear in the (abstract) symbolic configurations and K abstraction
patterns; and 2) program observers and (user-defined) K operators.
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A Full program code of the Running Example

#include <stdlib.h>

struct lnode{

int value;

struct lnode *next;
};
struct set {

int capacity;

int size;

struct lnode *elems;

};

struct set* new(int capacity) {
struct set *new_set;

new_set = (struct set*) malloc(sizeof (
struct set));

if (new_set == NULL)

return NULL; /# no memory left */

new_set->capacity = capacity;
new_set->size = 0;
new_set->elems = NULL;

return new_set;

}

int insert(struct set *s, int x) {
struct lnode *new_node;

struct lnode *n;

int found;

if (s==NULL)

return 0; /# NULL set */
if(s->size >= s->capacity)
return 0; /# no space left */

n = s->elems;

found = 0;

while(n != NULL) {
if (n->value == x)
found = 1;

n = n->next;

}

if (found)

return 0; /+ element in the set */

new_node =
struct lnode));

if (new_node == NULL)

return 0; /* no memory left */

new_node->value = Xx;

new_node->next = s->elems;

s->elems = new_node;

s->size += 1;

return 1; /+ element added */

(struct lnode*) malloc(sizeof (
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}

int isnull(struct set *s) {
if (s==NULL)

return 1;

return O;

}

int isempty(struct set *s) {
if (s==NULL)

return 0;

if (s->elems==NULL)

return 1; /* s is empty */
return O;

}

int isfull(struct set *s) {
if (s==NULL)
return O;
if(s->size >= s->capacity)
return 1; /* s is full */
return 0;

}

int contains(struct set *s, int x) {

struct lnode *n;

if (s==NULL)
return 0; /* s is NULL */

n = s->elems;
while(n != NULL){
if (n->value == x)

return 1; /* element found */

n = n->next;

}

return 0; /* element NOT found */

}

int length(struct set *s) {
struct lnode *n;
int count;

if (s==NULL)

return 0; /+ s is NULL */
count = 0;

n = s->elems;

while(n != NULL){

count = count + 1;

n = n->next;

}

return count;

}
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