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ABSTRACT 17 

One of the current challenges of persimmon postharvest research is the development of 18 

non-destructive methods that allow determination of the internal properties of the fruit, 19 

such as maturity, flesh firmness and astringency. This study evaluates the usefulness of 20 

hyperspectral imaging in the 460–1020 nm range as a non-destructive tool to achieve these 21 

aims in Persimmon cv. ‘Rojo Brillante’ which is an astringent cultivar. Fruit were harvested 22 

at three different stages of commercial maturity and exposed to different treatments of CO2 23 

(95% CO2 – 20 ºC – from 0 to 24 h) in order to obtain fruit with different levels of 24 

astringency. Partial Least Square (PLS) based methods were used to classify persimmon 25 

fruits by maturity and to predict flesh firmness from the average spectrum of each fruit. The 26 

results showed a 97.9% rate of correct maturity classification and an R
2

P of 0.80 for 27 

firmness prediction with only five selected wavelengths. For astringency assessment, as our 28 

results showed that the soluble tannins that remain after CO2 treatments are distributed 29 

irregularly inside the flesh, a model based on PLS was built using the spectrum of every 30 

pixel in the fruit. The model obtained an R
2

P of 0.91 which allowed the creation of the 31 

predicted distribution maps of the tannins in the flesh of the fruit, thereby pointing to 32 

hyperspectral systems as a promising technology to assess the effectiveness of the 33 



deastringency treatments that are usually applied before commercialising persimmons from 34 

astringent cultivars. 35 

 36 

Keywords: Diospyros kaki, fruit internal quality, soluble tannins, distribution map, 37 
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 39 

1. INTRODUCTION 40 

 Astringency removal is required prior to commercialising astringent persimmon 41 

cultivars. The astringency of persimmon fruit is due to the high soluble tannin content in 42 

the flesh. Traditionally, the astringent cultivars have been consumed after fruit has been 43 

submitted to an over-ripening treatment with exogenous ethylene; under these conditions 44 

astringency removal is accompanied by a drastic loss of flesh firmness which hampers 45 

postharvest handling of the fruit. For this reason, postharvest treatments which allow 46 

astringency removal while preserving high flesh firmness have been developed in recent 47 

years. Among them, the most widely used technique in commercial settings is based on 48 

exposing fruits to high CO2 concentrations (95% – 98%) for 24 h to 36 h. This method 49 

promotes anaerobic respiration in the fruit, giving rise to an accumulation of acetaldehyde, 50 

which reacts with the soluble tannins (ST). Tannins become insoluble at the end of the 51 

treatment and astringency is no longer detected (Matsuo & Ito, 1982; Matsuo et al., 1991).  52 

 The optimum duration of the CO2 treatment depends on the cultivar but also on the stage 53 

of fruit maturity (Besada et al., 2010). If the treatment is too short, it may result in fruit 54 

with residual astringency, and if extended excessively it may lead to losses of fruit quality 55 

(Novillo et al., 2014). Therefore, the optimum treatment conditions must be determined for 56 

the different cultivars, but the stage of fruit maturity must also be taken into account. 57 

Therefore, the knowledge of the fruit condition at harvest according to its stages of maturity 58 

is a prerequisite to apply the adequate CO2 treatment.  59 

 After application of the CO2 treatment it is necessary to evaluate its effectiveness to 60 

avoid residual astringency that could negatively affect the future buying intentions of 61 

consumers. Currently, the effectiveness of deastringency treatment can be assessed by 62 

measuring the content of ST that remain in the flesh, although this is a slow and destructive 63 

analytical method, and thus commercially unfeasible. Another method to determine the 64 



level of astringency of persimmon fruit is based on the reaction of ST (responsible for 65 

astringency) with FeCl3, which leads to a blue staining; the intensity of the staining 66 

observed after a slice of the flesh is impregnated with FeCl3 depends on its level of ST. 67 

Although this method is faster and easier than the analytical determination of ST, it is also 68 

destructive and subjective and therefore it is necessary to search for new rapid, reliable, 69 

non-contact and non-destructive techniques.  70 

 Among them, computer vision represents a fast, accurate, and proved alternative for 71 

monitoring fruit quality (Cubero et al., 2011).  However, this kind of sensors are limited to 72 

analysing the external properties of the fruit like colour, size or the presence of external 73 

defects, not being capable of detecting internal compounds like ST, responsible of the 74 

astringency. Therefore, other methods capable of analyse internal compounds are 75 

necessary. Spectroscopy is a non-destructive, inexpensive, rapid and reliable technique that 76 

has traditionally been used in food chemistry for qualitative and quantitative determination 77 

of different compounds in fruit samples, especially near infrared (NIR) spectroscopy 78 

(Nicolaï et al., 2007; Nicolaï et al., 2014; Magwaza et al., 2012;  López et al., 2013). This 79 

technique has been utilised for the quantitative determination of soluble solids content 80 

(SSC), firmness, acidity, dry matter, chemical substances such as glucose, sucrose, citric 81 

acid, malic acid, starch or cellulose in different fruits (Schmilovitch et al., 2000; Nagle et 82 

al., 2010; Theanjumpol et al., 2013), and even to determine a maturity index (Jha et al., 83 

2013), internal quality index (Cortés et al., 2016) or different appropriate indices for quality 84 

analysis (Attila and János, 2011).  85 

However, a major disadvantage of spectroscopy is that only can measure in a single point 86 

of the sample. On the other hand, hyperspectral imaging is a non-destructive optical 87 

technology that integrates the advantages of spectroscopy and conventional imaging to 88 

obtain both spatial and spectral information simultaneously. It allows the visualisation of 89 

internal compounds of the fruit distributed into the image which is not possible with 90 

conventional spectroscopy (Gowen et al., 2007; Lorente et al., 2012) as in the case of the 91 

ST of the persimmon, leading to a non-valid probe measurement and forcing to take 92 

measurements in many places of the fruit surface (Noypitak et al., 2015). Thus, using 93 

hyperspectral imaging Mendoza et al., (2011) developed a method for the in-line prediction 94 

of firmness and SSC achieving coefficient of correlation between 0.83 and 0.95 for 95 



prediction of firmness and between 0.67 and 0.87 for prediction of SSC in different apple 96 

cultivars. Later they compared several spectral sensors to predict these properties (Mendoza 97 

et al., 2012). Cen et al. (2016) investigated the detection of internal chilling injuries in 98 

pickling cucumbers using hyperspectral reflectance (500–675 nm) and transmittance (675–99 

1000 nm) achieving 100% of correct detection using SVM with the fruit travelling at 100 100 

mm/s, which gives an idea of the potential of this technology for non-destructive in-line 101 

quality control. 102 

 Ripeness has been one of the main features studied with this technology. Lleó et al. 103 

(2011) used hyperspectral imaging (400–1000 nm) to predict the maturity of ‘Rich lady’ 104 

peaches by computing different indices extracted from band ratios and combinations. The 105 

application of these indices to create maps from the classification of individual pixels 106 

showed that the ripening was not uniform throughout the entire fruit. Furthermore, the 107 

ripening of intact bell peppers was studied by Schmilovitch et al. (2014) using 108 

hyperspectral imaging (550–850 nm). They were able to relate some internal compounds 109 

like SSC, total chlorophyll, carotenoid and ascorbic acid content with the spectral data by 110 

means of a PLS regression, in all cases achieving an R
2
 higher than 0.90 except for ascorbic 111 

acid (0.72). The chemometric models they established were used to estimate internal 112 

components in each pixel of the fruit image, thus allowing mapping of the quality 113 

parameters in the intact peppers. 114 

 Apart from maturity, other properties can also be assessed. Yang et al. (2015) measured 115 

anthocyanin content in lychee pericarp in the 350–1050 nm range. They created several 116 

models achieving an R
2
 of 0.92 using all wavelengths. The model was later applied to 117 

entire fruits to create distribution maps with which to visualize the changes in anthocyanin 118 

content during storage time. Liu et al. (2015) used multispectral images to predict lycopene 119 

and phenolic compounds content in intact tomatoes. The comparison of methods based on 120 

PLS, least squares-support vector machines (LS-SVM) and back propagation neural 121 

networks (BPNN) showed BPNN to be the one that performed best, with an R
2
 of 0.96. By 122 

applying the model to each pixel of the tomato they were able to create prediction maps of 123 

the intact tomatoes.  124 

 In persimmon fruit the use of this non-destructive technology to assess different quality 125 

parameters is beginning to be studied. Hence, Wei et al. (2014) used hyperspectral imaging 126 



to study the relationship between firmness and fruit maturity. Mohammadi et al. (2015) 127 

also used image analysis techniques to evaluate the index of external colour of the fruits in 128 

order to classify them into three stages of commercial maturity. Nevertheless, more studies 129 

are necessary in this regard, particularly with fruit that will be commercialized with a firm 130 

texture. Furthermore, to our knowledge, the potential of hyperspectral technology to detect 131 

the level of astringency in persimmon has not been evaluated to date. Only some works 132 

have been carried out to detect phenolic compounds related to astringency (Nogales-Bueno 133 

et al., 2014), focused especially on wine quality (Aleixandre-Tudó et al., 2015; Boulet et 134 

al., 2016). And only one work has been found related to astringengy in persimmon using 135 

NIR spectroscopy in the range of 660-960 nm (Noypitak et al., 2015). 136 

 The aim of this work is to advance in the development of a non-destructive tool to assess 137 

the astringency of persimmon fruits that have been gone under deastringency treatment, 138 

since at present there are no methods or previous research focused on this aim for this type 139 

of fruit, being still a demand from the industry. 140 

 141 

2. MATERIALS AND METHODS 142 

2.1. Image acquisition and calibration 143 

 The hyperspectral imaging system capable of acquiring images in the spectral range 144 

400−1100 nm was composed of an industrial camera (CoolSNAP ES, Photometrics, AZ, 145 

USA), and two liquid crystal tunable filters (LCTF) (Varispec VIS-07 and NIR-07, 146 

Cambridge Research & Instrumentation, Inc., MA, USA) and a lens capable of covering the 147 

whole spectral range without losing the focus (Xenoplan 1.4/23, Schneider Optics, 148 

Hauppauge, NY, USA). The system was configured to capture images of 1392 x 1040 149 

pixels with a spatial resolution of 0.14 mm/pixel and a spectral resolution of 10 nm. To 150 

optimise the dynamic range of the camera, prevent saturated images and correct the spectral 151 

sensitivity of the different elements of the system, a calibration of the integration time of 152 

each band was performed by capturing the averaged reflectance of a white reference target 153 

(Spectralon 99%, Labsphere, Inc, NH, USA) corresponding to 90% of the dynamic range of 154 

the camera. The scene was illuminated by 12 halogen spotlights of 37 W each (Eurostar IR 155 

Halogen MR16. Ushio America, Inc., CA, USA) powered by direct current (12 V), which 156 

lit the scene indirectly by means of diffuse reflection inside a hemispherical dome where 157 



whole fruits were introduced manually (Fig. 1). The inner surface of the aluminium dome 158 

was painted in white and given a rough texture using a synthetic polish sprayer in order to 159 

reduce directional reflections that could cause bright spots, thus providing highly 160 

homogeneous light. A holder was used to place all samples at the same height inside the 161 

dome. 162 

 163 
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Figure 1. Configuration of the hyperspectral acquisition system 164 

 165 

 One hyperspectral image was captured of each fruit in reflectance mode in the working 166 

spectral range 460–1020 nm, which together formed a database with a total of 150 167 

hyperspectral images with 57 wavelengths each. Equation (1) (Gat, 2000) was used to 168 

obtain the corrected relative reflectance of a pixel in the position (x,y) of the 169 

monochromatic band λ. 170 

 171 
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 173 

where ρ
Ref
(λ) is the standard reflectance of the white reference target (99% in this work), 174 

R(x,y,λ) is the reflectance of the fruit captured by the charge-coupled device (CCD) sensor 175 

of the camera, Rwhite(x,y,λ) is the reflectance captured by the CCD of the white reference 176 

target, and Rblack(x,y,λ) is the reflectance captured by the CCD while avoiding any light 177 

source in order to quantify the electronic noise of the sensor.  178 

 179 



2.2. Plant material and experimental design 180 

 Persimmon cv. ‘Rojo Brillante’ fruits were harvested in L'Alcudia (Valencia, Spain) at 181 

three different stages of commercial maturity (M1, M2 and M3) corresponding to early and 182 

late November, and mid-December. These three stages were intentionally selected in order 183 

to obtain fruit with different degree of maturity and therefore of firmness, since the success 184 

of the treatments depend on the fruit firmness at harvest (Salvador et al., 2008) and 185 

therefore the possibility of assessing the astringency in fruits with different firmness was 186 

studied. 187 

 A total of 150 fruits with no skin damage and a homogeneous colour were selected and 188 

individually evaluated, corresponding to 50 fruits for each stage of maturity. In order to 189 

obtain different levels of astringency, fruits at each stage of maturity were divided into five 190 

homogeneous lots of 10 fruits each. Then the fruit was exposed to CO2 treatments in closed 191 

containers (air containing 95% CO2 at 20 ºC and 90% RH) for 0 h, 6 h, 12 h, 18 h and 24 h. 192 

Hyperspectral images of the intact fruits were acquired within 8 h after the CO2 treatment. 193 

In addition, the physicochemical parameters (external colour, firmness, ST and astringency) 194 

to achieve the objectives of this study were evaluated individually in each fruit.  195 

  196 

2.3. Physicochemical analysis 197 

 The external colour index (CI=1000a/Lb) was measured using a colorimeter (CR-300, 198 

Konica Minolta Inc, Tokyo, Japan) to know the colour of the fruits in each maturity stage at 199 

harvest. This index is based on the citrus colour index calculated using Hunter Lab colour 200 

values (Jiménez-Cuesta et al., 1981). 201 

 Flesh firmness was determined by means of a universal testing machine (4301, Instron 202 

Engineering Corp., MA, USA) equipped with an 8 mm puncture probe. The crosshead 203 

speed during testing was 1 mm/s. During the test, the force increased smoothly until it 204 

decreased drastically when the flesh was broken, and then the maximum peak force was 205 

registered. The results were expressed as the load (in N) required for breaking the flesh of 206 

the fruit on both sides after peel removal.  207 

 Analysis of variance (ANOVA) and Tukey´s test were conducted to determine 208 

significant differences during maturity (colour and firmness). For this purpose, the software 209 

Statgraphics (Manugistics Corp., Rockville, Md.) was used. 210 



 211 

2.3.1 Assessment of firmness 212 

 Among the physiological changes related to fruit maturation, such as colour or decline 213 

of ST (Salvador et al., 2007), the change in fruit firmness is one of the most important 214 

feature to determine the optimum postharvest condition. In this regard, Salvador et al. 215 

(2008) reported that fruit firmness can influence the effectiveness of the CO2 treatment 216 

because the loss of pulp structure associated to fruit softening may difficult the diffusion of 217 

CO2. To know if firmness could be predicted using the hyperspectral imaging system, a 218 

representative ROI of the whole fruit surface was selected avoiding the stem and dark 219 

borders (Fig. 2). The average spectrum of the pixels in the ROI was calculated and 220 

considered as the fruit sample. Two thirds of the fruits in each maturity stage were used to 221 

build the models and the remaining fruits were used as prediction set. A pre-processing 222 

Standard Normal Variate (SNV) was applied to the spectra in order to remove scatter 223 

effects from the original spectral data.  224 

 225 

 226 
Figure 2. Hyperspectral image of a persimmon with the selected ROI (centred on 640 nm) 227 

 228 

 Hyperspectral systems are complex equipments that provide a huge amount of data. It is 229 

therefore important to investigate whether the assessment of maturity can be performed 230 

using a reduced number of selected wavelengths. The Successive Projections Algorithm 231 

(SPA) has been proposed as a novel variable selection strategy for multivariate calibration 232 

(Araújo et al., 2001), and its purpose is to select wavelengths whose information content is 233 

minimally redundant. The SPA is a forward selection method that builds an ordered chain 234 



of k variables where each element is selected in order to present the least collinearity with 235 

the previous ones. The collinearity between variables is assessed by the correlation between 236 

the respective column vectors of the calibration matrix. As it is an iterative method, this 237 

means that several subsets containing up to k variables can be formed. Finally, in order to 238 

choose the most appropriate subset, Multiple Linear Regression models are built to 239 

compare them in the terms of the RMSE. In order to select the most important bands, SPA 240 

was applied using MATLAB R2015a (The MathWorks, Inc. MA, USA) on the calibration 241 

set of fruits. 242 

 PLS-discriminant analysis (PLS-DA) was applied in order to know if it was possible to 243 

separate the fruit into the three stages of maturity at harvest using both, the entire spectrum 244 

and only the variables selected by the SPA. In a similar way, PLS regression (PLS-R) was 245 

used to predict the firmness including the data provided by the universal testing machine 246 

instead of the stages of maturity. A single 10-fold cross-validation was used to choose the 247 

optimal number of LV and accuracy and predictive capability of the PLS-R models were 248 

evaluated by RMSE and coefficient of determination R
2
. The software used in this study 249 

was The Unscrambler X 10.1 (CAMO Software, Oslo, Norway). 250 

 251 

2.3.2 Assessment of Astringency 252 

 The level of astringency of each individual fruit was determined in three different ways: 253 

1) Each fruit was cut in half and pressed against 10x10 cm filter paper soaked in a 5% 254 

FeCl3 solution, obtaining a blue print whose quantity and intensity gave information 255 

about the ST content and its distribution. This process is an alternative technique to 256 

the Folin-Denis method used in industry to determine the level of astringency in 257 

fruit batches, and it has only been used to show visually the internal distribution of 258 

the ST and its intensity. 259 

2) A flesh sample from each fruit was frozen at −20 ºC and later the content of ST was 260 

analysed using the Folin-Denis method (Taira, 1995). The results were expressed as 261 

relative ST in fresh weight, being the quantitative reference used in our analyses. 262 

3) The level of astringency of the fruit was evaluated by a sensory panel consisting of 263 

10 semi-trained staff members of IVIA familiar with persimmon fruit and 264 



astringency attribute. Astringency was determined using a 5-point scale from 1- 265 

non-astringent or absence of astringency to 5-intensely astringent. 266 

 267 

 To assess the astringency using the hyperspectral imaging system a new approach 268 

was used. As the current method used in the industry is based on the printing of the 269 

content and distribution of ST, the imaging system was used also to create maps of the 270 

distribution of the ST. Hence, the individual spectrum of each pixel in the image was 271 

used to predict the astringency of that pixel, thus using the spectral but also the spatial 272 

information provided by an image-based technology. A PLS model was built using 12 273 

persimmons from the whole set of fruits. Six fruits (two of each maturity stage) were 274 

selected from the non-treated fruit, and thus considering as very astringent and another 275 

six (two of each maturity stage) from the batch that were treated for 24 h.  276 

 A total of 67456 pixels labelled as astringent or non-astringent were selected from 277 

the aforementioned fruits. The spectra of these pixels were used to build the PLS model 278 

that was internally validated by means of a 10-fold cross-validation. The model was 279 

then projected to the rest of the fruit to obtain maps of the distribution of the 280 

astringency in the fruits. 281 

 282 

3. RESULTS AND DISCUSSION 283 

3.1. Assessment of firmness 284 

 The colour index and the firmness of the samples at harvest are shown in Table 1. It is 285 

observed that the firmness value decreases as the fruit ripen, but in all cases studied having 286 

high firmness. In the case of the colour, the values measured indicate that fruit was 287 

changing from orange to red, as the increasing of the CI is due to an increase of the a value 288 

and a reduction of b, both variables expressed in Hunter Lab values. 289 

 290 

Table 1. Colour index and firmness values for the three stages of maturity at harvest 291 

 M1 M2 M3 

CI 

Firmness (N) 

9.46 ± 1.77 
a 18.20 ± 3.32

b 21.6 ± 4.05
c 

43.85 ± 4.1 
a 30.8 ± 3.5

b 24.4 ± 4.9
c 



Values are mean ± standard deviation. Different superscript letters in the same row indicate significant 292 
differences between groups (p-value<0.05), according to Tukey's test 293 
 294 

The SPA used to reduce the dimensionality achieved an optimal set of five wavelengths 295 

(570, 590, 680, 710, 990 nm). These wavelengths are associated to the range of absorption 296 

bands of carotenoids (570 and 590 nm) (Choudhary et al., 2009; Merzlyak et al., 2003), 297 

chlorophyll (680 and 710 nm) (Lleó et al., 2011; Rajkumar et al., 2012) and water content 298 

(990 nm) (Lu and Peng, 2006). 299 

Table 2 shows the results obtained for the classification of persimmon fruits in terms of 300 

their stage of maturity. Both models, using all and the optimal wavelengths, achieved high 301 

percentage of fruits classified correctly (>90%). As regarding the classification of each 302 

maturity stage, fruits of M2 were worst classified in both models. 303 

 304 
Table 2. Maturity classification (%) of the test set by PLS-DA using all and selected 305 

wavelengths 306 

 
#LV Class M1 M2 M3 

Correct 

classification 

All wavelengths 4 

M1 94.6 0.9 0.0 

93.9 M2 4.0 91.5 4.4 

M3 1.4 7.6 95.6 

Selected 

wavelengths 
2 

M1 92.9 2.7 0.0 

90.0 M2 4.9 86.3 9.1 

M3 2.2 11.0 90.9 

  307 

  308 

 Table 3 shows the results of the flesh firmness prediction, obtaining similar results using 309 

all and the selected wavelengths. Values obtained were 0.77 and 0.80 for R
2
 of the 310 

prediction using all and selected wavelengths, respectively. The results were not as good as 311 

the prediction results of Wei et al. (2014), who achieved an R
2
 value of 0.91, but they 312 

worked with non-treated fruit having higher firmness differences between the harvest and 313 

the marketing. In the case of ‘Rojo Brillante’ persimmon, if they are sold as firm fruit after 314 

receiving some treatment to remove astringency, values below 10 N are considered as 315 

unsuitable from a commercial point of view (Salvador et al., 2004). 316 

 317 



Table 3. Results of firmness prediction using PLS-R with all and selected wavelengths 318 

 #LV R
2

CV RMSECV R
2

P RMSEP 

All wavelengths 2 0.80 4.34 0.77 3.89 

Selected wavelengths 2 0.80 4.34 0.80 3.66 

 319 

 As stated, firmness is highly related to maturity, but also to astringency. As softening 320 

progresses further, acetaldehyde produced at rather low levels in the flesh also may 321 

promote tannin polymerization. Thus, in extremely soft fruit, both tannin-pectin complex 322 

formation and acetaldehyde-tannin polymerization may be involved in the reduction of 323 

astringency (Taira et al., 1997). Then, it is very important for this fruit to demonstrate that 324 

deastringency treatments do not affect the firmness. 325 

 326 

3.2. Astringency assessment 327 

 The application of the different CO2 treatments resulted in fruit with a wide range of ST 328 

contents across the three stages of maturity studied, being the content of ST after different 329 

treatments between 0.75% and 0.03% (Fig. 3). This was supported by the sensory 330 

evaluation of the fruit (data not shown) that revealed that an ST content of 0.03% was 331 

related to non-astringent fruit, which is in agreement with Salvador et al., (2007) and 332 

Besada et al., (2010). ST contents higher than 0.4% led to intensely astringent fruit 333 

(sensory value of 5), while values between 0.04% and 0.4% were evaluated by the panellist 334 

as slight to medium astringency. 335 

 The evaluation of the ST by the FeCl3 method revealed a progressive reduction of the ST 336 

in the fruit as the duration treatment was longer. Moreover, it was observed that the 337 

reduction of the ST advanced from the calyx area. Figure 3 shows examples of different 338 

blue prints obtained for the different duration of the CO2 treatments. 339 

 340 

 341 



Figure 3. Astringency distribution from the blue print (FeCl3) for persimmons CO2 treated 342 

during different hours: a) non-treated; b-e) treated with CO2 for 6 h, 12 h, 18 h and 24 h  343 

 344 

 The model built from astringent and non-astringent pixels using PLS was used to predict 345 

the astringency of the pixels of the validation fruits and to visually compare them with the 346 

prints obtained using the destructive FeCl3 method. Figure 4 shows several examples of the 347 

predicted distribution map of the astringency of randomly chosen persimmons that were 348 

treated with CO2 for different periods to achieve different levels of astringency (from 349 

untreated fruit that was evaluated by the panellist as intensely astringent to 24 h-treated 350 

fruit, in which astringency was not detected, including medium or slight astringency for 351 

fruit treated for 6 h, 12 h or 18 h). A colour scale was used, being non-astringent pixels 352 

represented by the blue colour and astringents by red colour. 353 

  354 



 355 

 356 

Figure 4. Samples of prediction maps from hyperspectral images of persimmons in the 357 

three maturity stages 358 

 359 

Prediction maps obtained using hyperspectral imaging system showed astringency 360 

distribution on the surface of each fruit. It was observed that the distribution of astringency 361 

in fruits under different treatments followed a very similar pattern to one obtained using 362 

destructive methods based on FeCl3 prints (Fig. 3). In Figure 4, it is clearly visible that 363 

fruits with no treatment (0 h) or very short (6 h) treatment had the highest astringency while 364 

models predicted lower astringency for fruits receiving treatment for 24 h. In addition, it 365 

was evident in all the images that most astringency concentrated at the bottom of the fruit, 366 

while began to be removed from the calyx area, following the same trend shown in Fig. 3. 367 

 This work contributes to lay the basis for future non-destructive tools capable to decide 368 

whether a persimmon is or not astringent in postharvest or contains residual astringency 369 

after a defective treatment, thus ensuring high quality fruit to consumers. Despite the 370 

penetration depth of the hyperspectral imaging that can be of few millimetres in the fruit, 371 

the blue prints showed that the tannins are distributed similarly in the internal part of the 372 

fruit and near the surface, and therefore can be captured by the hyperspectral images. 373 

Hence, hyperspectral imaging can be considered a valuable technique for the non-374 

destructive evaluation of the astringency and a potential alternative to current destructive 375 

methods. 376 



 Results achieved coincide with those achieved by Noypitak et al. (2015). They carried 377 

out a study for astringency by using spectrometry in the near-infrared zone (700–1050 nm) 378 

and measured in twelve different parts of the fruit, later calculating the average of all the 379 

measurements and obtaining results of around R
2
 of 0.95. However, the authors worked 380 

with very astringent persimmons and persimmons in which all astringency was completely 381 

eliminated, avoiding the intermediate levels of astringency. Moreover, at a difference from 382 

this study, the authors used plastic bags to remove the astringency of the fruits, thereby 383 

causing a sharp loss of firmness that could have large influence the results.  384 

 385 

4. CONCLUSIONS  386 

 The results of the present study showed VIS/NIR hyperspectral imaging to be a 387 

promising non-destructive tool to assess the astringency of persimmon fruits that have been 388 

gone under deastringency treatment. On one hand, the SPA method was used to select a 389 

small set of wavelengths (570, 590, 680, 710, 990 nm) that allowed fruit classification 390 

according to their stage of maturity using PLS-DA. The success rate obtained using the 391 

entire spectrum was slightly higher than using only the five selected wavelengths, but in 392 

both cases higher than 90%. In addition, an optimum prediction of the flesh firmness was 393 

achieved using PLS regression. Moreover, using the selected wavelengths, the coefficient 394 

of determination R
2

P was higher (0.80) than using the full spectrum (0.77). 395 

 On the other hand, it was built a predictive model that, applied to fruit submitted to 396 

deastringency treatments, allowed to create maps of the distribution of the ST that were 397 

compared visually with the traditional and subjective method based in the blue prints, to 398 

differentiate non-astringent fruits from those completely or medium astringent, thus 399 

creating a comprehensive non-destructive tool that can be used as alternative to the current 400 

destructive method based on FeCl3 prints. Therefore, hyperspectral imaging should be 401 

considered as a potential non-destructive method to evaluate the effectiveness of the 402 

deastringency treatments. 403 
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