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Abstract

In Arc Routing Problems, ARPs, the aim is to find on a graph a minimum
cost traversal satisfying some conditions related to the links of the graph. Due
to restrictions to traverse some streets in a specified way, most applications of
ARPs must be modeled with a mixed graph. Although several exact algorithms
have been proposed, no polyhedral investigations have been done for ARPs on
a mixed graph. In this paper we deal with the Mixed General Routing Problem
which consists of finding a minimum cost traversal of a given link subset and
a given vertex subset of a mixed graph. A formulation is given that uses only
one variable for each link (edge or arc) of the graph. Some properties of the
associated polyhedron and some large families of facet-inducing inequalities are
described. A preliminary cutting-plane algorithm has produced very good lower
bounds over a set of 100 randomly generated instances of the Mixed Rural
Postman Problem. Finally, applications of this study to other known routing
problems are described.

Key Words: Polyhedral Combinatorics, Facets, Routing, Arc Routing, Rural
Postman Problem, General Routing Problem, Mixed Chinese Postman Problem.

1 Introduction

Arc Routing Problems, ARPs, have their origin in the celebrated Königsberg Bridge
Problem solved by Euler and consist, basically, of finding a set of routes over the arcs
(or edges) of a graph satisfying certain restrictions. There are many real situations
in which such a set of routes is required: collection or delivery of goods, mail
distribution, network maintenance (electrical lines or gas mains inspection), school
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bus transportation, garbage collection, etc. For this reason, a big number of Arc
Routing Problems have been studied in the last 30 years. Papers by Eiselt, Gendreau
& Laporte (1995a,1995b), by Assad & Golden (1995) and the recent book edited by
Dror (2000) survey the state of the art and real-life applications of the ARPs. In most
applications, there are some restrictions for the vehicle to traverse some streets in a
specified way, and the problem needs to be modeled with a mixed graph. As a rule,
one-way streets are represented by arcs and two-way streets by edges. We will use the
word link to refer to both an edge or an arc.

In this paper we study the General Routing Problem defined on a mixed graph,
the Mixed General Routing Problem (MGRP), that we define next:

Given a strongly connected mixed graph G = (V,E,A) with vertex set V , edge
set E, arc set A, a cost ce for each e ∈ E ∪ A, a set ER ⊆ E of required edges, a set
AR ⊆ A of required arcs and a set VR ⊆ V of required vertices, the Mixed General
Routing Problem (MGRP) is the problem of finding a minimum cost vehicle route
passing through each e ∈ ER ∪ AR and through each i ∈ VR at least once.

The MGRP has several well known routing problems as special cases. Given an
undirected and connected graph G=(V,E) with nonnegative costs associated with its
edges, the Chinese Postman Problem (CPP) consists of finding a minimum cost tour
(a closed walk) traversing, at least once, all the edges in E. This well known problem
is solvable in polynomial time (Edmonds & Johnson, 1973). However, if the tour has
to traverse only a subset, ER, of the set of edges E and this subset induces in G a
disconnected graph, the problem, called the Rural Postman Problem (RPP), turns
out to be NP-hard (Lenstra & Rinnooy-Kan, 1976). Furthermore, if the condition
for the tour is to traverse both a given subset of edges ER ⊂ E and a given subset
of vertices VR ⊂ V , the problem is then called the General Routing Problem (GRP)
and it is also NP-hard. On the other hand, if the CPP is defined over a mixed graph,
the problem of traversing all the arcs and edges in G (the Mixed Chinese Postman
Problem, MCPP) is again NP-hard (Papadimitriou, 1976).

Although the MGRP is not strictly an ARP, it is a generalization of both the Mixed
RPP (MRPP) and the Graphical Asymmetric TSP (GATSP). The MRPP contains
the (undirected) Rural Postman Problem and the Mixed Chinese Postman Problem
as particular cases and, thus, is a NP-hard problem. The Graphical Asymmetric
TSP consists of finding a minimum cost tour on a strongly connected directed graph
G = (V,A) traversing each vertex of G at least once. This problem, recently studied
by Chopra and Rinaldi (1996), is clearly a special case of MGRP when E = ∅, all the
arcs are non-required and all the vertices are required.

The existing optimal approaches for ARP’s on mixed graphs are related to the
MCPP. Christofides et al. (1984) present a formulation for the MCPP in which a
variable is associated with each arc, two variables with each edge (representing the
number of times the edge is traversed in each direction) and another variable with each
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vertex. Then, a branch and bound algorithm was implemented that solved 34 small
size instances. Grötschel & Win (1992) propose a cutting-plane algorithm to solve
the Windy Postman Problem (WPP), the problem of finding a minimum cost tour
traversing all edges of an undirected graph with two costs associated with each edge
(the cost of traversing an edge depends on the direction of travel). The WPP, that
contains the MCPP as a special case, is also formulated using two variables associated
with each edge. Nine medium size MCPP instances were solved to optimality with this
cutting-plane algorithm. The formulations in both papers are based on transforming
the original graph into a directed graph that is eulerian if symmetry conditions on
the vertices of the graph are satisfied. A somewhat different approach that uses only
one variable associated with each edge was proposed by Nobert & Picard (1996). It is
based on the characterization of an eulerian mixed graph given by Ford & Fulkerson
(1962): a strongly connected mixed graph is eulerian if and only if the degree of each
node is even (evenness condition) and for every proper subset of vertices S, the number
of arcs entering S minus the number of arcs leaving S is less than or equal to the
number of edges between S and V \ S (balanced sets condition). Nobert & Picard
present a cutting-plane algorithm that was able to solve 148 instances out of 180
randomly generated instances with sizes up to 169 vertices, 2876 arcs and 1849 edges.

Since there is reasonably strong evidence that the last approach is computationally
superior to the previous one, we chose to formulate the MGRP in this way. In Section
2 we present the formulation of the problem and in Section 3 we study its associated
polyhedron. Some basic inequalities that are valid for the polyhedron and that, under
certain conditions, define facets of it, are presented in Section 4: trivial, connectivity,
balanced-set and R-odd cut constraints. In Sections 5 and 6, two big families of
inequalities, Path Bridge and Path Bridge02 inequalities, are presented and shown to
be facet inducing of the MGRP polyhedron. Some computational results are presented
in Section 7, where a preliminary cutting-plane algorithm, based on a part of the given
description of the MGRP polyhedron, has produced very good lower bounds over a
set of 100 randomly generated instances of the MRPP. Finally, in Section 8 we apply
the results from this study to other known Routing Problems.

2 Problem definition and notation

Note that if i ∈ V is a vertex incident to any required link e ∈ ER ∪ AR, the
condition on the tour passing through edge e contains the condition of visiting vertex
i. Therefore, in the following, we will assume that VR contains the set of vertices
incident to the required edges.

As it is usual when the subgraph induced by the required vertices and links is not
connected, we first transform the original graph in order to simplify both the problem
structure and the formulation. This transformation is done in a similar way to that
of Christofides et al. (1981) for the undirected RPP (see Eiselt, Gendreau & Laporte,
1995b, or Christofides et al., 1986, for an illustration of the procedure):
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1. Add to GR = (VR, ER ∪ AR) an arc between every pair of vertices in VR having a
cost equal to the shortest path length on G if such a path does not uses required
links.

2. Delete: a) one of every two arcs in parallel if they have the same cost, b) every arc
parallel to an edge with the same cost, and c) all arcs e = (i, j) /∈ ER such that
cij = cik + ckj for some vertex k.

This transformation can occasionally increase the number of edges in G, but it fre-
quently decreases it. Notice that all vertices in the simplified graph are either required
or incident to a required link and that E \ER = ∅. Hence, we can assume that we work
with a (simplified) strongly connected graph G = (V,E,A) := (VR, ER, AR ∪ ANR).

Let GR = G(V,E,AR) be the graph obtained by deleting in G all the non required
arcs. In general, graph GR is not connected. Let p be the number of connected
components of GR and let V1, V2, . . . , Vp be the vertex sets corresponding to the p
connected components of GR, which will be called R-sets, with V1 ∪ . . . ∪ Vp = V . We
will represent by Ci = G(Vi), i = 1, . . . , p, the subgraphs of G induced by the R-sets
and they will be referred to as R-connected components. Notice that every isolated
required vertex is a R-connected component of G. Given two disjoint sets of vertices
S1, S2 ⊂ V and a set S ⊂ V , we will use the following notation:

(S1 : S2) = {(i, j) ∈ E ∪ A : i ∈ S1, j ∈ S2 or i ∈ S2, j ∈ S1}
A(S1 : S2) = {(i, j) ∈ A : i ∈ S1, j ∈ S2}
E(S1 : S2) = (S1 : S2) ∩ E
δ(S) = (S : V \ S) (called link cut-set of G defined by S)
γ(S) = {(i, j) ∈ E ∪ A : i, j ∈ S}
A+(S) = A(S : V \ S)
A−(S) = A(V \ S : S)
A(S) = A+(S) ∪ A−(S)
E(S) = E(S : V \ S)

The above sets are defined in a similar way referring to required links only and to
non-required links only: (S1 : S2)R, ANR(S1 : S2), A+

R(S), A−NR(S), δR(S), etc. Given
x ∈ IRE∪A and given T ⊂ E ∪ A, x(T ) denotes

∑
e∈T xe.

A tour for the MGRP is a family F of links of G such that the graph (V,EF ∪AF)
is unicursal (also called eulerian) and contains all the required links, where EF ∪ AF
is obtained by considering each copy of a link in F as a different element. Applying
sufficient conditions for a connected mixed graph to be unicursal (Ford and Fulkerson,
1962), we can state that F is a tour for the MGRP when the following conditions are
satisfied:

• F contains all the required links.

• Graph (V,EF ∪ AF) is even, i.e., every vertex is incident to an even number of
links.
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• Graph (V,EF ∪ AF) is connected.

• Graph (V,EF ∪AF) is balanced, i.e., for every S ⊂ V , the difference between the
number of arcs in A+(S) (leaving S) and the number of arcs in A−(S) (entering
S) is less than or equal to the number of edges in E(S) (balanced-set condition
for set S).

We formulate the MGRP with respect to semitours. We call the family of links
obtained from any tour for the MGRP by deleting one copy of every link in E ∪AR a
semitour for the MGRP. We associate with each tour (semitour) an integer incidence
vector x = (xe : e ∈ E ∪ A) ∈ IRE∪A, where xe denotes the number of times a link
e ∈ E ∪ A appears in the tour (semitour). For notational convenience, we will use
also the word tour (semitour) to denote this vector. Let xR denotes the incidence
vector of required links. Then, x is a semitour for the MGRP on G if, and only if,
x+ xR is a tour. Vector x+ xR will be referred to as the corresponding tour of a given
semitour x. A vertex v ∈ V will be called R-odd if it is incident to an odd number of
required links, otherwise it will be called R-even. Note that every isolated required
vertex is R-even. Given S ⊂ V , let uS = |A+

R(S)| − |A−R(S)| − |E(S)|. It is easy
to see that the set of semitours for the MGRP is the set of vectors x ∈ IRE∪A satisfying:

xe ≥ 0 and integer, ∀e ∈ E ∪ A (1)

x(δ({i})) ≡ 0 mod 2, ∀i ∈ V : v is R− even (2)

x(δ({i})) ≡ 1 mod 2, ∀i ∈ V : v is R− odd (3)

x(A+(S)) ≥ 1, ∀S = ∪k∈QVk, Q ⊂ {1, . . . , p} (4)

−x(A+(S)) + x(A−(S)) + x(E(S)) ≥ uS, ∀S ⊂ V (5)

where conditions (2) and (3), (4) and (5) force the graph represented by the tour to
be, respectively, even, connected and balanced.

Let us describe briefly constraints (5) (see figure 1, where the required links are
represented in solid lines and the non required in dash lines). Given that uS = 1,
constraint (5) can be expressed as x(A−(S)) + x(E(S)) ≥ 1 + x(A+(S)). It could
be understood that we must add, at least, uS = 1 link in the set A−(S) ∪ E(S)
in order to obtain a balanced graph. If we consider now S̄ = V \ S, then
uS̄ = |A−R(S)| − |A+

R(S)| − |E(S)| = −3 and the corresponding constraint (5) can be
expressed as x(A−(S)) ≤ 3 +x(A+(S)) +x(E(S)). It means that we can not add more
than 3 links in A−(S), if we do not add also links in A+(S) ∪ E(S).

Consider now a set S ⊂ V such that E(S) = ∅. Then uS = −uS̄ and constraints
(5) corresponding to S and S̄ imply the so called symmetry equation x(A+(S)) + uS =
x(A−(S)). Hence, system (1) to (5) includes an equation associated with each set
S ⊂ V with E(S) = ∅, most of them linearly dependent. In order to discuss this, let
us represent by K1, K2, . . . , Kq the sets of vertices of the connected components of the
graph (V,E). Some sets Ki could consist in a single vertex. Each set Ki is contained
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uS=1: x(A−(S)) + x(E(S)) ≥ 1 + x(A+(S))

uS̄=−3: x(A−(S)) ≤ 3 + x(A+(S)) + x(E(S))

Figure 1: Some examples of balanced set constraints.

in a set Vj. We will call the q subgraphs of G induced by sets Ki edge-connected
components of G. The q equations

x(A+(Ki)) + uKi
= x(A−(Ki)), i = 1, 2, . . . , q (6)

will be referred as the system equations. It can be shown that any q − 1 of them are
linearly independent.

3 Basic Properties

Let MGRP(G) be the convex hull in IRE∪A of all the semitours for the MGRP on G,
i.e., of all vectors x ∈ IRE∪A satisfying (1) to (5). It is not hard to see that MGRP(G) is
an unbounded polyhedron. In order to study the dimension of MGRP(G), we will use
the following result, due to Chopra & Rinaldi (1996). Let GATSP(G) be the convex
hull of the tours for the GATSP on a directed graph G. Then,

Lemma 1 (Chopra & Rinaldi, 1996) Let G = (V,A) be a directed graph. If G is
strongly connected, dim(GATSP(G)) = |A| − |V |+ 1

Theorem 1 dim(MGRP(G)) = |E∪A|−q+1, where q is the number of edge-connected
components of G.

Proof: As every semitour satisfies equations (6) and q − 1 of them are linearly inde-
pendent, dim(MGRP(G)) ≤ |E ∪ A| − q + 1 holds. In order to prove the equality, we
will find |E ∪ A| − q + 2 affinely independent semitours for the MGRP on G.

Let F = A\(γ(K1)∪. . .∪γ(Kq)) be the set of arcs joining vertices from two different
sets Ki, Kj. Let Gs be the graph obtained by shrinking node sets Ki, i = 1, . . . , q into
a single vertex each. Graph Gs is a strongly connected directed graph with q vertices
and with an arc corresponding to each arc in F . Note that Gs can have parallel arcs.
From lemma 1, dim(GATSP(Gs))= |F | − q + 1 := m and hence we can find m + 1
affinely independent tours for the GATSP on Gs. If we add to these tours the incidence
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vector of a cycle on Gs traversing all the arcs corresponding to the required arcs in F ,
we obtain m + 1 new tours for the GATSP on Gs that are also affinely independent.
Now, it is easy to transform these tours by adding edges and arcs in γ(K1)∪ . . .∪γ(Kq)
in order to obtain m + 1 tours for the MGRP on G. Let x0, x1, . . . , xm denote their
corresponding m+ 1 semitours.

For each edge e ∈ γ(K1)∪. . .∪γ(Kq), consider now the semitour obtained by adding
to x0 (for instance) two copies of e. For each arc a ∈ γ(Ki), i = 1, . . . , q, consider the
semitour obtained by adding to x0 a copy of a and a copy of each edge in a path in
G(Ki) using only edges (such a path exists because of the definition of Ki). Then we
have |γ(K1) ∪ . . . ∪ γ(Kq)| more semitours for the MGRP on G.

Consider the matrix obtained by expressing the semitours as rows and the links
as columns. Subtracting the row corresponding to x0 from the remaining rows,
we obtain the matrix in figure 2, where I is the identity matrix and B is the
matrix, with rank m, corresponding to the tours for the GATSP. Then, the rank
of the full matrix is | ∪ γ(Ki)| + m = | ∪ γ(Ki)| + |F | − q + 1 = |E ∪ A| − q + 1
and we have found |E∪A|−q+2 affinely independent semitours for the MGRP on G. �

(∪γ(Ki))∩A (∪γ(Ki))∩E F

I * *

0 2I *

0 0 B

Figure 2: Matrix appearing in the proof of theorem 1

Given that MGRP(G) is not full-dimensional, different inequalities can induce
the same facet. Such inequalities are called equivalent. We next study conditions
for inequalities (1) without the integrality condition, which will be called trivial
inequalities, to be facet-inducing. A link e ∈ E ∪ A will be called a cut-link of G if,
after removing e from G, the resulting graph is not strongly connected.

Theorem 2 (Trivial inequalities) : Inequalities xe ≥ 0, ∀e ∈ E ∪ A, are facet-
inducing for MGRP(G) if e is not a cut-link of G (the condition is also necessary for
links e ∈ E ∪ ANR).

Proof: The proof is simple and is omitted here for the sake of brevity. �
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Before studying the remaining inequalities in the formulation, we describe some
general results that will be useful in what follows.

Let G = (V,E,A) be a mixed graph. A configuration C on G is a triplet (B, cE, cA),
where B = {B1, B2, . . . , Br} is a partition of V , cE and cA are real functions defined
on B × B and the following conditions are satisfied:
(C-a) Every subgraph G(Bi) is strongly connected.
(C-b) cE(Bi, Bj) = cE(Bj, Bi) > 0 for every pair Bi 6= Bj such that E(Bi : Bj) 6= ∅
(C-c) There is no closed cycle Bi, Bj, . . . , Bm, Bi with total c-cost negative.

Associated with a configuration C on G we have a configuration graph GC having
node set B, a required edge (Bi, Bj) for each required edge (u, v) of G with u ∈ Bi,
v ∈ Bj, a required arc (Bi, Bj) for each required arc (u, v) of G with u ∈ Bi, v ∈ Bj

and a non required arc (Bi, Bj) for each pair Bi, Bj such that ANR(Bi : Bj) 6= ∅. In
other words, GC is the graph resulting from shrinking node sets Bi, i = 1, . . . , r into a
single vertex each and, after that, shrinking each set of non required parallel arcs into
one single arc, but keeping all the required edges and arcs. A configuration C defines
a configuration inequality,

∑
e∈E∪A cexe ≥ c0, where:

(a) ce = 0 for every e ∈ γ(Bi), i = 1, . . . , r
(b) ce = cE(Bi, Bj) for every edge e ∈ E(Bi : Bj)
(c) ca = cA(Bi, Bj) for every arc a ∈ A(Bi : Bj)
(d) c0 is the c-length of the shortest semitour for the MGRP on GC (and
on G).

Notice that it is possible to have cA(Bi, Bj) 6= cA(Bj, Bi) 6= cE(Bi, Bj) and also
cA(Bi, Bj) < 0 (see connectivity and balanced-set inequalities (4) and (5)).

Theorem 3 All facet-inducing inequalities for MGRP(G), except those equivalent to
trivial ones, are configuration inequalities.

Proof: The proof is similar to that in Naddef and Rinaldi (1991) for the Graphical
TSP, and is omitted here for the sake of brevity. �

The following results are two ‘lifting’ theorems that state conditions for a given con-
figuration inequality which is facet-inducing for MGRP(GC) to be also facet-inducing
for MGRP(G). Given a mixed graph G = (V,E,A), q(G) will denote the number
of edge-connected components of G, i.e., the number of connected components of the
graph (V,E).

Theorem 4 Let G be a mixed graph and let C be a configuration on G. The associated
configuration inequality is facet-inducing for MGRP(G) if the configuration inequal-
ity associated with C on graph GC is facet-inducing for MGRP(GC) and the following
condition is satisfied:

q(G) = q(GC) +
∑r

i=1 (q(G(Bi))−1) (L1)
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Proof: By induction, it suffices to prove the result for a graph G obtained from GC by
replacing node B1 (for example) by a strongly connected graph G(B1). For simplicity,
F (x) ≥ c0 will denote both the inequality on G and the inequality on GC. We first show
validity. Consider any semitour x for the MGRP on G. Shrinking G(B1) into a single
vertex we obtain a semitour x′ for the MGRP on GC satisfying F (x) = F (x′) ≥ c0.

Let K = dim(MGRP(GC)) and let us suppose that c0 6= 0. Then, there exists
K linearly independent semitours for the MGRP on GC satisfying F (x) = c0, say
x1, x2, . . . , xK . If c0 = 0 there would be only K − 1 semitours, but the proof would be
similar. After replacing B1 by the graph G(B1), some non required arcs may appear
between the vertices of G(B1) and nodes Bi, i 6= 1. Let us call G′C the graph obtained
from GC by adding Q non required arcs e′1, e

′
2, . . . , e

′
Q, where each e′i is parallel to a

non required arc (not necessarily distinct) ei, i = 1, 2, . . . , Q, of GC. For each e′i,
let xj be the semitour for the MGRP on GC traversing ei and consider the semitour
xj \ {ei} ∪ {e′i}. Then, we have K + Q linearly independent semitours for the MGRP
on G′C satisfying F (x) = c0. Given that G(B1) is strongly connected, each of them can
be completed with links of G(B1) in order to obtain semitours for the MGRP on G
also satisfying F (x) = c0. Let us call them x1, x2, . . . , xK+Q.

Consider the MGRP defined on graph G(B1), let M = dim(MGRP(G(B1))) and let
y1, y2, . . . , yM be M linearly independent semitours for the MGRP on G(B1). Then,
x1+y1, x1+y2, . . . , x1+yM are also semitours for the MGRP on G satisfying F (x) = c0.
Expressing the K + Q + M semitours as rows of a matrix and subtracting the first
row x1 from the last M rows, we obtain a full rank matrix. Hence, we have found
K +Q+M linearly independent semitours for the MGRP on G satisfying F (x) = c0.
The proof will be completed when dim(MGRP(G))= K +Q+M is showed.

Given that graphs GC and G′C have the same set of edges, it holds that q(GC) =
q(G′C) and condition (L1) can be expressed as

−q(G) = −q(G′C)− q(G(B1)) + 1 (7)

On the other hand, if nlink(G) represents the number of links on graph G, we have
nlink(G) = nlink(G′C) + nlink(G(B1)) and, from equation (7), nlink(G)-q(G)+1 =
nlink(G′C)-q(G

′
C) + 1 + nlink(G(B1)) - q(G(B1)) + 1, i.e.,

dim(MGRP(G)) = dim(MGRP(G′C) + dim(MGRP(G(B1)) = K +Q+M . �

Note: Condition (L1) is always satisfied when GC is a directed graph: after replacing
a node Bi by a graph G(Bi), each edge-connected component in G(Bi) is also an edge-
connected component in the resulting graph G, and q(G) = q(GC)+q(G(Bi))−1 holds.
For example, graphs GC and G shown in figure 3 (the edge-conected components of
each G(Bi) are represented by black circles), satisfy q(GC) = 3 and q(G) = 6 =
3 + (2− 1) + (3− 1).

Nevertheless, when GC is a mixed graph, after replacing a node Bi by a graph
G(Bi), different edge-connected components in G(Bi) can be connected by edges in
the resulting graph G and q(G) < q(GC) + q(G(Bi)) − 1 would hold. In such a case,
condition (L1) would not be satisfied. For example, graphs GC and G in figure 4 satisfy
q(GC) = 1 and q(G) = 3 6= 1+(2−1)+(3−1), while those in figure 5 satisfy condition
(L1) since q(GC) = 1 and q(G) = 4 = 1+(2−1)+(3−1). However, note that if GC has
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edges only between two given nodes, say Bi and Bj, condition (L1) is satisfied if all the
edges link the same edge-connected component of G(Bi) to the same edge-connected
component of G(Bj).
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Figure 3: (L1) is satisfied when GC is a directed graph.
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Figure 4: GC is a mixed graph and (L1) is not satisfied.

When condition (L1) is not satisfied, the following second lifting theorem will be
tried.

Theorem 5 Let G be a mixed graph and let C be a configuration on G. The associated
configuration inequality is facet-inducing for MGRP(G) if the configuration inequality
F (x) ≥ c0 associated with C on graph GC is facet-inducing for MGRP(GC) and the
following conditions are satisfied:

L2(a) Given any proper subset of edges in GC, it is possible to replace each edge by an
arc in such a way that inequality F (x) ≥ c0 is also facet-inducing for the MGRP
polyhedron associated with the resulting graph, G′C.

L2(b) Given any of the previous graphs G′C and given any arc a replacing an edge in
GC, if we change arc a to an arc with the opposite direction, there exists at least
one semitour x∗ for the MGRP on the resulting graph satisfying F (x∗) = c0
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Figure 5: GC is a mixed graph and (L1) is satisfied.

L2(c) Graph GC has edges only between two given nodes, say B1 and B2.

Proof: Again, F (x) ≥ c0 will denote both the inequality on G and on GC. Let us call
ω = q(GC) +

∑r
i=1 (q(G(Bi))−1) - q(G) ≥ 0, where q(G) is defined as before. We will

proceed by induction on the value of ω. If ω = 0 then condition (L1) is satisfied and,
from theorem 4, F (x) ≥ c0 is facet inducing of MGRP(G). Assume that the result
is true for every pair of graphs G, GC with ω ≤ n − 1 and let G, GC be graphs with
ω = n ≥ 1.

As, from L2(c), the only edges of graph GC link B1 and B2, if ω ≥ 1 not all the
edges in G are linking the same edge-connected component of G(B1) to the same edge-
component of G(B2), i.e., if we consider the bipartite graph in figure 6 having node sets
formed by the edge-connected components of G(B1) and G(B2), say {S1, S2, . . . , Sm}
and {T1, T2, . . . , Tn}, and having an edge (Si, Tj) for each E(Si : Tj) 6= ∅, then it has,
at least, two edges. Consider a node that it is not a cut-vertex of this graph, say S1

in G(B1). By construction, there exists another node, say S2, also in G(B1), which
is incident to some edges. If we delete from G and from GC the edges incident to S1

mS1mS2

...

mSm

mT1mT2

...

mTn

�

�

�

�

�

�

�

�
PPPP

��
��

B1 B2

Figure 6: Bipartite graph used in the proof of theorem 5

(transforming them into arcs, for example), the resulting graphs G′ and G′C satisfy,
respectively, q(G′) = q(G)+1 (because S1 is not a cut-vertex) and q(G′C) = q(GC)
(because E(S2 : B2) 6= ∅ and GC has edges only between B1 and B2). Hence, we have
two graphs G′ and G′C with ω = n − 1. From L2(a), we can assign a direction to
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each edge in E(S1) in such a way that inequality F (x) ≥ c0 is facet-inducing for the
MGRP polyhedron associated with the resulting graph, G′C. From the hypothesis of
induction, F (x) ≥ c0 is also facet-inducing for the MGRP polyhedron associated with
G′. Let us assume that c0 6= 0 (otherwise, the proof would be similar). Therefore,
there exists nlink(G′) - q(G′) + 1 linearly independent semitours for the MGRP on
G′ satisfying F (x) = c0. Given that these semitours are also semitours for the MGRP
on G and given that nlink(G′) = nlink(G) and q(G′)=q(G)+1, we have nlink(G) -
q(G) semitours and only one more tour is needed for F (x) ≥ c0 to be facet-inducing
for MGRP(G).

Let e be one of the edges of GC in E(S1) that had been changed into an arc in G′C.
Let G”C be the graph obtained by changing the arc e into an arc with the opposite
direction. From L2(b), there exists a semitour x∗ for the MGRP on G”C satisfying
F (x∗) = c0. Given that G(Bi) are strongly connected graphs, we can complete x∗ with
links of ∪γ(Bi) to obtain a semitour for the MGRP on G, also called x∗, satisfying
F (x∗) = c0. Finally, in order to show that x∗ is not a linear combination of the previous
nlink(G) - q(G) semitours, we only have to notice that these last semitours satisfy the
equation x(A+(S1)) + |A+(S1)| = x(A−(S1)) + |A−(S1)| considered in graph G′, whilst
x∗ satisfies equation x(A+(S1) \ {e}) + |A+(S1)|−1 = x(A−(S1)) + xe + |A−(S1)|+1
also considered in graph G′. �

4 Basic inequalities

Let us begin studying inequalities (4) and (5), which are valid for MGRP(G) and will
be referred to as connectivity and balanced-set inequalities, respectively.

4.1 Connectivity inequalities

Theorem 6 : Inequalities (4), x(A+(S)) ≥ 1, ∀S = ∪k∈QVk, Q ⊂ {1, . . . , p}, are
facet-inducing for MGRP(G) if graphs G(S) and G(V \ S) are strongly connected.

Proof: The configuration graph GC has only two nodes, say 1 and 2, corresponding
to S and to V \ S, respectively. As E(S) = AR(S) = ∅, vertices 1 and 2 are joined
by a pair of opposite non required arcs. Therefore, dim(MGRP(GC))= 2 − 2 + 1 = 1
and, since the semitour x1,2 = x2,1 = 1 satisfies x+(S) = x1,2 = 1, the inequality
is facet-inducing for MGRP(GC). Given that (S : V \ S) does not contain edges,
condition (L1) of the first lifting theorem 4 is satisfied and the inequality is also
facet-inducing for MGRP(G). �

Even if G(S) is not strongly connected, there may exist a subset S0 ⊂ S such that
G(S0) is strongly connected, S0 = ∪k∈Q′Vk, Q′ ⊂ Q and A+(S) = A+(S0). In this
case, inequality (4) is facet inducing. Otherwise, it can be shown that inequality (4) is
not facet inducing because it is dominated by a balanced-set inequality or by another
connectivity inequality.
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4.2 Balanced-set inequalities

Theorem 7 : Let S ⊂ V be such that G(S) and G(V \ S) are strongly connected.
The balanced-set inequality (5), −x(A+(S)) + x(A−(S)) + x(E(S)) ≥ uS, where uS =
|A+

R(S)|−|A−R(S)|−|E(S)|, is facet-inducing for MGRP(G) if and only if the following
conditions are satisfied:

(i) A+(S) 6= ∅
(ii) E(S) 6= ∅
(iii) q(G) = q(G(S)) + q(G(V \ S)) - 1

Proof: The conditions are sufficient: Consider the corresponding graph GC having
only two vertices, say 1 and 2, a number |A+

R(S)| of required (parallel) arcs from 1 to 2,
a number |A−R(S)| of required arcs from 2 to 1, a number |E(S)| of edges and, possibly,
a pair of opposite non required arcs. Condition (ii) implies that q(GC)=1 and then
(iii) implies condition (L1) of the first lifting theorem. Hence, it suffices to show the
result on graph GC, by finding an appropriate number of affinely independent semitours
satisfying (5) to equality. This is equivalent to find |E ∪A| affinely independent tours
satisfying

x(A+(1)) = x(A−(1)) + x(E(1))

Notice that, in such tours, edges have to be traversed from vertex 2 to 1. Hence, in
what follows, we will not differentiate between edges (in E(1)) and arcs in A−(1). Let
us call K = |A+(1)| and M = |E(1) ∪ A−(1)|. We study two cases:

(a) K = M . Consider the tour x∗ defined as x∗e = 1 for all e ∈ A+(1)∪A−(1)∪E(1).
Let now e1 be a given link in A−(1)∪E(1). For each arc e ∈ A+(1), let xe be defined as
xee = xee1 = 2 and xea = 1 for all a 6= e, e1. Let now a1 be a given arc in A+(1). For each
link e ∈ E(1) ∪ A−(1), let xe be defined as xee = xea1 = 2 and xea = 1 for all a 6= e, a1.
We have defined |E ∪A|+ 1 different tours satisfying x(A+(1)) = x(A−(1)) + x(E(1)).
Again, by arranging them as the rows of a matrix (figure 7(a)) and subtracting the
row 1 (associated with x∗) from all the remaining rows, we obtain a matrix with rank
|E ∪ A| − 1. Thus, |E ∪ A| of these tours are affinely independent.

(b) K 6= M . Let us assume, for example, that K < M and denote
σ = M −K + 1 6= 1. For each arc e ∈ A+(1), let xe be defined as xee = σ and xea = 1
for all a 6= e. Let a1 be a given arc in A+(1). For each link e ∈ E(1)∪A−(1), let xe be
defined as xee = 2, xea1 = σ + 1 and xea = 1 for all a 6= e, a1. These |E ∪A| tours satisfy
x(A+(1)) = x(A−(1)) + x(E(1)). Again, if we arrange them as the rows of a matrix
(figure 7(b)) and we subtract the first row from all the remaining rows, we obtain a
matrix with rank |E ∪ A| − 1.

The conditions are necessary:
(i) If A+(S) = ∅, inequality (5) can be written as x(E(S)) + x(A−(S)) ≥
−|A−R(S)| − |E(S)|, that it is obviously dominated by the sum of several trivial
inequalities.
(ii) If E(S) = ∅, inequality (5) becomes x(A+(S)) + uS ≤ x(A−(S)) which is satisfied
to equality (symmetry condition) by all the semitours for the MGRP on G.

13



A+(1) A−(1) ∪ E(1)
x∗ 1 1 . . . 1 1 1 . . . 1

2 1 . . . 1 2 1 . . . 1
1 2 . . . 1 2 1 . . . 1

. . . . . . 1
1 1 . . . 2 2 1 . . . 1
2 1 . . . 1 2 1 . . . 1
2 1 . . . 1 1 2 . . . 1

. . .
. . .

2 1 . . . 1 1 1 . . . 2
(a)

A+(1) A−(1) ∪ E(1)
σ 1 . . . 1 1 1 . . . 1
1 σ . . . 1 1 1 . . . 1

. . . . . . 1
1 1 . . . σ 1 1 . . . 1

σ+1 1 . . . 1 2 1 . . . 1
σ+1 1 . . . 1 1 2 . . . 1

. . .
. . .

σ+1 1 . . . 1 1 1 . . . 2
(b)

Figure 7: Matrices appearing in the proof of theorem 7

(iii) If q(G) < q(G(S)) + q(G(V \ S)) - 1, there exists a cut-set (S0 : S1) in G(S) (or
in G(V \ S)) such that E(S0 : S1) = ∅ and E(S0 : V \ S) 6= ∅ 6= E(S1 : V \ S). It can
be shown that the balanced-set inequality corresponding to set S is obtained as the
sum of the balanced-set inequalities corresponding to sets S0 and S1. �

Note: Let S ⊂ V be such that there exists a cut-set (S0 : S1) in G(S) with E(S0 :
S1) = ∅, E(S0 : V \ S) 6= ∅ and E(S1 : V \ S) = ∅. As before, it can be shown
that the balanced-set inequality corresponding to S is the sum of the balanced-set
inequality corresponding to S0 and the equation x(A+(S1)) +uS1 = x(A−(S1)). Hence,
balanced-set inequalities associated with S and S0 are equivalent and, in practice,
we could only consider balanced-set inequalities corresponding to sets S such that
S ⊂ Ki for any edge-connected component Ki of G. Notice also that, unlike the
connectivity inequalities, the balanced-set inequalities corresponding to S and V \ S
are not equivalent.

4.3 R-odd cut inequalities

A cut-set δ(S) will be called R-odd if it contains an odd number of required links or,
equivalently, if both S and V \ S contain an odd number of R-odd vertices. Any tour
must cross any given link cut-set an even number of times. This means that if δ(S) is
R-odd, then the tour must traverse all their required links and, at least, one more link.
Hence, any semitour must use, at least, one link in each R-odd cut-set and the following
inequalities, which will be called R-odd cut inequalities, are valid for MGRP(G):

x(δ(S)) ≥ 1, ∀δ(S) R−odd cut−set (8)

Theorem 8 : Let δ(S) be an R-odd cut-set of G such that G(S) and G(V \ S) are
strongly connected. The R-odd cut inequality (8), x(δ(S)) ≥ 1, is facet-inducing for
MGRP(G) if and only if |α−β| < ε, where α = |A+

R(S)|, β = |A−R(S)| and ε = |E(S)|

Proof: The condition is necessary. If |α−β| = ε, then α+β+ε = |δR(S)| is not odd. If
|α−β| > ε, the R-odd cut inequality is dominated by a balanced-set inequality. To show
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this, let us assume that α ≥ β. Then, α−β > ε and therefore α−β−ε = uS ≥ 1. From
the balanced-set inequality associated with S, x(A−(S))+x(E(S)) ≥ x(A+(S))+uS ≥
1 holds and dominates (8).
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Figure 8: Graphs GC, G
′
C and G”C and tour x∗ + xR used in the proof of theorem 8.

The condition is sufficient. We first show the result for the graph GC. This graph
has two vertices, say 1 and 2, a number α of required (parallel) arcs from 1 to 2, a
number β of required arcs from 2 to 1, a positive number ε of edges and, possibly, a
pair of opposite non required arcs. Hence, dim(MGRP(GC)) = nlink(GC). Condition
ε ≥ |α − β| + 1 implies that there are enough edges in GC to balance a copy of every
required arc and even one more. Hence, the following vectors are semitours for the
MGRP on GC:

- For each link e (required or not), let xe be defined as xee = 1 and xea = 0
for each link a 6= e.

We have defined a number nlink(GC) of linearly independent semitours satisfying
x(δ(S)) = 1. Hence, the R-odd cut inequality is facet-inducing for MGRP(GC), pro-
vided that ε ≥ |α−β|+1. In order to show that it is also facet-inducing for MGRP(G),
we will prove that condition (L2) of the second lifting theorem 5 is satisfied:
- L2(a) Given that ε ≥ |α − β| + 1 holds in GC, for any proper subset of edges in
GC it will always be possible to assign a direction to each edge in such a way that
ε′ ≥ |α′ − β′|+ 1 is also satisfied in the resulting graph G′C (see figure 8). Hence, as it
has been proved before, the R-odd cut inequality is facet-inducing for MGRP(G′C).
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- L2(b) Let us now assume that in one of the previous graphs G′C with ε′ = |α′−β′|+ 1
we change the direction of one arc obtaining a graph G”C where ε” = |α” − β”| − 1
in the worst case. Consider the semitour x∗ on G”C defined as x∗e = 1, where e is an
arbitrary edge and x∗a = 0 for the remaining links a 6= e (see figure 8). This semitour
satisfies x(δ(S)) = 1 and x∗ + xR satisfies the balanced-set condition, since it has
ε” + 1 edges and a difference in arcs of |α”− β”|, with ε” + 1 ≥ |α”− β”|.
- L2(c) Obvious. �

If G(S) (or G(V \ S)) is not connected, the R-odd cut inequality x(δ(S)) ≥ 1 is
not facet-inducing: let G(S0) be a connected component of G(S) such that δ(S0) is
also R-odd; then, the R-odd cut inequality corresponding to S is dominated by the
R-odd cut inequality corresponding to S0. If G(S) is connected but it is not strongly
connected, R-odd cut inequalities may be or not facet-inducing.

5 Path-Bridge inequalities

Path-Bridge inequalities were introduced by Letchford (1997) for the undirected GRP.
In this section we will generalize these inequalities to the MGRP.

A Path-Bridge configuration (figure 9) will be defined by two integers P and B
with P ≥ 1, B ≥ 0, P + B ≥ 3 and odd, by ni ≥ 2 integers, i = 1, 2, . . . , P , by
a partition of V into subsets {A,Z,M i

j : i = 1, 2, . . . P, j = 1, 2, . . . ni} and by two
cost functions. The partition must satisfy that each R-set Vi is contained in exactly
one of the node sets A∪Z, M i

j , i = 1, 2, . . . P, j = 1, 2, . . . ni (i.e., each required
link either lies in some γ(M i

j) or crosses from A to Z), the induced subgraphs G(M i
j),

i = 0, 1, . . . , P, j = 1, 2, . . . ni + 1, are strongly connected (where, for convenience, for
all i we identify M i

0 with A and M i
ni+1 with Z) and (A : Z) contains a number B of

required links. Cost functions are defined as:

cA(A,Z) = cA(Z,A) = cE(A,Z) = 1

cA(M i
j ,M

i
q) =

|j − q|
ni − 1

, ∀j, q ∈ {0, 1, 2, . . . , ni + 1}, 0 < |j − q| < ni + 1

cA(M i
j ,M

r
q ) =

1

ni − 1
+

1

nr − 1
+

∣∣∣∣ j − 1

ni − 1
− q − 1

nr − 1

∣∣∣∣,
∀i, r ∈ {1, 2, . . . , P}, i 6= r, j ∈ {1, 2, . . . , ni}, q ∈ {1, 2, . . . , nr}

Furthermore, we will assume that:

- Sets A(M i
j : M i

j+1) and A(M i
j+1 : M i

j), i = 1, 2, . . . , P , j = 0, 1, . . . , ni,
are nonempty. We will denote the set of such arcs by Ex (external arcs).
- Sets A(M i

j : M i
q), i = 1, 2, . . . , P , |j − q| > 1, {j, q} 6= {0, ni + 1}, could

be empty or not. We will denote the set of such arcs by In (internal arcs).
- Sets A(M i

j : M r
q ), i, r ∈ {1, 2, . . . , P}, i 6= r, j ∈ {1, 2, . . . , ni}, q ∈

{1, 2, . . . , nr}, could be empty or not. We will denote the set of such arcs
by Cr (crossing arcs).
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The partition B = {A,Z,M i
j : i = 1, 2, . . . P, j = 1, 2, . . . ni} and the functions cA, cE

define the configuration graph GC whose skeleton is showed in figure 9. It has P paths
from A to Z, each of them with ni + 2 nodes and ni + 1 pairs of opposite external arcs.
Internal arcs (M i

j ,M
i
q), not represented in figure 9, have a cost equal to the length of

the shortest path from M i
j to M i

q using external arcs.
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Figure 9: Path-Bridge configuration.

The Path-Bridge inequality corresponding to this configuration is defined by:∑
e∈E∪A

cexe ≥ 1 +
P∑
i=1

ni + 1

ni − 1
(9)

We can define the n-regular Path-Bridge inequality in which ni for each path is
the same number n. In this case, by multiplying by n − 1, the inequality (9) can be
rewritten in the following way:∑

e∈E∪A

cexe ≥ Pn+ P + n− 1 (10)

where

cA(A,Z) = cA(Z,A) = cE(A,Z) = n− 1

cA(M i
j ,M

i
q) = |j − q|, ∀j, q ∈ {0, 1, 2, . . . , n+ 1}, 0 < |j − q| < n+ 1

cA(M i
j ,M

r
q ) = |j − q|+ 2 ∀i, r ∈ {1, 2, . . . , P}, i 6= r, j, q ∈ {1, 2, . . . , n}
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Again, internal arcs (M i
j ,M

i
q) have a cost equal to the length of the shortest path from

M i
j to M i

q using external arcs. Crossing arcs (M i
j ,M

r
q ), i 6= r j, q ∈ {1, 2, . . . , n} have

now a cost equal to their ‘difference in level’, |i− j|, plus two.

These inequalities will be also called Path-Bridge (PB) because they can be con-
sidered as the mixed version of the Path-Bridge inequalities for the undirected GRP
(Letchford, 1997). These last inequalities include the Path inequalities for the (undi-
rected) Graphical TSP, GTSP, proposed by Cornuèjols, Fonlupt & Naddef (1985). It
is worthwhile to point out that all these inequalities have the same coefficients and RHS.

PB inequalities reduce to the s-Path inequalities for the GATSP, introduced by
Chopra & Rinaldi (1996), when there are no required links crossing from A to Z
(B = 0 and, hence, P ≥ 3 and odd). In such a case, sets A and Z are allowed to
be empty and the inequalities are called s-Wheelbarrow and s-Bicycle inequalities.
However, in general, the set (A : Z) can contain one or more required links (B > 0).

Given that Path-Bridge inequalities are proved to be valid for the undirected GRP,
they are also valid for MGRP(G). In order to show that, under certain conditions,
they are facet-inducing of MGRP(G), we have to consider several cases: P = 1, P ≥ 3
and odd, P ≥ 2 and even.

When P = 1, the PB configuration becomes the so called K-C configuration (fig-
ure 10). It is defined by an integer K ≥ 3, a partition of V into K + 1 subsets
{M0,M1,M2, . . . ,MK−1,MK} such that each R-set Vi, 1 ≤ i ≤ p , is contained in ex-
actly one of the node sets M0∪MK ,M1,M2, . . . ,MK−1, the induced subgraphs G(Mi),
i = 0, 1, 2, . . . , K, are strongly connected and (M0 : MK) contains a positive and even
number of required links, and by the cost functions defined as:

cA(M0,MK) = cA(MK ,M0) = cE(M0,MK) = K − 2
cA(Mi,Mj) = |i− j|, ∀i, j : {i, j} 6= {0, K}
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Figure 10: K-C configuration.

Note that M0 and MK correspond to A and Z in the general PB configuration and
K − 1 is exactly n1.
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The partition B = {M0,M1,M2, . . . ,MK−1,MK} and the functions cA, cE define the
configuration graph GC whose skeleton is showed in figure 10. Internal arcs (Mi,Mj)
not represented in figure 10 have a cost equal to the length of the shortest path from
Mi to Mj using external arcs. The associated K-C inequality is:

(K−2) x
(

(M0 : MK)
)

+
∑

0 ≤ i < j ≤ K
(i, j) 6= (0,K)

| i−j | x
(

(Mi : Mj)
)
≥ 2(K−1) (11)

Constraints (11) are called K-C inequalities because they are identical to the K-C
inequalities for the Undirected GRP (Corberán and Sanchis, 1994,1998). The effect of
K-C inequalities is to separate ‘solution’ vectors x∗ as shown in figure 11, where x∗e = 1
for non required arcs (in thin lines) and x∗e = 0 for the required links (in bold lines).
This vector satisfies all the facet-inducing inequalities described in previous sections
but violates the K-C inequality F (x) ≥ 6 since F (x∗) = 4.
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Figure 11: Vector violating a K-C inequality.

Theorem 9 K-C inequalities (PB inequalities with P = 1) are facet-inducing for
MGRP(G) if ε ≥ |α − β|, where α = |AR(MK : M0)|, β = |AR(M0 : MK)| and
ε = |E(M0 : MK)|.

Proof: Let F (x) ≥ 2(K − 1) denote the K-C inequality. We will consider two cases:
ε = 0 and ε ≥ 1. Let us assume first that ε = 0 and, hence, α = β. We will show
first that F (x) ≥ 2(K − 1) is facet-inducing for MGRP(GC). Given that ε = 0, graph
GC = (B, AC) is a directed graph with K + 1 edge-connected components. Then,
dim(MGRP(GC)) = |AC| −K. The following vectors are semitours for the MGRP on
GC and satisfy F (x) = 2(K − 1):
(a) Semitours formed by all the pairs of external opposite arcs linking M0 and M1, M1

and M2, . . ., MK−1 and MK except one of them (figure 12(a)).
(b) For each arc a ∈ A(MK : M0), required or not, consider the semitour x consisting
of arc a and the arcs in the path M0,M1, . . . ,MK (figure 12(b)). In the same way, for
each arc a ∈ A(M0 : MK) consider the semitour obtained by adding to a the arcs in
the path MK ,MK−1, . . . ,M1,M0.
(c) For each arc a = (Mi,Mj) ∈ In consider the semitour obtained by adding to a the
arcs in the path from Mj to Mi using external arcs and the pairs of arcs (Mt,Mt+1)
and (Mt+1,Mt), t ∈ {0, 1, . . . , i−1, j, j+1, . . . , K−1} except one of them (figure 12(c)).
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Figure 12: Semitours defined in the proof of theorem 9.

We have defined K+|(M0 : MK)|+|In| = |Ex|−K+|(M0 : MK)|+|In| = |AC|−K
semitours all satisfying F (x) = 2(K − 1). If we express these semitours as rows
of a matrix (sorted as (c),(b) and (a) before) and the arcs as columns (sorted as
In, (M0 : MK) and Ex), we obtain the matrix showed in figure 13. The block B,
corresponding to rows (a) and columns (M0,M1), (M1,M2), . . ., (MK−1,MK), has full
rank. Hence, the |AC| − K semitours are affinely independent and F (x) ≥ 2(K − 1)
is facet-inducing for MGRP(GC). Furthermore, as the configuration graph GC has no
edges, condition (L1) of lifting theorem 4 is satisfied and, therefore, F (x) ≥ 2(K − 1)
is also facet-inducing for MGRP(G).

Let us assume now that ε ≥ 1 and, hence, dim(MGRP(GC) = |EC ∪ AC| −K + 1.
Similarly to the case ε = 0, we can define such a number of affinely independent
semitours for the MGRP on GC satisfying F (x) = 2(K − 1). Therefore, the inequality
is facet-inducing for MGRP(GC). In order to show that it is also facet-inducing for
MGRP(G), it can be proved, as in theorem 8, that condition (L2) of lifting theorem 5
is satisfied. �

Theorem 10 PB inequalities with P ≥ 3 and odd are facet-inducing for MGRP(G) if
ε ≥ |α− β|, where α = |AR(A : Z)|, β = |AR(Z : A)| and ε = |E(A : Z)|.

Proof: Let F (x) ≥ c0 denote the PB inequality. We will consider two cases: ε = 0
and ε ≥ 1. Let us assume first that ε = 0 and, hence, α = β. We will show first that
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Figure 13: Matrices appearing in the proof of theorem 9

F (x) ≥ c0 is facet-inducing for MGRP(GC). Given that ε = 0, graph GC = (B, AC) is
a directed graph. Consider the GATSP instance obtained from graph GC by making
all arcs non-required. Then, the corresponding s-Path inequality defines a facet of
GATSP(GC) (Chopra & Rinaldi, 1996). As α = β, every GATSP tour satisfying
the s-Path inequality as an equality is also a semitour for the MGRP on GC. Given
that dim(MGRP(GC)) = |AC| − |B| + 1 = dim(GATSP(GC)), the s-Path inequality
is facet-inducing for MGRP(GC). Furthermore, as the configuration graph GC has no
edges, condition (L1) of lifting theorem 4 is satisfied and, therefore, F (x) ≥ c0 is also
facet-inducing for MGRP(G) in this case.

Let us assume now that ε ≥ 1. Given that B is even and ε ≥ |α−β|, the ε edges in
GC can be oriented as arcs to obtain a new directed graph G′C satisfying α′ = β′ (and
ε′ = 0). Then, we can find dim(MGRP(G′C)) semitours for the MGRP on G′C (and on
GC) satisfying F (x) = c0. Given that ε ≥ 1,

dim(MGRP(GC)) = |AC| − (|B| − 1) + 1 = dim(MGRP(G′C)) +1,

and we need an extra semitour for the MGRP on GC. Let e ∈ (A : Z) and consider
the GATSP instance G”C obtained from graph GC by deleting all the links in (A : Z)
except the edge e, which is transformed into an arc a with the opposite direction
to that associated to e in G′C. It is known that there exists a GATSP tour x∗ on
G”C using only external arcs and exactly one copy of a and satisfying the s-Path
inequality as an equality. By adding to x∗ the original required links in (A : Z),
as ε ≥ |α − β|, we obtain a (balanced) tour for the MGRP on GC. Then, x∗ is a
semitour for the MGRP on GC. Furthermore, x∗ is linearly independent with the
previously mentioned semitours due to the different orientation of edge e. Therefore,
the inequality F (x) ≥ c0 is facet-inducing for MGRP(GC). In order to show that it
is also facet-inducing for MGRP(G), it is not difficult to see that, as in theorem 8,
condition (L2) of lifting theorem 5 is satisfied. �

The effect of PB inequalities for P even is to separate ‘solutions’ as that shown
in figure 14. It can be seen that vector x∗, where x∗e = 1 for the non required arcs
(in thin lines) and x∗e = 0 for the required link (in bold line), satisfies all the facet-
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inducing inequalities described in previous sections, but violates the regular PB in-
equality F (x) ≥ 7 since F (x∗) = 6.

���
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���
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�:XXXXz

XXX
Xy����9

?

6

‘solution’ x∗

Figure 14: Vector violating a 2-PB inequality.

Theorem 11 PB inequalities with P even are facet-inducing for MGRP(G) if ε ≥
|α− β|+ 1, where α = |AR(A : Z)|, β = |AR(Z : A)| and ε = |E(A : Z)|.

Proof: Let F (x) ≥ c0 denote the PB inequality. Again, we will show first that
F (x) ≥ c0 is facet-inducing for MGRP(GC). Given that ε ≥ 1,

dim(MGRP(GC) = |(A : Z) ∪ In ∪ Cr|+ 2
∑

(ni + 1)− (
∑
ni + 1) + 1 =

= |(A : Z) ∪ In ∪ Cr|+
∑

(ni + 2)

and this is the number of linearly independent semitours satisfying F (x) = c0 we have
to find.

As for the Path inequalities for the GTSP (see Cornuèjols et al., 1985), it can be
seen that for each link e ∈ (A : Z) ∪ In ∪ Cr, there always exists a semitour for
the MGRP in GC satisfying F (x) = c0 and using e exactly once and external arcs.
Hence, only

∑
(ni + 2) more linearly independent semitours, using only external arcs,

are needed.
(a) For each path i∗ ∈ {1, 2, . . . , P} and for each j∗ ∈ {0, 1, 2, . . . , ni∗}, we consider

the semitour that uses the two opposite arcs in each (Bi∗
j : Bi∗

j+1), except for j = j∗,
and one single arc in each (Bi

j : Bi
j+1), i 6= i∗, in such a way that p

2
paths are oriented

from A to Z and the remaining p
2
− 1 paths are oriented from Z to A. We will assume

that these ni∗ + 1 semitours use the same orientation for the other P − 1 paths. In
other words, P − 1 of the paths joining A and Z are used once, while the last path is
broken into two parts and each part is used twice. These sets of arcs are semitours for
the MGRP on GC because, given that ε ≥ |α− β|+ 1, by adding to them the required
links we obtain an eulerian graph. All these semitours satisfy F (x) = c0.

(b) For each path i, it is possible to build ni + 1 different semitours using the
opposite orientations to those used in (a) for the other P − 1 paths. Among them we
select just the semitour corresponding to the first of those described in (a) for each i.

Therefore, we have ni +2 semitours for the MGRP, satisfying F (x) = c0, associated
to each path i. In order to show that these

∑
(ni+2) semitours are linearly independent,

consider their incidence matrix relative to the external arcs. In this matrix, the columns
correspond to the external arcs and are grouped by paths. Columns associated to arcs
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in each path are sorted in the following way: the first half correspond to the arcs
oriented from A to Z and the second one to those oriented from Z to A.

By expressing the semitours as rows of this matrix (sorted as (a) and (b) before),
we obtain the matrix showed in figure 15. Submatrix B ((ni+1)× (ni+1)) is shown in
figure 13, [k] represents a (ni+1) × (nj +1) matrix with all its entries equal to k, (k)
represents a vector with ni+1 components equal to k and B1 is the first row of matrix
B.

B B [1] [0] [0] [1] · · · [1] [0] [0] [1] [1] [0]

[1] [0] B B [0] [1] · · · [1] [0] [0] [1] [1] [0]

[1] [0] [0] [1] B B · · · [1] [0] [0] [1] [1] [0]

(a)
. . .

[1] [0] [0] [1] [1] [0] · · · B B [0] [1] [1] [0]

[1] [0] [0] [1] [1] [0] · · · [0] [1] B B [1] [0]

[1] [0] [0] [1] [1] [0] · · · [0] [1] [1] [0] B B

B1 B1 (0) (1) (1) (0) · · · (0) (1) (1) (0) (0) (1)
(0) (1) B1 B1 (1) (0) · · · (0) (1) (1) (0) (0) (1)
(0) (1) (1) (0) B1 B1 · · · (0) (1) (1) (0) (0) (1)

(b)
. . .

(0) (1) (1) (0) (0) (1) · · · B1 B1 (1) (0) (0) (1)
(0) (1) (1) (0) (0) (1) · · · (1) (0) B1 B1 (0) (1)
(0) (1) (1) (0) (0) (1) · · · (1) (0) (0) (1) B1 B1

Figure 15: Matrix appearing in the proof of theorem 11

By substracting to each row in (b) the corresponding row in (a) and by resorting
then the columns, the matrix in figure 16 is obtained. This matrix has complete range
if P is even and ni ≥ 2 for all i. Therefore, the inequality F (x) ≥ c0 is facet-inducing
for MGRP(GC). Again, it is not difficult to see that, as in theorem 8, condition (L2)
of lifting theorem 5 is satisfied and, hence, the inequality is also facet-inducing for
MGRP(G). �

6 Other Path-Bridge inequalities

Consider the vectors x∗, x∗∗ described in figure 17 with x∗e = x∗∗e = 1 for the non
required arcs (expressed in thin lines) and x∗e = x∗∗e = 0 for the required links (bold
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B [1] [1] · · · [1] [1] B [0] [0] · · · [0] [0]

[0] B [1] · · · [1] [1] [1] B [0] · · · [0] [0]

[0] [0] B · · · [1] [1] [1] [1] B · · · [0] [0]

. . . . . .

[0] [0] [0] · · · B [1] [1] [1] [1] · · · B [0]

[0] [0] [0] · · · [0] B [1] [1] [1] · · · [1] B

(0) (-1) (-1) · · · (-1) (-1) (0) (1) (1) · · · (1) (1)
(1) (0) (-1) · · · (-1) (-1) (-1) (0) (1) · · · (1) (1)
(1) (1) (0) · · · (-1) (-1) (-1) (-1) (0) · · · (1) (1)

. . . . . .

(1) (1) (1) · · · (0) (-1) (-1) (-1) (-1) · · · (0) (1)
(1) (1) (1) · · · (1) (0) (-1) (-1) (-1) · · · (-1) (0)

Figure 16: Matrix appearing in the proof of theorem 11

lines). Vectors x∗ + xR and x∗∗ + xR are not tours for the MGRP although vectors
x∗ and x∗∗ can be obtained as vertices of the polyhedron defined by all previously
described inequalities.

n

n
nHH

HHj
�����

x∗ + xR
6

n

n
nn HH

HHj
�����

H
HHHj

�����
x∗∗ + xR

Figure 17: Two vectors satisfying all PB inequalities.

We next describe some new inequalities that ‘cut-off’ such ‘solutions’, which will
be called PB02 inequalities.

Consider a PB configuration as in the previous section except that now ni can be
equal to 1 in every path i = 1, 2, . . . , P . Let us divide the set of paths into two types:
paths of type AZ and paths of type ZA, and let us redefine the cost functions cE and
cA as follows:

• For each path i of type AZ, we define: cA(M i
0,M

i
1) = 0 and cA(M i

1,M
i
0) = 2

ni
.

The remaining arcs in the path have coefficient 1
ni

and, for the internal arcs,

cA(M i
j ,M

i
q) is the cost of the shortest path from M i

j to M i
q using only external

arcs.
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• For each path i of type ZA, we define cA(M i
0,M

i
1) = 2

ni
and cA(M i

1,M
i
0) = 0. The

remaining arcs in the path have coefficient 1
ni

. For each internal arc, cA(M i
j ,M

i
q)

is the cost of the shortest path from M i
j to M i

q using only external arcs.

• Order the crossing arcs (if any) in an arbitrary way a1, a2, . . . , ah ∈ Cr. For i = 1
to h let cai be the maximum value such that ai belongs to a tour of c-length P +1
using only links from (EC ∪ AC) \ Cr and {a1, . . . , ai} (sequential lifting).

In other words,

cA(A,Z) = cA(Z,A) = cE(A,Z) = 1

cA(M i
j ,M

i
q) =

|j − q|
ni

, ∀j, q ∈ {1, 2, . . . , ni + 1}

cA(M i
0,M

i
q) =

q − 1

ni

and cA(M i
q,M

i
0) =

q + 1

ni

if path i is of type AZ, ∀q ∈ {1, 2, . . . , ni}

cA(M i
0,M

i
q) =

q + 1

ni

and cA(M i
q,M

i
0) =

q − 1

ni

if path i is of type ZA, ∀q ∈ {1, 2, . . . , ni}

Such a configuration will be called PB02 configuration (see figure 18).
Note that each path has a pair of opposite external arcs with coefficients 0 and 2

ni
,

while the other external edges have coefficient 1
ni

. Furthermore, the direction of the arc
with coefficient 0 determines whether the corresponding path is of typeAZ or type ZA.

The PB02 inequality corresponding to this new configuration is defined by:∑
e∈E∪A

cexe ≥ P + 1 (12)

Again, we can define the special n-regular PB02 inequality in which ni = n for each
path i. In this case, by multiplying by n, the inequality (12) can be rewritten in the
following way: ∑

e∈E∪A

cexe ≥ Pn+ n (13)

where

cA(A,Z) = cA(Z,A) = cE(A,Z) = n

cA(M i
j ,M

i
q) = |j − q|, ∀j, q ∈ {1, 2, . . . , ni + 1}

cA(M i
0,M

i
q) = q − 1 and cA(M i

q,M
i
0) = q + 1

if path i is of type AZ, ∀q ∈ {1, 2, . . . , ni}
cA(M i

0,M
i
q) = q + 1 and cA(M i

q,M
i
0) = q − 1

if path i is of type ZA, ∀q ∈ {1, 2, . . . , ni}
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Figure 18: PB02 configuration.

Constraints (12) and (13) are called PB02 inequalities because they are similar to the
standard PB inequalities, being the most relevant difference that a pair of external
opposite arcs in each path have changed their coefficients to 0 and 2

ni
.

Theorem 12 PB02 inequalities are valid for MGRP(G).

Proof: It suffices to prove validity in the configuration graph GC. Let F (x) ≥ P + 1
be a PB02 inequality. By the definition of the coefficients for internal and crossing arcs,
it suffices to prove validity for each semitour x for the MGRP on GC using only links
in (A : Z) ∪ Ex.

For each path i, if there exists a j∗ ∈ {0, 1, 2, . . . , ni} such that x(M i
j∗ : M i

j∗+1) =
x(M i

j∗+1 : M i
j∗) = 0, then connectivity and evenness conditions for the semitour x

in this path implies that x(M i
j : M i

j+1) ≥ 2 for all j = 0, 1, . . . , j∗−1, j∗+1, . . . , ni.
The associated c-cost is, at least, 2. Otherwise, the semitour uses either at least one
copy of each arc in the path A,M i

1,M
i
2, . . . ,M

i
ni
, Z or one copy of each arc in the path

Z,M i
ni
, . . . ,M i

1, A. In this case, the associated c-cost is, at least, 1.
Given that in a PB02 configuration P + B is odd, if a semitour x traverses every

path exactly once, it must traverse also a link in (A : Z) (with coeficient 1) and,
therefore, F (x) ≥ P + 1. Otherwise, it traverses, at least, a path twice or a path with
a j∗ as defined above. In any case, F (x) ≥ 2 + (P − 1) = P + 1. �
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Theorem 13 PB02 inequalities are facet-inducing for MGRP(G) if
ε ≥ |α+AZ − β − ZA|+ 1 where ε = |E(A : Z)|, α = |AR(A : Z)|, AZ is the number
of paths of type AZ, β = |AR(Z : A)| and ZA is the number of paths of type ZA.

Proof: Let F (x) ≥ P+1 denote the PB02 inequality. We will show first that F (x) ≥ c0

is facet-inducing for MGRP(GC). Given that ε ≥ 1,

dim(MGRP(GC) = |(A : Z) ∪ In ∪ Cr|+ 2
∑

(ni + 1)− (
∑
ni + 1) + 1 =

= |(A : Z) ∪ In ∪ Cr|+
∑

(ni + 2)

and this is the number of linearly independent semitours satisfying F (x) = P + 1 we
have to find.

As for the standard PB inequalities, for each link e ∈ (A : Z)∪In∪Cr, there always
exists a semitour for the MGRP in GC satisfying F (x) = P + 1 and using e exactly
once and external arcs. Hence, only

∑
(ni + 2) more linearly independent semitours,

using only external arcs, are needed.
(a) For each path i∗ ∈ {1, 2, . . . , P} and for each j∗ ∈ {0, 1, 2, . . . , ni∗}, we consider

the semitour that uses the two opposite arcs in each (Bi∗
j : Bi∗

j+1), except for j = j∗,
and one single arc in each (Bi

j : Bi
j+1), ∀ i 6= i∗ (if any), in such a way that paths

of type AZ are oriented from A to Z and paths of type ZA are oriented from Z to
A. In other words, P − 1 of the paths joining A and Z are used once, in the direction
given by the arc with zero coefficient, while the last path is broken into two parts and
each part is used twice. These sets of arcs are semitours for the MGRP on GC because,
given that ε ≥ |α+AZ − β−ZA|+ 1, by adding to them the required links we obtain
an eulerian graph. Furthermore, all these semitours satisfy F (x) = P + 1, since the
P −1 paths used once have a c-cost of 1 and the “broken” path used twice has a c-cost
of 2.

(b) For each path i, i = 1, 2, . . . , P , we build a “special” semitour considering two
copies of each arc in the path i, in the direction given by the arc with zero coefficient,
and one copy of each arc in the remaining paths, always in the direction given by the
arc with zero coefficient. Note that for this semitour F (x) = P + 1, since arcs in the
path i have a total c-cost of 2, while we obtain a total c-cost of P −1 for the remaining
paths.

Therefore, we have built ni + 2 semitours for the MGRP, satisfying F (x) = P +
1, associated to each path i. In order to show that these

∑
(ni + 2) semitours are

linearly independent, consider their incidence matrix relative to the external arcs. In
this matrix, the columns correspond to the external arcs and are grouped by paths.
Columns associated to arcs in each path are sorted in the following way. For the paths
of type AZ, the first half correspond to the arcs oriented from A to Z and the second
one to those oriented from Z to A, while for the paths of type ZA the ordering is the
opposite.

By expressing the semitours as rows of this matrix (sorted as (a) and (b) before),
we obtain the matrix showed in figure 19. We have used the same notation as in the
proof of theorem 11.

By resorting the columns, the matrix in figure 20 is obtained. This matrix has
complete range for P ≥ 1 and ni ≥ 1 for all i. Therefore, the inequality F (x) ≥ P + 1
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is facet-inducing for MGRP(GC). Again, as in theorem 8, condition (L2) of lifting
theorem 5 is satisfied and therefore the inequality is also facet-inducing for MGRP(G).

�

B B [1] [0] [1] [0] · · · [1] [0]

[1] [0] B B [1] [0] · · · [1] [0]

[1] [0] [1] [0] B B · · · [1] [0]

(a)
. . .

[1] [0] [1] [0] [1] [0] · · · B B

(2) (0) (1) (0) (1) (0) · · · (1) (0)
(1) (0) (2) (0) (1) (0) · · · (1) (0)
(1) (0) (1) (0) (2) (0) · · · (1) (0)

(b)
. . .

(1) (0) (1) (0) (1) (0) · · · (2) (0)

Figure 19: Matrix appearing in the proof of theorem 13

B [0] [0] · · · [0] [0] B [1] [1] · · · [1] [1]

[0] B [0] · · · [0] [0] [1] B [1] · · · [1] [1]

[0] [0] B · · · [0] [0] [1] [1] B · · · [1] [1]

. . . . . .

[0] [0] [0] · · · B [0] [1] [1] [1] · · · B [1]

[0] [0] [0] · · · [0] B [1] [1] [1] · · · [1] B

(0) (0) (0) · · · (0) (0) (2) (1) (1) · · · (1) (1)
(0) (0) (0) · · · (0) (0) (1) (2) (1) · · · (1) (1)
(0) (0) (0) · · · (0) (0) (1) (1) (2) · · · (1) (1)

. . . . . .

(0) (0) (0) · · · (0) (0) (1) (1) (1) · · · (2) (1)
(0) (0) (0) · · · (0) (0) (1) (1) (1) · · · (1) (2)

Figure 20: Matrix appearing in the proof of theorem 13
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In the PB02 configuration, coefficients (0, 2) can be associated with any pair of
opposite external arcs (M i

j : M i
j+1) in any path i, i ∈ {0, 1, 2, . . . , P}. Nevertheless, all

these inequalities induce the same facet of MGRP(G) (given the same ordering for the
crossing edges in the sequential lifting process).

Standard PB and PB02 inequalities induce different facets of MGRP(G). Note that,
unlike standard PB inequalities, PB02 inequalities also induce facets of MGRP(G)
when ni = 1 for some path i.

For P = 1, we obtain the K-C02 configuration whose skeleton is showed in figure
21. Note that internal arcs (Mi,Mj) (not represented in figure 21) have a cost equal to
the length of the shortest path from Mi to Mj using external arcs. The corresponding
K-C02 inequality is: ∑

e∈E∪A

cexe ≥ 2(K−1) (14)

These inequalities cut-off the ‘solution’ x∗ presented in figure 17, since the K-C02 in-
equality is F (x) ≥ 2 but F (x∗) = 1.
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Figure 21: K-C02 configuration.

In the definition of the K-C02 configuration we have required the existence of two
opposite arcs in each (Mi : Mi+1), for i = 1, 2, . . . , K − 1. Nevertheless, in some cases
this condition can be relaxed:
(a) For K = 2, the three K-C02 inequalities corresponding to the configurations of
figure 22 are facet-inducing if ε ≥ max{α− β , β − α + 2}.
(b) For K ≥ 3, if the subgraph induced by the links in Ex ∪ In is not strongly
connected, i.e., there are no arcs from nodes {Mj+1,Mj+2 . . . ,MK} to nodes
{M0,M1, . . . ,Mj} for some j, then the corresponding K-C02 inequality can be shown
to be dominated by the 2-C02 inequality corresponding to the configuration with node
sets: M ′

0 = {M0,M1, . . . ,Mj−1}, M ′
1 = Mj and M ′

2 = {Mj+1,Mj+2 . . . ,MK}.
(c) For K ≥ 3, if the subgraph induced by the links in Ex ∪ In is strongly connected,
the corresponding K-C02 inequality can be, or not, facet-inducing.
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Figure 22: Other 2-C02 facet-inducing inequalities.

Finally, when ε = 0, although α = β, the K-C02 inequality can be shown to be
dominated by the standard K-C inequality and, therefore, it is not facet-inducing.

If P = 2 and ni = n for all i, we obtain the regular 2-PB02 configuration. Figure
23 shows two skeletons (in the regular case) out of the 3 possible configurations that
result from the assignment of the 2 paths to the types AZ and ZA. Again, internal
arcs (not represented in the figure) have a cost equal to the length of the shortest path
using external arcs. The corresponding regular 2-PB02 inequality is:∑

e∈E∪A

cexe ≥ 3K (15)
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Figure 23: Two Regular 2-PB02 configurations.

A 2-PB02 inequality cut-off the vector x∗∗ in figure 17, since the inequality is
F (x) ≥ 3 while F (x∗∗) = 2.

7 Computational Results.

We have devised a cutting-plane algorithm with separation procedures for the
connectivity, R-odd cut and balanced-set inequalities. The initial LP relaxation
includes the system equations (6), one connectivity inequality (4) for each R-set,
one balanced-set inequality (5) for each ‘unbalanced’ vertex (i.e., the balanced-set
inequality corresponding to each vertex i ∈ V such that |E(i)| < |A+

R(i)| − |A−R(i)|
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or the balanced-set inequality corresponding to V \ {i} for each vertex i ∈ V such
that |E(i)| < |A−R(i)| − |A+

R(i)|), and one R-odd cut inequality (8) for each R-odd
‘balanced’ vertex.

The separation problems associated with connectivity and R-odd cut inequalities
are solvable in polynomial time by means of max-flow calculations and the Padberg
& Rao (1982) procedure to find minimum odd cut-sets. Standard heuristics for both
problems were also implemented. Nobert & Picard (1996) showed that identifying
violated balanced-set inequalities for the MCPP can also be solved in polynomial
time (see Benavent, Corberán and Sanchis, 2000, for a short and direct proof of this
important result). This result is easily extended to the MGRP. In the course of the
algorithm, additional inequalities of the above mentioned classes are generated as they
are found to be violated. When this is no longer possible and the LP solution is still
not integral, we invoke branch and bound. If the resulting integer solution is feasible
for the MGRP, it is optimal. Otherwise, the procedure terminates with a tight lower
bound, but no feasible MGRP solution.

This algorithm has been coded in C and run on a Personal Computer with a
400 MHz Pentium II processor. It is a rough algorithm implemented to provide
lower bounds to a set of 100 MRPP instances randomly generated for testing the
constructive and the tabu search algorithms described in Corberán, Mart́ı & Romero
(2000).

The graph generator works as follows: a given number of vertices, |V |, is equally

distributed among the desired number p of R-sets. Initially, each R-set has b |V |
p
c

vertices, except possibly the last one which also has the difference up to |V |. Arcs and
edges are generated, up to a prefixed number, by randomly selecting two vertices and
adding the corresponding link. To generate required links, if the two vertices do not
belong to the same R-set they are rejected and a new selection is made. Note that,
as the required links may not connect all the vertices in a R-set, the final number of
R-sets may be diferent to the one initially desired. Furthermore, the final number of
non-required arcs might be larger, in some instances, than the prefixed number |A\AR|,
in order to obtain a strongly connected graph. This generator allows up to four links
between two vertices: one for each kind of link (required and non-required arc, required
and non-required edge). We have randomly generated 100 instances with the following
ranges: 3 ≤ p ≤ 12, 20 ≤ |V | ≤ 100, 15 ≤ |E| ≤ 220, 5 ≤ |ER| ≤ 150, 50 ≤ |A| ≤ 350,
5 ≤ |AR| ≤ 200. The cost of each link has been randomly generated in the range 1−20.

Tables 1, 2 and 3 present the characteristics of the instances, the lower bound
obtained with our cutting-plane procedure (column LB), the lower bound obtained
with the branch and bound (column B&B) and the number of nodes of the B&B tree
(column Nd), the best upper bound obtained with the mentioned heuristics (column
UB) and the CPU time in seconds (column Time). An entry marked with an asterisk
means that an optimal solution is reached. Note that the cutting-plane procedure
is capable of finding an optimal solution in 71 out of the 100 MRPP instances and
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that this number increases up to 93 after invoking branch and bound. Although
general MGRP instances will be harder to solve, we consider that these are encour-
aging results in order to implement a better cutting-plane or branch and cut algorithm.

8 Relationship with other Routing Problems.

In previous sections we have studied the polyhedron associated with the MGRP. We
now present the application of our results to other known routing problems: the
Mixed Chinese Postman Problem, the Undirected, Directed and Mixed Rural Postman
Problems and the Graphical Asymmetric Traveling Salesman Problem.

The conclusions are conditioned by the fact that the original graph is transformed
into a new simplified graph without non-required edges (they have been replaced by a
pair of opposite non-required arcs). Hence, the results obtained so far for the MGRP
can only be applied to instances and Problems without non-required edges.

Mixed CPP:
This problem is a particular case of the MGRP and arises when all the links of the
graph are required to be traversed. The approach described in Nobert & Picard (1996)
uses trivial inequalities (1), balanced-set inequalities (5) and R-odd cut inequalities
(8) to design an algorithm which has proven to be highly effective. However, the issue
of whether these inequalities induce or not facets of the associated polyhedron has
not been studied. Given an instance G = (V,E ∪ A) of MCPP, our results for MGRP
imply that MCPP(G) is a polyhedron of dimension |E ∪ A| − q + 1, where again q
is the number of connected components of graph (V,E), and the above inequalities
(1), (5) and (8) are facet-inducing under the conditions described in their respective
sections.

Undirected RPP:
Results obtained for the Mixed GRP cannot be directly applied to the Undirected RPP
due to the existence of non-required edges. To study the MGRP without replacing
the non required edges by two arcs may be more attractive from a theoretical point of
view, but it is also quite more difficult. Consider, for example, a K-C configuration in
which there may exist, or not, edges between any pair of nodes Mi, Mj. In this case,
the dimension of MGRP(GC) depends on the number and the disposal of such edges.

Directed RPP:
Given that this problem is defined on directed graphs, all the results obtained for the
MGRP not implied by the existence of required edges are also valid for the DRPP.
Indeed, given a (simplified) instance G = (VR, AR ∪ ANR) of DRPP, we have that
DRPP (G) is a polyhedron of dimension |AR ∪ ANR| − |V | + 1, and the following
inequalities are facet-inducing:

- Trivial inequalities: xa ≥ 0 if a ∈ AR ∪ ANR is not a cut-arc.
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- Connectivity inequalities: x(A+(S)) ≥ 1, where S ⊂ V is the union of
R-sets, if G(S) and G(V \ S) are strongly connected.
- Standard K-C inequalities if α = β (see section 5).

K-C02 inequalities described in section 5 and PB inequalities described in section 5
are also valid for DRPP(G), but it is not possible to directly conclude if they are or
not facet-inducing.

Asymmetric GTSP:
As it was mentioned before, GATSP is a special case of MGRP when E = AR = ∅.
Therefore, the results obtained in previous sections not involving required links
also apply to GATSP. Hence, for example, GATSP(G) is an unbounded and non
full-dimensional polyhedron, trivial inequalities are facet-inducing, all the remaining
facet-inducing inequalities are configuration inequalities, connectivity inequalities and
standard PB inequalities with (A : Z)R = ∅ are facet inducing. These last inequalities
correspond to the known s-path, s-wheelbarrow and s-bicycle inequalities. All these
results were previously obtained by Chopra and Rinaldi (1996).

Conversely, it is worthwhile to point out that every non trivial valid (or facet-
inducing) inequality for the GATSP polyhedron provides a valid (or facet-inducing)
inequality for MGRP(G). Given an instance G = (V,E ∪ AR ∪ ANR) of MGRP, if we
shrink the R-sets into a single node each and we remove the loops, we obtain an instance
for the GATSP. This is also true if we shrink, into a single node, every vertex set Bj

in any partition B = {B1, B2, . . . , Br} of V satisfying that each R-set V i is contained
into one set Bj. Let us call GATSP configuration to any configuration C = (B, cE, cA)
on G where B = {B1, B2, . . . , Br} satisfies the previous condition.

Theorem 14 Let C be a GATSP configuration on G and let GC be its corresponding
configuration graph. If the configuration inequality associated with GC is facet-inducing
for GATSP(GC), then the configuration inequality associated with G is facet-inducing
for MGRP(G).

Proof: Given that the graph GC has no required links, GATSP(GC)=MGRP(GC)
and, hence, the inequality associated with GC is facet-inducing for MGRP(GC).
Furthemore, given that GC is a directed graph, condition (L1) in the first lifting
theorem 4 is obviously satisfied. Therefore, the configuration inequality associated
with G is facet-inducing for MGRP(G). �

9 Conclusions

In this paper we have studied the polyhedron associated with the General Routing
Problem on a mixed graph. To the best of our knowledge, this is the first polyhedral
study of a routing problem defined on a mixed graph. MGRP generalizes several
important and difficult Arc and Node Routing Problems as CPP, RPP and GTSP
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either defined on an undirected, directed or mixed graph.

We have defined several families of inequalities and shown that they define facets
for the MGRP polyhedron. Some of these families are derived from facet-inducing
inequalities for other routing problems polyhedra: connectivity, R-odd cut, standard
K-C and standard PB inequalities for the undirected RPP and GRP (Corberán &
Sanchis 1994, 1998, Letchford 1997, 1999), balanced-set inequalities for the MCPP
(Nobert & Picard 1996) and all the known families for the GATSP (Chopra & Rinaldi,
1996).

Some computational results obtained with a preliminary cutting-plane algorithm
based on some of these inequalities are also given. We consider that these results
show that the polyhedral description obtained in this paper can be useful when solving
MGRP instances.
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p |V | |E| |ER| |A| |AR| LB B&B Nd UB Time
g3c1 3 20 50 10 80 30 464∗ 0,98
g3c2 3 30 140 40 200 50 946∗ 2,58
g3c3 3 50 90 60 250 150 2375∗ 20,43
g3c4 3 50 140 70 190 100 1697∗ 4,73
g3c5 3 60 140 90 240 80 1791∗ 5,71
g3c6 3 70 180 100 120 50 1663∗ 4,23
g3c7 3 80 160 100 300 100 2320 2321∗ 13 22,97
g3c8 5 90 130 40 200 50 1244∗ 6,48
g3c9 3 100 220 150 300 200 4092∗ 33,23
g3c10 3 100 200 130 250 150 3287 3288∗ 85 49,57
g4c1 4 20 105 25 80 50 793 793∗ 2 4,12
g4c2 3 40 140 20 150 100 1480∗ 3,13
g4c3 4 50 60 40 250 150 2310∗ 9,72
g4c4 4 50 110 80 250 100 2079∗ 9,99
g4c5 4 60 100 50 220 120 1852∗ 3.57
g4c6 5 70 100 30 200 50 1010∗ 3,25
g4c7 4 80 190 90 350 50 1581∗ 4,66
g4c8 3 90 150 100 320 200 3395∗ 28,62
g4c9 15 100 150 50 340 40 1186∗ 5,33
g4c10 2 100 150 100 220 130 2919∗ 28,62
g5c1 5 20 50 20 80 10 369∗ 2,25
g5c2 5 40 90 50 150 60 1194∗ 3,95
g5c3 5 50 180 30 250 100 1388∗ 3,79
g5c4 4 50 140 40 210 60 1070∗ 5,28
g5c5 6 60 110 30 250 50 1104∗ 3,89
g5c6 5 70 160 100 270 200 3416 3416∗ 1 17,53
g5c7 5 80 170 90 190 100 2337,75 2338∗ 1 11,92
g5c8 5 90 180 80 300 150 2708 2708∗ 1 20,21
g5c9 4 100 130 60 350 200 3118∗ 10,27
g5c10 4 100 110 60 250 150 2796∗ 8,79
g6c1 6 20 60 10 105 15 324∗ 2,96
g6c2 6 40 100 30 180 80 1203,5 1204∗ 1 4,44
g6c3 5 50 110 20 270 70 1106∗ 3,96
g6c4 6 50 160 40 170 100 1667∗ 4,12
g6c5 6 60 110 80 270 150 2545∗ 5,33
g6c6 6 70 130 30 270 70 1259∗ 2,85
g6c7 6 80 160 90 170 50 1679∗ 5,49
g6c8 5 90 150 100 170 70 1986∗ 13,02
g6c9 2 100 140 50 230 150 2750∗ 10,71
g6c10 6 100 180 120 220 130 2952∗ 28,90

Table 1: Computational Results 1.
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p |V | |E| |ER| |A| |AR| LB B&B Nd UB Time
g7c1 6 20 55 5 130 10 235,5 236∗ 9 1,87
g7c2 6 40 140 20 100 50 816∗ 8,46
g7c3 8 50 140 50 280 30 847∗ 5,93
g7c4 7 50 150 90 170 100 2043 2044∗ 3 7,69
g7c5 7 60 170 40 240 150 2198∗ 6,37
g7c6 7 70 150 50 300 200 2867,5 2868∗ 25 12,04
g7c7 7 80 170 100 210 130 2642,5 2643 1 2650 9,39
g7c8 6 90 170 80 270 150 2630 2632 26 2634 8,91
g7c9 8 100 150 100 260 60 1902∗ 19,44
g7c10 6 100 200 120 220 150 3024∗ 16,48
g8c1 8 30 70 20 120 30 650,5 651∗ 1 4,18
g8c2 8 40 90 20 190 90 1192∗ 4,45
g8c3 7 50 50 30 360 60 1035∗ 5,44
g8c4 8 50 120 70 220 120 1969∗ 3,74
g8c5 8 60 120 40 180 100 1815∗ 7,58
g8c6 8 70 150 90 230 70 1678,67 1679∗ 12 9,84
g8c7 6 80 160 50 240 150 2620∗ 23,07
g8c8 8 90 220 100 160 90 2213∗ 14,67
g8c9 7 100 150 60 230 100 2365∗ 23,67
g8c10 7 100 190 120 300 150 2974∗ 14,11
g9c1 8 30 45 15 95 15 372∗ 3,63
g9c2 9 40 80 30 210 60 1025∗ 4,67
g9c3 9 50 90 60 270 70 1537∗ 6,98
g9c4 9 50 80 40 150 50 966 967∗ 10 4,56
g9c5 9 60 150 50 270 150 2444∗ 6,04
g9c6 8 70 150 100 250 150 2915∗ 5,39
g9c7 8 80 210 120 200 50 1994 1994∗ 1 7,69
g9c8 7 90 150 50 200 120 2136∗ 11,09
g9c9 7 100 130 70 290 200 3388∗ 15,44
g9c10 7 100 150 100 240 70 1939 1940∗ 2 16,59
g10c1 10 30 20 10 180 30 447 449 1 452 5,11
g10c2 10 40 40 20 170 80 1153∗ 3,08
g10c3 10 50 80 50 290 40 950,5 951∗ 12 3,69
g10c4 10 50 80 40 150 50 1157∗ 5,16
g10c5 10 60 160 40 280 200 2633∗ 7,30
g10c6 10 70 160 80 300 130 2162 2163∗ 24 6,28
g10c7 10 80 190 130 270 150 3055,17 3058 19 3072 13,19
g10c8 9 90 150 100 250 160 2596∗ 6,81
g10c9 8 100 160 70 210 100 2119∗ 6,04
g10c10 10 100 210 150 200 70 2504,33 2505∗ 39 8,19

Table 2: Computational Results 2.
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p |V | |E| |ER| |A| |AR| LB B&B Nd UB Time
g11c1 3 30 15 5 105 5 187∗ 1,38
g11c2 9 40 35 15 220 20 505∗ 4,06
g11c3 12 50 210 10 80 30 501∗ 2,59
g11c4 10 50 80 40 150 50 1146 1146∗ 1 4,89
g11c5 11 60 150 50 210 120 2029∗ 5,05
g11c6 11 70 170 90 240 150 2625 2626 1 2642 5,60
g11c7 11 80 170 100 250 150 2926∗ 5,38
g11c8 10 90 170 50 240 150 2395∗ 4,29
g11c9 10 100 180 120 190 70 2166 2166∗ 1 5,11
g11c10 10 100 170 70 220 100 2128∗ 9,28
g12c1 7 30 105 5 55 5 131∗ 1,92
g12c2 11 40 60 10 160 10 308∗ 2,03
g12c3 15 50 25 15 320 20 480 480∗ 5 2,69
g12c4 12 50 160 70 190 110 2053,87 2055∗ 22 7,59
g12c5 12 60 160 40 170 70 1309∗ 3,24
g12c6 12 70 180 80 210 120 2231 2232 42 2248 7,10
g12c7 12 80 180 110 220 90 2252∗ 6,81
g12c8 11 90 170 60 250 150 2498∗ 11,04
g12c9 11 100 190 120 170 100 2341,5 2342 3 2355 6,98
g12c10 10 100 190 70 270 150 2614∗ 11,81

Table 3: Computational Results 3.
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