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Abstract  

 
In this work the design and characterization of an omnidirectional in-plane magnetic field sensor are presented. 
The sensor is based on the Giant Magnetoimpedance (GMI) effect in glass-coated amorphous microwires of 
composition (Fe6Co94)72.5Si12.5B15. For the first time, a circular loop made with a microwire is used for giving 
omnidirectional response. In order to estimate the GMI response of the circular loop we have used a theoretical 
model of GMI, determining the GMI response as the sum of longitudinal sections with different angles of incidence. 
As a consequence of the circular loop, the GMI ratio of the sensor is reduced to 15% instead of 100% for the axial 
GMI response of a microwire. The sensor response has been experimentally verified and the GMI response of the 
circular loop has been studied as function of the magnetic field, driven current, and frequency.  First, we have 
measured the GMI response of a longitudinal microwire for different angles of incidence, covering the full range 
between the tangential and perpendicular directions to the microwire axis. Then, using these results, we have 
experimentally verified the decomposition of a microwire with circular shape as longitudinal segments with 
different angles of incidence. Finally, we have designed a signal conditioning circuit for the omnidirectional 
magnetic field sensor. The response of the sensor has been studied as a function of the amplitude of the incident 
magnetic field.  
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 1.  Introduction 
 
Glass coated amorphous microwires have been 

intensively studied due to its outstanding magnetic 
properties, as giant magnetoimpedance (GMI) [1-9] or its 
absorption properties at microwave frequencies [10-19]. The 
GMI effect is related to the change of the skin depth on the 
microwire due to strong changes of the dynamic circular 
permeability [20,21]. In particular, the microwires studied in 
this work are of composition (Fe6Co94)72.5Si12.5B15 which has 
negative but close to zero magnetostriction (λS=-10-7) [22]. 
Due to the fabrication process, they present a shell of circular 
permeability with a “bamboo like” structure and an inner 
core with axial anisotropy [23]. Since the microwire is 
amorphous, the domain structure is a consequence of the 
shape and magnetoelastic anisotropies resulting from the 
stress caused by the fabrication process. The microwires with 
the aforementioned composition present a circular 
anisotropy characterized by an anisotropy filed Ha = 285 A/m 
[24]. When an external magnetic field H0 is applied in the 
axial direction of the microwire, the effective dynamic 
circular permeability reaches a maximum as the applied field 
approach to the anisotropy field. In this point the skin depth 
shows a minimum and therefore the impedance is maximized 
[20,25].  

The GMI effect has special application in the 
development of highly sensitive magnetic sensors 
[5,6,26,27] and current sensors [28]. Mohri et al.  have done 
a remarkable contribution in the development of electronic 
circuits for GMI sensors [29,30]. All GMI sensors reported 
in previous works were done with the microwire placed 
longitudinally, and therefore the sensibility of the GMI 
depends on the angle between the applied magnetic field and 
the axis of the microwire. In this paper, we present an in-
plane omnidirectional magnetic field sensor based on a 
microwire in the shape of a circular loop (see Fig.6(a)), and 
we have done theoretical simulations, experimental 
measurements and the signal conditioning circuit. 

The microwires employed in this work have been studied 
in a previous work of the authors [24], where GMI 
measurements were performed with AC current and 
frequency as parameters, and a signal conditioning circuit 
was developed in order to design a magnetic field sensor. In 
this work we extend this study to a circular loop geometry of 
the microwire. For a proper understanding of the proposed 
configuration, a phenomenological model for circular 
microwires is presented. The results obtained are supported 
by a set of experimental measurements and the development 

 
 

of a high-sensitivity sensor.  
 
 
 2. Theoretical approach for GMI in circular 
microwires 

 
The magnetic domain structure of microwires is rather 

complex and hinders the development of precise theoretical 
models. This fact is basically due to the change of 
magnetization with the radius because of the shape and 
magnetoelastic anisotropies, the latter being due to the radial 
variation of the stress in the microwire. Such a stress is caused 
by the radial gradient of temperature during the fabrication 
process and the different expansion coefficient of the glass 
shield and the inner ferromagnetic core. Many efforts have 
been made to model the GMI effect in microwires and many 
remarkable works have been reported [5,20,21,25,31-33], but 
indeed any of them gets a perfect agreement with experimental 
measurements. The discrepancies are especially important at 
zero magnetic field, where low levels of impedance are 
predicted while experimental data show a value close to the 
values found in saturation (i.e. at high magnetic fields).  

Our aim is to present a simple approach that models the 
behaviour of a circular microwire. For this purpose, we will 
assume the loop can be decomposed in a series of small 
sections of microwires excited at different angles with respect 
to the external magnetic field. Under this assumption, we can 
discompose the incident magnetic field in two orthogonal 
components, one axial to the wire and the other perpendicular, 
the latter playing a minor role in the impedance and therefore 
being negligible. Thereby the problem is reduced to the study 
of a straight microwire excited with an external magnetic field 
at a given angle.  

The GMI in a microwire depends on the dynamics of the 
magnetization due to the interaction of the external magnetic 
field and the circular field produced inside the microwire due 
to the AC current flowing through it. The movement of the 
magnetization with an applied magnetic field along with the 
Maxwell equations are described by the Landau-Lifshift-
Gilbert (LLG) equation: 

 
𝜕𝜕𝑀𝑀��⃗

𝜕𝜕𝜕𝜕
= −𝜇𝜇𝑜𝑜𝛾𝛾 �𝑀𝑀��⃗ × 𝐻𝐻��⃗ � + 𝛼𝛼 � 𝑀𝑀��⃗ × 𝜕𝜕𝑀𝑀��⃗  

𝜕𝜕𝜕𝜕
�     (1) 

 
where γ is the gyromagnetic ratio, µ0 the permeability of free 
space, α a damping parameter, Ms the saturation 
magnetization, H = H0 + hac the total magnetic field (static and 



 
 
dynamic), and M = Ms+mac the total magnetization. Applying 
the LLC equation, the corresponding boundary conditions and 
taking into account the two excitations (external magnetic field 
and the ac circular magnetic field produced by current flowing 
through the microwire) the dynamic permeability and the 
impedance can be obtained [20,32,33]. The GMI is related to 
the change in the skin depth due to changes of the dynamic 
transversal permeability. The surface impedance of the 
microwire ZS(ω) can be expressed through the classical 
analysis of a cylindrical conductor, and thereby the impedance 
of the microwire as 𝑍𝑍(𝜔𝜔) = 𝑍𝑍𝑆𝑆(𝜔𝜔)𝑙𝑙 , being 𝑙𝑙  the 
microwire’s length. Although the impedance is a tensor, we are 
only interested in the longitudinal impedance 𝑍𝑍𝑍𝑍𝑍𝑍(𝜔𝜔).  
 

𝑍𝑍(𝜔𝜔) = 𝑅𝑅𝐷𝐷𝐷𝐷
𝛽𝛽𝛽𝛽
2
𝐽𝐽0(𝛽𝛽𝛽𝛽)
𝐽𝐽1(𝛽𝛽𝛽𝛽)     (2) 
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                                      (5) 
 
RDC being the DC resistance of the microwire, σ the 
conductivity, a the radius, β the wave vector, f the frequency, 
µφ the transversal permeability, Jn(x) the Bessel functions of n-
th order and δ the skin depth.  

The magnetic microwire is amorphous and its 
magnetization is determined by the shape anisotropy and the 
magneto-elastic anisotropy. In order to determine the direction 
of the magnetization when an external magnetic field is applied 
we consider the minimization of energy, U through the Stoner-
Wohlfarth model: 

 
𝑈𝑈 = −𝜇𝜇0𝑀𝑀𝑆𝑆(0.5𝐻𝐻𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐(90 − 𝜃𝜃) + 𝐻𝐻𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)   (6) 
 
where H0 is the external field, Ha the anisotropy field (with Ha 
= 2K/µ0MS, K being the effective anisotropy constant) and 
θ the angle between the axis of the microwire and the 
magnetization direction (see Fig.1(a)). We suppose a circular 
transversal anisotropy in the microwire with a “bamboo like” 
domain structure (α=90º) as illustrated in Fig.1(b). With the 
minimization of the energy two solutions are obtained: θ=90º 
for Ho≥Ha, and θ=arcos(Ho/Ha) for Ho≤Ha. By solving the LLG 
equation and Maxwell equations we get the effective 
transverse susceptibility [30,31]: 

                 

 
        (a)            (b) 

 
Fig.1: (a) Specification of the angles between the wire axis and 
the magnetization (θ) and anisotropy field (α). (b) Domain 
structure with an inner core with axial magnetization and outer 
layer with circular magnetization with a “bamboo like” 
configuration. 

 

𝜒𝜒𝑒𝑒𝑒𝑒𝑒𝑒,𝜙𝜙(𝜔𝜔) = 𝜔𝜔𝑀𝑀
2 +𝜔𝜔𝑀𝑀(𝜔𝜔2−𝑗𝑗𝑗𝑗𝑗𝑗)

(𝜔𝜔1−𝑗𝑗𝑗𝑗𝑗𝑗)(𝜔𝜔2+𝜔𝜔𝑀𝑀−𝑗𝑗𝑗𝑗𝑗𝑗)−𝜔𝜔2                  (7) 
 
 𝜔𝜔1 = 𝜇𝜇0𝛾𝛾[𝐻𝐻0𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐻𝐻𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐2(90 − 𝜃𝜃)]                 (8) 
 
𝜔𝜔2 = 𝜇𝜇0𝛾𝛾[𝐻𝐻0𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐻𝐻𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐2(90 − 𝜃𝜃)]                   (9) 
 
𝜔𝜔𝑀𝑀 = 𝜇𝜇0𝛾𝛾𝑀𝑀𝑆𝑆                    (10) 
    
 Applying the Maxwell’s equations and the boundary 
conditions we obtain the longitudinal impedance of the 
microwire, which for the high frequency regime has the form 
[20,31-33]: 

𝑍𝑍𝑧𝑧𝑧𝑧(𝜔𝜔) = (1+𝑗𝑗)
2𝜋𝜋𝜋𝜋

�𝜋𝜋𝜋𝜋𝜇𝜇0 
𝜎𝜎

(𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 +                  

�(1 + 𝜒𝜒𝑒𝑒𝑒𝑒𝑒𝑒,𝜙𝜙)𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃)                 (11) 
 

 Nevertheless, this solution presents some discrepancies in 
the zone of zero magnetic field where the predicted impedance 
tends to very low values (see Fig. 2). This behaviour contrasts 
with measured data previously reported for this kind of 
microwires [24]. To overcome this issue, we consider a simple 
model based on the application of Eq. 2 with the susceptibility 
given by Eq. 7. It must be noted that Eq.2 for the high 
frequency limit is equal to Eq.11 with θ = 0º. This can be 
understood considering that in the magnetic field around zero, 
the skin depth is big enough to consider that the high frequency 



 

magnetic field is penetrating through all the wire, being the 
most important contribution to the impedance that of the inner 
core with axial magnetization. It is also important to remark 
that we take as an approximation the magnetic permeability as 
a scalar instead of a tensor [13]. 
 

 
Fig.2: Simulation of GMI with the solution in Eq.11., with 
parameters, a=3.8µm, f=15MHz, l=3.3cm, σ=8.7·105 S/m, 
µ0MS=0.5T, α=0.15, Ha=285A/m and γ=19.36·1010 T-1 s-1. 
 

 
Fig.3: Impedance of a microwire calculated with Eqs. 2 and 7 
and parameters a=3.8µm, f=15MHz, l=3.3cm, σ=8.7·105 S/m, 
µ0MS =0.5T, α=0.15, Ha=285A/m and γ=19.36·1010 T-1 s-1. 
 
 As shown in Fig. 3, this simple approach gets a closer fit 
to the experimental measurements exposed in the next section. 
The error around zero magnetic field has been improved, 
getting the expected value of the experimental data. Figure 4 
describes the response of the skin depth δ with the external 
magnetic field. As expected, the value of δ is minimized at 
certain values of magnetic field where the projection of the 

field reaches the anisotropy field Ha. Thus the impedance of 
the microwire is maximum at these points since the effective 
section of the microwire is constrained by the skin-depth 
effect. At higher fields δ increases and therefore the impedance 
is reduced. When its value is much higher than the radius of 
the microwire, the sample is saturated and its impedance 
experience small variations with the external field. 
 

 
Fig.4: Simulation of the skin depth in a microwire with 
parameters a=3.8µm, f=15MHz, l=3.3cm, σ=8.7·105 S/m, 
µ0MS =0.5T, α=0.15, Ha=285A/m and γ=19.36·1010 T-1 s-1. 
 
 As previously introduced, the circular loop configuration 
of the microwire (see Fig.6(a)) can be thought as a 
superposition of longitudinal elements with different incident 
angles. The model previously introduced can be used to 
calculate the angular-dependent impedance Zs(θ) of a 
microwire. Thus, the total impedance of a loop can be 
calculated by integrating the contribution of the different 
elements:  
 

𝑍𝑍𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ∫ 𝑍𝑍(𝜃𝜃)𝑑𝑑𝑑𝑑2𝜋𝜋
0                                                            (13) 

 
 In Fig.5 it is shown the impedance of a microwire with the 
shape of a circular loop. It has been calculated by taking linear 
segments of microwires with angular steps of 1º. It is found 
that the response of a circular microwire presents the 
characteristic shape with two peaks, although these peaks are 
wider than those found for the reference case of a straight 
sample and with an incident angle of 0º. In addition, the GMI 
ratio is lower and the position of the peaks are slightly higher.  
 
  



 
 

 
Fig. 5: Simulation of GMI of a microwire loop with 0.5cm of 
radius. The response is obtained through the sum of the 
contributions of GMI of pieces of microwires in steps of 1º, 
with parameters a=3.8µm, f=15MHz, σ=8.7·105 S/m, µ0MS 
=0.5T, α=0.25, Ha=285A/m and γ=19.36·1010 T-1 s-1. 

 

 3. Experimental results and analysis.  
 

 Figure 6(b) shows a SEM image of the microwires here 
employed, where the ferromagnetic core as well as the glass 
coat can be clearly distinguished. The characterization of the 
GMI phenomena in microwires is usually performed by 
measuring the change of impedance versus magnetic field for 
a given frequency and a constant AC amplitude of the driving 
current. The driving current generates a circular magnetic field 
into the sample that affects to its magnetization processes. The 
GMI effect is measured at constant current amplitude in order 
to keep a constant contribution of the AC magnetic field. 

 
 
Fig. 6: (a) Schematic of the microwire in a circular shape to 

measure the in plane (x-y) omnidirectional magnetic field Ho,  
(b) SEM image of a magnetic microwire. The diameter of the 
ferromagnetic core is 3.8 µm and thickness of glass coat is 
8 µm. 

 
 A straight sample of 3.3cm has been experimentally 
characterized. Incident fields at different angles θ with respect 
to the axis of the sample have been applied. We have used the 
experimental setup previously employed in [24]. First, the 
impedance has been characterized for a constant AC current of 
1mAp,  frequency of 15 MHz and incident angles from θ = 0° 
to θ = 90° in a 15º step. The experimental results are 
summarized in Fig. 7.  When the magnetic field is parallel to 
the microwire (θ = 0°), the impedance response shows double-
peak behaviour (typical response when the wire has circular 
anisotropy with two maxima appearing at the anisotropy field 
Ha=285.4 A/m.  Similar results were obtained in [24] where 
the same microwire composition was employed. The position 
of the peak of GMI increases with the increase of the incident 
angle of the magnetic field. Note that the maximum value of 
the impedance presents small variations for a broad range of 
angles. However, when the magnetic field impinges 
perpendicular to the microwire direction (θ = 90°), the GMI 
response disappears. 

 

 
Fig. 7: Impedance modulus of a longitudinal microwire of 
3.3cm as a function of the incident angle of the magnetic field 
(θ), with a constant current of 1 mAp and 15 MHz. 

 
The behaviour of the impedance with the incident angle 

can be understood as the superposition of the parallel and 
perpendicular projections of the magnetic field with respect to 
the microwire (see inset in Figure 8). Due to the negligible 
GMI response of the perpendicular projection, the 
displacement of the peak position (Hk) is mainly controlled by 

20 µm 

(b) 



 

the projection of the applied field in the axial direction of the 
microwire. Using this approach, the peak position can be 
determined by 𝐻𝐻𝑘𝑘 = Ha/cos (𝜃𝜃), where Ha is the anisotropy 
field. Figure 8 shows a comparison between the measured 
values of Hk and the prediction obtained using the projection 
of the field on the axial direction of the microwire. 
 

 
Fig. 8: Magnetic field where the maximum of impedance is 
found (Hk) as a function of the incident angle (θ). Comparison 
with the theoretical value obtained by using the projection over 
the wire direction.  

 
 Following this procedure, the complete GMI response at a 
certain incident angle can be obtained as the superposition of 
the parallel and perpendicular projections, i.e. Z(θ) = Z0 cos(θ) 
+ Z90 sin(θ), although the perpendicular contribution in the 
magnetic field range under study can be neglected. A particular 
case for θ = 45° is calculated and represented in Figure 9. In 
this figure, we can see the comparison between the measured 
response at 45° and the modelled response calculated using the 
aforementioned projection. As we obtain a good agreement in 
the comparison we are going to use this model for the 
simulation of the impedance of a microwire in the shape of a 
circular loop. In Fig.10 there is the comparison between the 
measured microwire in a circular loop and the impedance 
calculated by the sum of the GMI for angles between 0º to 90º 
in steps of 15º. As it can be seen in Fig.10 the model used fits 
very well with the experimental measurement for the circular 
loop sensor. 
 Figure 11 shows the measurements of the impedance of a 
microwire in the shape of a circular loop with 0.5cm of radius 
for different AC currents flowing through it. It is found that the 
anisotropy field increases with decreasing currents. The 
excitation of the microwire at lower currents leads to higher 
GMI peaks, although for currents below 5mA there is more 

noise due to the magnetization processes. The noise is 
probably due to wall movements that leads to Barkhausen 
jumps. With a current of 7mA the measurements exhibit lower 
levels of noise and a monotonous variation of impedance 
without perceptible Barkhausen jumps. Regarding these data, 
we conclude that the sensor presented in the next section 
should be excited at 7mAp. This current reduces the noise and 
offers a high sensitivity in the low field region.  
 

 
Fig. 9: Superposition model and comparison with the 

measurement results for θ = 45 with a constant current of 1 
mAp and 15 MHz.  

 

 
Fig. 10: Impedance response for the circular loop with a constant 
current of 7mAp and 11MHz. Comparison between the 
measurement (dotted blue line) and the model based on 
measured longitudinal elements (solid red line). The model uses 
the measurements of GMI form 0º to 90º in steps of 15º.   
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Fig. 11: Impedance modulus of a circular loop microwire with 
0.5cm of radius as a function of the current and 15 MHz 
frequency.  

 
 The impedance of the microwire as a function of the 
frequency is shown in Fig. 12. According to previous results 
[24], the GMI effect is stronger at higher frequencies. For this 
reason, the proposed sensor will operate at the maximum 
measured current, that is, 15MHz. 

 
Fig. 12: Impedance modulus of a circular loop microwire with 
0.5cm of radius for a flowing current of 7mAp. 

 
 

 4. Signal conditioning. 
 

 The proposed conditioning circuit is shown in Fig. 13. 
First, a sinusoidal signal at 15MHz is generated in a Colpitts 
oscillator. This signal is buffered and driven to a current source 
that feeds the microwire with a constant AC current. The 
voltage of the microwire pass through an envelope detector in 
order to measure its AC amplitude. Finally, the resulting signal 
goes to an amplifier with a low pass filter and offset 
adjustment. 
  

 
Fig. 13: Schematic of the signal conditioning circuit designed for the GMI sensor. 



 
The circuit of Fig. 13 has been built and characterized. A 

photograph of the resulting board can be observed in Fig. 14. 
Its response to an external magnetic field is shown in Fig. 15 
and exhibits a usable response in the range of ±200A/m. Since 
the response is monotonic within this range, it is suitable to be 
digitally corrected in order to get a linear response between 
magnetic field and output voltage. Note that, since the sensor 
is omnidirectional, it cannot distinguish de direction of the 
applied field but only the in-plane magnitude of the magnetic 
field.  

 

 
 
Fig. 14: Image of the signal conditioning circuit whose 
schematic is shown in Fig. 13.  
 

 

 
Fig. 15: Output voltage of the developed sensor as a function 
of the in-plane magnetic field.  
 

 

 5. Conclusion 
 
We have designed and built an in-plane omnidirectional 

magnetic sensor based on a glass coated microwire. For this 
purpose, we have used a microwire with the shape of a circular 

loop. In order to model the sensor response, a simplified 
approach for the calculation of the impedance of a circular 
microwire is presented. This model is based on the sum of the 
contributions of small pieces of microwire with different 
angles with respect to the direction of the incident magnetic 
field. It is worth to note that this method allows the calculation 
of microwires with any shape, which paves the way to new 
sensor designs based on the shape of the microwire.  

We have designed and built a signal conditioning circuit 
for the measurement of in-plane magnetic fields. The sensor 
presents a monotonic response in the range ±200A/m which 
can be easily linearized with a digital controller.  
 The extension to an omnidirectional sensor would consist 
of two of these circular loops placed perpendicularly, each one 
sensing the component of magnetic field laying in the plane of 
the loop. 
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