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Abstract

In this paper we use Monte Carlo Techniques to deal with a real world delivery
problem of a food company in Valencia (Spain). The problem is modeled as a set of
11 instances of the well known Vehicle Routing Problem, VRP, with additional time
constraints. Given that VRP is a NP-hard problem, a heuristic algorithm, based on
Monte Carlo techniques, is implemented. The solution proposed by this heuristic
algorithm reaches distance and money savings of about 20% and 5% respectively.
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1 Introduction

In this paper we describe our experience in optimizing the delivery routes
of a well known food company in Valencia (Spain), starting at a huge store
located at 13 km. from the city and serving up to 70 food shops located
inside the city. Given that several vehicles are needed to perform the de-
livery, this problem can be modeled as the Vehicle Routing Problem(VRP),
that we define next.

Let G = (V, E) be a graph where V = {1,2,...,n} is a set of vertices
representing shops with the depot located at vertex 1, and F is the set of
edges. Let ¢;; be a non-negative travel cost associated to each edge (7, ) and
let d; be a non-negative demand associated to each vertex ¢ > 1. Finally,
let assume that there is available a number of vehicles with equal capacity
Q. The VRP consists of designing a set of minimum cost vehicle routing
satisfying:
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(i) each vertex in V'\ {1} is visited by exactly one vehicle exactly once.
(ii) all vehicle routes start and end at the depot.
(iii) some additional constraints are satisfied.

The most usual additional constrains include:

(a) Capacity constraints: the sum of demands of any vehicle route cannot
exceed the vehicle capacity. Capacity-constrained VRPs are referred
to as CVRPs.

(b) Total time constraints: the length of any vehicle route cannot exceed
a prescribed bound T', where the ¢;; are considered as travel times
and the d; as stopping times (for service) at each shop i. Distance
—or Time— constrained VRPs are referred to as DVRPs.

A wide variety of exact and heuristic algorithms have been proposed for the
VRP (see the Laporte and Nobert (1987) survey and the Laporte (1992)
review, for example). Exact algorithms for the VRP are based in direct
tree search methods, dynamic programming or integer linear programming.
Heuristic algorithms are derived from procedures for the TSP, ensuring that
only feasible routes are created.

Most of these algorithms are designed to be applied —with small changes—
either to CVRP or to DVRP. There are also approaches to deal with VRP
facing both Capacity and Distance constraints (see Laporte et al., 1985).
To our knowledge, in all these models there is a one-to-one correspondence
between the set of vehicles and the set of single routes —all starting at the
depot, serving a set of nodes and ending at the depot—. This feature is
absent in the problem we face in this work, since the capacity constraint
here is much more restrictive than the time constraint and a given vehicle
must perform several single travels (see figure 2 and table 2). Each single
travel is limited by the capacity constraint, and the set of travels performed
by a given vehicle is limited by the time constraint. More exactly, there
are two non-negative numbers ¢;; and t;; associated with each edge (i, j)
(travel costs and travel times, respectively), two non-negative numbers d;
and t; associated with each vertex ¢ (demand and stopping time, respec-
tively), a capacity @ for each vehicle and a time bound T for the length of
each vehicle routing. The demands of the nodes served in a single travel
must not exceed the vehicle capacity ). The sum of the times spent by all
the travels performed by a vehicle must not exceed the time bound T'.
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It should be noticed that ignoring the time bound 7" —it could be an
appealing approach to our problem because of the relative importance of
the two constraints— and solving the problem as a pure CVRP, we would
obtain single routes much shorter than the time bound. After that, these
routes should be clustered into groups to be performed by a single vehicle,
in such a way that the sum of the times estimated for each vehicle does
not exceed the time bound 7. This approach could provide inappropriate
solutions (see the example on section 3). In this sense, existing algorithms
for VRP are not easy to apply to our problem and we design a specific
algorithm based on Monte Carlo (MC) techniques.

The features of the real delivery problem are presented in section 2.
In section 3 we formulate the problem as a DCVRP which is dealt with
a MC algorithm described in section 4. Computational results and the
corresponding estimation of savings are shown in section 5 and conclusions
are given in section 6.

2 Brief description of the real situation.

As it was mentioned before, the food company has a huge store located at
13 Km. from Valencia and must serve up to 70 food shops located inside the
city. Figure 1 shows the location of each shop in the map of Valencia. The
main store is not represented. The depot of the VRP instances (represented
by a square) stands for the point where the route arrives to the city from
the main store.

The agreement between the shops and the food company establishes
that each shop must demand a fixed number of pallets in certain days of
the week. For example, shop #1 demands 3 pallets every monday morning.
Figure 2 shows the 27 shops having demand every monday morning. The
contents of each pallet can be different from week to week, but the number
of pallets is fixed. Thus, the unit of demand and transportation is the
pallet. The number of pallets demanded by a shop ranges from 3 to 23,
with an average of 8.64 pallets and the vehicles used have a capacity of 23
pallets. Finally, the schedule-times of the food shops in Valencia implies
that pallets must be served within a given time window, from 7 to 12 hours
in the morning and from 15 to 20 hours in the afternoon.

Due to the nature of the demand of each shop, the company has de-
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fined 11 ‘delivery problems’ monday-morning (showed in Figure 2 and in
table 2), monday-afternoon, thursday-morning, ..., friday-afternoon and
saturday-morning. In each delivery problem up to 27 shops have to be
served by a set of vehicles (trucks) with the same capacity @@ = 23 pallets.
Each vehicle performs up to 4 different travels to the shops, all starting
and ending at the depot and with the sum of demands not exceeding 23.
These travels are determined by the constraint that all the shops must be
served within the time window.

We face a double objective. First, our aim is to minimize the number of
vehicles used. Second, we seek to minimize the total length covered by this
minimum set of vehicles.

3 Problem formulation.

Fixed means here that the subproblem monday-morning (for example) is
exactly the same for every monday of the year, i.e., we do not have to
solve an instance with different data for every monday. Once the 11 in-
stances corresponding to the 11 given subproblems have been solved, the
solutions proposed will be valid for the whole year. In order to define each
subproblem exactly, let us define:

subroute: single travel starting and ending at the depot that
serves several shops whose total demand is no greater than

Q.
route: set of subroutes (performed by a single vehicle) such that

the total time needed to complete them does not exceed
T.

We have to design a minimum set of routes formed by subroutes serving
all the shops with minimum total length. Hence, the 11 instances, with
size ranging from 12 to 27 nodes, can be considered as instances for the
DCVRP. The following data are required for each instance:

1. List of shops with their number dj, of pallets demanded.

2. Distance matrix ¢;; among every pair of nodes i and j (shops and
depot).
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3. Vehicle capacity @ (fixed to 23 pallets).
4. Total time bound T (fixed to 360 minutes).
5. Time matrix ¢;; needed to travel from node 7 to node j.

6. Time ¢y needed to load a vehicle at the depot (including the time
needed to go and come from the city to the main store).

7. Time t; needed to unload d; pallets at the shop k.

In order to obtain the previous data concerning time (4 to 7), we collect the
time spent by 11 real vehicles in their delivery routes (selecting one truck
in each subproblem) and we estimate:

e an average speed of 21 Km/h for a truck traveling on the streets of
Valencia. Hence, we can compute times t;; from lengths c;;.

e an average time of 1 minute to load/unload one pallet from a truck.
Hence, we can compute times ¢; from demands dy.

e a time of 10 minutes needed to travel from the main store to the
city (13 Km.). Hence, we can compute the time ¢( and the total time
bound, T = 360 minutes: 5 hours corresponding to the schedule-times
of the shops plus the time estimated to load a vehicle at the store, to
travel from the store to the first shop served and to return from the
last shop served to the store.

The features of these data make capacity constraints more restrictive than
time constraints. A single travel is limited by the capacity constraint Q =
23, but several single travels can be performed by the same vehicle without
violating the time bound 7' = 360 minutes. Nevertheless, as we mentioned
in section 1, we can not ignore the time bound 7" and solve the instances
as pure CVRP, because we would not obtain good solutions. Consider, for
example, the first instance to be solved, corresponding to monday-morning.
Solving this instance as a pure CVRP, we obtained the solution presented
in table 1, with 9 single travels and 368222 metres long. The last row of
table 1 presents the estimated time needed to perform each single travel.
Given that the time bound is 7' = 360 minutes, these 9 single travels can
not be performed by only 4 vehicles: in such a case, one vehicle would be
forced to perform 3 single travels, with an estimated time of, at least, 386.2
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Single travel 1 2 3 4 5 6 7 8 9
Pallets served 22 22 22 21 23 20 23 22 23
Time (min.) 129.4 | 130.7 | 126.1 | 144.4 | 151.8 | 1379 | 137.2 | 142.9 | 138.1

Table 1: Solution to Mon-m as pure CVRP. Total cost: z = 368222 m.

minutes —corresponding to travels 1, 2 and 3—. Nevertheless, when we
solve this instance by considering the time bound T' = 360, we obtain the
solution in table 2 —represented in figure 2— also with 9 single travels.
This solution has a total length of 373069 metres, higher than the previous
solution, but it can be performed by only 4 vehicles without violating the
time bound 7.

Vehicle 1 1 1 2 2 3 3 4 4
Single travel 1 2 3 4 5 6 7 8 9
Pallets served 22 20 19 22 23 23 23 23 23
Time (min.) 137.9 | 109.9 | 107.3 | 140.0 | 158.6 | 152.3 | 137.2 | 162.0 | 147.3

Table 2: Solution to Mon-m with time bound 7" = 360. Total cost: z =
373069 m.

4 The MC algorithm.

As mentioned in the Introduction, VRP is a N'P-hard problem and there-
fore in order to face it we implement a heuristic algorithm, based on Monte
Carlo techniques. These techniques applied to Routing Problems were first
introduced by Fernédndez de Cérdoba et al. (1998) for the Rural Postman
Problem. We simulate a vehicle traveling randomly over the edges of a
graph, describing a tour by jumping from one node to another depending
on certain probabilities. The key of these models is the definition of the
probabilities that depend on the tours to be designed. In this case, proba-
bilities are defined to design subroutes —serving nodes with total demand
not exceeding ()— and routes —formed by a set of subroutes with total ac-
cumulated time not exceeding T—. When all the nodes have been served,
the vehicle ends at the depot. A number of tours (iterations) is tried, and
the best is selected as the output of the algorithm.

At the beginning of each iteration we consider the subroute #1 of the
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route #1, and we assume the vehicle is at the depot. We also set

length: 2 =10
load: ¢ =0
time: t =ty

Each subroute is stored in an integer vector with a record for each edge in
the graph. Every time an edge (i, 7) is traversed, we increment by one the
corresponding record and we update:

length: 2z = z + ¢;;
time: t =t+ ti;

and every time a node k is reached and served we label it as ‘served by the
current subroute’ and we update:

load: ¢ = q + dg
time: t =t +

Suppose now the vehicle is at node i. Probability p;; of traversing edge
(4,7) must depend on the cost ¢;j, on the value of demand d; versus the
current load capacity @ —q, and on the time ¢;; +t;+t;1 versus the remain-
ing available time T'— ¢. Based on our experience in MC techniques (see
Fernandez et al. 1998,1999a, 1999b), the probabilities have been modelled

in the following way:

(a) select nodes j such that ¢+d; < @ (nodes j that can still be served)
and such that t +¢;; +t; +t;1 < T (nodes j that can still be visited within
the schedule-time).

(b) If there are such nodes, select one of them with probabilities p;;

proportional to 1/ c%-, where « is a real parameter.

(c) If it does not exist a node j such that ¢ + d; < Q, i.e., if any node
j can be served, then the vehicle returns to the depot and we start a new
subroute, setting the load ¢ = 0 and ¢ =t + to. If it does not exist a node
J such that ¢t + t;; +t; +tjo < T, ie., if any node j can be visited and
served within the schedule-time, then the vehicle returns to the depot and
we start a new route —and a new subroute—, setting the load ¢ = 0 and
t = 1.
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Finally, when all the nodes have been served, the vehicle returns to the
depot and we have a possible routing solution. The algorithm generates
one possible solution in each iteration. Among these solutions, the one
satisfying that, first, it uses the minimum number of vehicles (routes) and,
second, its travelled length 2 is minimum, is proposed as the output of the
algorithm.

The real parameter « increases the difference among the probabilities
of different edges. A greater value of o means greater differences among
the p;;’s corresponding to edges (7,j) with different costs ¢;;. A very large
value for a could be understood as a ‘greedy’ algorithm in the sense that
the shortest edge is usually selected. On the other hand, a value a = 0
could be understood as a completely random algorithm. In order to check
the influence of the value for o in the goodness of the solution obtained, we
executed the MC algorithm for the 11 instances and for different values of
. The number of iterations used, 75000, is enough to provide significative
results keeping low running times —ranging from 15 to 70 seconds for each
instance—. Figure 3 shows, for the 11 instances, the global improvement
obtained by the MC algorithm with different values for «, in percentage
with respect to the current solution. The best results where obtained with
a =4 (19.8% of improvement). It is worthwhile to notice that the worse
results were obtained with values a = 0 and « = 10.

It could be argued that the effect of fixing the value of a parameter is to
drive the search of solutions to a given (supposed good) zone of the whole
search space. However, our goal in this problem is to obtain solutions as
good as possible, by running the algorithm for a large number of iterations.
Notice that we are not concerned about having a large running time because
we do not have to solve fastly a different instance every day. Then, fixing
the value of a could mean that we explore in excess a given zone and do
not explore others, and it could be more efficient to diversify the zones to
explore. Therefore, we also executed the MC algorithm with the value for
a randomly changing after a given number of iterations. The parameter,
initially fixed at o = 4, is changed every 1000 iterations (for example) by
adding a random real number ranging in (—1,1) (when this sum exceeds
the interval (0,10), we set a = 4 again).

The results obtained with « variable, also showed in figure 3, improves
the result obtained with any fixed value. Hence, the algorithm we decide
to run is the MC algorithm with « variable, for a very large number of
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iterations —4000000—.

5 Computational Results.

4000000 iterations to the 11 instances on a Intel PC with a Pentium II
400 Mhz processor. The total time used for solving the 11 instances has
been about 7 hours and 22 minutes. Table 3 shows, for each instance,
the length, number of routes (vehicles) and number of subroutes (single
travels) used by the solution currently implemented by the company and
by the solution reported by our algorithm. It also shows the length savings
in Km. and in percentage and the running time in seconds. The total
length traveled by the trucks in the current solution is reduced by 962 km.
each week. This represents an improvement of 20.75%. Notice that, with
75000 iterations, the algorithm reaches an improvement of 19.90%, with a
running time inferior to 1 minute per instance. Therefore, it seems unlikely
to obtain a much better solution by increasing the number —4000000— of
iterations.

In order to estimate money savings we discuss briefly the way the com-
pany computes transportation costs. Instead of owning trucks, the company
hires routeers with their own route on a day-to-day basis. The price paid by
the company to each routeer depends on the number of single travels and
km. covered and on the total value (invoice) of the merchandise carried.
The number of travels and km. covered by each truck were known. The
value of the carried merchandise in each travel varies from week to week,
and it had to be estimated from the collected available data of the company
(for details, see Mayado, 1998). These data are reported in table 4. For
each day of the week, the (averaged estimated) cost of both the current
solution and the solution proposed by the MC algorithm, the savings in
‘pesetas’ and the percentages are shown. Multiplying the (averaged) sav-
ing per week by 53 weeks per year, a total saving of 3.534.358 ‘pesetas’.
(about 25.000 U.S. $) is obtained.

6 Conclusions.

In this paper we deal with a real world delivery problem of a food company
in Valencia (Spain). The problem is modelled as a set of 11 instances of
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Current solution Proposed solution Savings run.
# length vehic.& length vehic.& time
shops (m.) travels (m.) travels Km. | (%) (s)
mon-m 27 553129 5& 14 373069 4&9 180 | 32.6 3689
mon-a 27 536868 5& 14 429238 5& 11 107 | 20.0 3736
tue-m 12 212306 2&5 176997 2&4 35 16.6 801
tue-a 20 386658 4 & 10 351185 4&9 35 9.2 2128
wed-m 21 369013 41&9 284585 3&7 84 22.9 2272
wed-a 25 510731 5& 13 423876 4 & 11 86 17.0 3231
thu-m 15 282403 3&7 213288 3&5 69 24.5 1212
thu-a 21 422333 4 & 11 374816 4 & 10 47 11.3 2333
fri-m 23 370748 3&9 319419 4 &8 51 13.9 2704
fri-a 26 608443 5 & 16 423983 4 & 11 184 | 30.3 3483
sat 13 384645 4 & 10 304776 3&8 79 20.8 984
Total
a week 4637377 | 44 & 118 || 3675232 | 40 & 93 962 | 20.7 || 26528

Table 3: Length comparative data

the well known Vehicle Routing Problem, VRP, facing both Capacity and
Time constraints. Each vehicle performs several travels within a given time
interval. Each single travel —starting and ending at the depot— is limited
by the capacity of the vehicle. To our knowledge, an algorithm to deal with
this particular problem has not been proposed yet. We present a heuristic
algorithm based on Monte Carlo techniques that has produced satisfactory
computational results, obtaining distance and money savings of about 20%
and 5% respectively.

Thus, we show that MC algorithms, previously studied by Ferndndez
de Cérdoba et al. (1998), are useful in implementing heuristic algorithms
for different Routing Problems. The main advantage of MC algorithms
is their simplicity (they are conceptually simple and easy to implement
in a computer code) and their potential adaptability to a wide variety of
situations. This feature has been essential to deal with a VRP problem
with additional time constraints.
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current MC sol. savings | savings

cost cost (ptas.) (%)
mon 287.477 274.417 13.060 4,54
tue 185.717 178.920 6.796 3,66
wed 231.801 224.282 7.519 3,24
thu 208.271 188.186 20.085 9,64
fri 284.373 266.334 18.039 6,34
sat 108.877 107.691 1.186 1,09
Total
per week || 1.306.516 | 1.239.830 | 66.686 5,01
Total
per year 3.534.358

Table 4: Economic comparative data
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Figure 1: Location of the 70 food shops in Valencia.
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Figure 2: Location of the 27 shops having demand (in brackets) in
monday-morning and solution provided by the MC algorithm. Each single
travel is plotted except for the edges incident with the depot. Each shop is
labeled with the vehicle number that serves it.
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Figure 3: Percentage of global improvement, respect with the current
solution, obtained by the MC algorithm with different uses for parameter
Q.



