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Abstract

We show that the poset of formal balls of the Sorgenfrey quasi-metric space is
an ω-continuous domain, and deduce that it is also a computational model, in the
sense of R.C. Flagg and R. Kopperman, for the Sorgenfrey line. Furthermore, we
study its structure of quantitative domain in the sense of P. Waszkiewicz.
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1 Introduction and preliminaries

In this paper, the letters R, R+ and N will denote the set of all real numbers, the set of
all non-negative real numbers and the set of all positive integer numbers, respectively.

Ou basic references for quasi-metric spaces are [6, 10].
By a quasi-metric on a set X we mean a non-negative real-valued function d on

X × X such that, for each x, y, z ∈ X : (i) x = y ⇐⇒ d(x, y) = d(y, x) = 0; (ii)
d(x, y) ≤ d(x, z) + d(z, y).

A quasi-metric space is a pair (X, d) where X is a set and d is a quasi-metric on X.
According to [14] a quasi-metric d on X is said to be weightable if there is a non-

negative real-valued function w on X such that d(x, y) + w(x) = d(y, x) + w(y) for all
x, y ∈ X. In this case we say that w is a weight function for d.

Note that if d is a quasi-metric on X, then the function d−1 defined on X ×X by
d−1(x, y) = d(y, x), for all x, y ∈ X, is also a quasi-metric on X, and the function ds

defined on X ×X by ds(x, y) = d(x, y) ∨ d−1(x, y), for all x, y ∈ X, is a metric on X.

∗S. Romaguera, P. Tirado and O. Valero thank the support of the Ministry of Economy and Com-
petitiveness of Spain, Grant MTM2012-37894-C02-01.
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Each quasi-metric d on X induced a T0 topology τd on X for which the family of
open balls {Bd(x, r) : x ∈ X, r > 0}, is a base, where Bd(x, r) = {y ∈ X : d(x, y) < r}.

A topological space (X, τ) is said to be quasi-metrizable if there is a quasi-metric
d on X such that the topologies τ and τd agree on X. In this case, we say that d is
compatible with τ.

The Sorgenfrey line (R, τS) is a distinguished example of a quasi-metrizable topo-
logical space. In fact, it is well known, and easy to check, that the quasi-metric dS on
R given by dS(x, y) = y−x if x ≤ y, and dS(x, y) = 1 otherwise, is compatible with the
Sorgenfrey topology τS .

In the sequel, we will refer to (R, dS) as the Sorgenfrey quasi-metric space.

Next we recall several necessary concepts and properties of domain theory, which
may be found in [7].

A partially ordered set, or poset for short, is a (non-empty) set X equipped with a
(partial) order v . It will be denoted by (X,v) or simply by X if no confusion arises.

An element x of X is said to be maximal if the condition x v y implies x = y. The
set of all maximal points of X will be denoted by Max((X,v)) or simply Max(X) if no
confusion arises.

A subset D of a poset X is directed provided that it is non-empty and every finite
subset of D has upper bound in D.

A poset X is said to be directed complete, and is called a dcpo, if every directed
subset of X has a least upper bound. The least upper bound of a subset D of X is
denoted by tD if it exists.

Let X be a poset and x, y ∈ X; we say that x is way below y, in symbols x � y,
if for each directed subset D of X having least upper bound tD, the relation y v tD
implies the existence of some u ∈ D with x v u.

A poset X is continuous if it has a basis B, where B is said to be a basis for X if
for all x ∈ X, the set ⇓ x := {b ∈ B : b� x} is directed with least upper bound x.

The Scott topology σ((X,v)) of a continuous poset (X,v) is the topology on X
that has as a base the collection of all sets of the form ⇑ x, x ∈ X, where ⇑ x := {y ∈
X : x� y}.

The lower (or weak) topology ω((X,v)) of a continuous poset (X,v) is the topology
on X that has as a base the collection of all sets of the form X\ ↑ x, x ∈ X, where
↑ x := {y ∈ X : x v y}.

The Lawson topology λ((X,v)) of a continuous poset (X,v) is the supremum topol-
ogy of σ((X,v)) and ω((X,v)).

A continuous poset which is also a dcpo is called a continuous domain or, simply, a
domain.

A domain having a countable basis is said to be an ω-continuous domain or, simply,
an ω-domain.

Recall [22] that a constructive maximal point of a domain (X,v) is an element x of
X such that every λ((X,v))-neighborhood of x contains a σ((X,v))-neighborhood of
x. The set of all constructive maximal points is denoted by CMax(X).

Since the theory of metric spaces and domain theory provide suitable mathematical
structures in theoretical computer science, several authors have studied the question
of obtaining connections between them. In this direction, Lawson characterized in [11]
separable completely metrizable spaces in terms of ω-domains. This important result
suggested the following concepts introduced by Martin [12] (see also [9, 19]), and Flagg
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and Kopperman [5], respectively.

Definition 1 ([12]). A model for a topological space (X, τ) is a pair (Y, φ) where Y
is a domain and φ is a homeomorphism between (X, τ) and Max(Y ), when Max(Y ) is
endowed with the restriction of the Scott topology of Y.

Definition 2 ([5]). A computational model (maximal point model in [2]) for a topo-
logical space (X, τ) is a model (Y, φ) for (X, τ) such that Y is an ω-domain and the
restrictions to Max(Y ) of the Scott topology and of the Lawson topology, agree on
Max(Y ).

On the other hand, Edalat and Heckmann [3] obtained, in an elegant and natural
way, theoretic domain characterizations of complete and of separable complete metric
spaces with the help of the simple notion of a formal ball. More precisely, they proved,
among other results, that for a metric space (X, d) the following hold: (A) its poset of
formal balls is continuous; (B) (X, d) is complete if and only if its poset of formal balls
is a domain; (C) (X, d) is separable and complete if and only if its poset of formal balls
is an ω-domain.

It then follows from [3, Theorem 13] that the domain of formal balls of a complete
metric space (X, d) is a model for the topological space (X, τd), whereas the ω-domain
of formal balls of a separable complete metric space (X, d) is a computational model for
(X, τd).

Extensions and generalizations of Edalat and Heckmann’s results to ultrametric
spaces, Banach spaces, hyperspaces, uniform spaces, partial metric spaces, quasi-metric
spaces and fuzzy metric spaces, may be found, for instance, in [1, 4, 5, 8, 9, 15, 16, 17,
18, 19, 20, 21].

In particular, it was observed in [1, 19] that, as in the metric case, if (X, d) is a
quasi-metric space, the relation vd defined on the set BX := X × [0,∞) of formal balls
of X, as

(x, r) vd (y, s)⇐⇒ d(x, y) ≤ r − s,

for all (x, r), (y, s) ∈ BX, is a partial order on BX, so (BX,vd) is a poset, called the
poset of formal balls of (X, d).

In [20] it was proved that the poset (BR,vdS ) of formal balls of the Sorgenfrey
quais-metric space (R, dS) is a domain. In this paper we shall show that (BR,vdS )
is actually an ω-domain and hence it has the structure of a quantitative domain in
the sense of Waszkiewicz (see Definition 4 in Section 3). In fact, we shall construct
a relatively simple and somewhat surprising weightable quasi-metric q on BR whose
induced topology is weaker than the Scott topology of (BR,vdS ) and such that the
topology induced by the metric qs agrees with the Lawson topology of (BR,vdS ). We
also prove that the ω-domain (BR,vdS ) is a computational model for the Sorgenfrey
line.

2 The ω-domain of formal balls of the Sorgenfrey quasi-
metric space

We start this section with three useful lemmas which provide a complete description of
the way-below relation for (BR,vdS ). (In the sequel, given a quasi-metric space (X, d),
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the way below relation associated to vd will be denoted by �d .)

Lemma 1 ([1]). For any quasi-metric space (X, d) the following holds:

(x, r)�d (y, s) =⇒ d(x, y) < r − s.

Lemma 2 ([20]). For every (x, r), (y, s) ∈ BR with x 6= y, the following holds:

dS(x, y) < r − s =⇒ (x, r)�dS (y, s).

Lemma 3. Let x ∈ R and r, s ∈ R+. Then

(x, r)�dS (x, s)⇐⇒ s+ 1 < r.

Proof. Suppose that s+1 < r. Let D be a directed subset of (BR,vdS ) with least upper
bound (z, t) such that (x, s) vdS (z, t).

Choose ε ∈]0, 1[ such that s+1+ε < r. Then, there is (a, u) ∈ D such that u < t+ε
and dS(a, z) < ε. Hence 0 ≤ z − a < ε. If z = a, we deduce that dS(x, a) ≤ s − t <
r − 1− t < r − u. If z > a, we deduce that

dS(x, a) ≤ dS(x, z) + ds(z, a) ≤ s− t+ 1 < r − ε− u+ ε = r − u.

We have proved that (x, r) vds (a, u), and thus (x, r)�dS (x, s).

Conversely, construct the directed subset D of (BR,vdS ) given by

D = {(x− 1

n+ 1
, s+

1

n
) : n ∈ N}.

Clearly tD = (x, s). Since for each n ∈ N, dS(x, x−1/(n+1)) = 1 > (s+1)−(s+1/n),
we deduce that (x, s+ 1) is not way-below (x, s), so (x, r) is not way-below (x, s) when-
ever s+ 1 ≥ r. �

Combining the above lemmas we have the following consequence which will be used
in Section 3.

Corollary 1. For every (x, r), (y, s) ∈ BR the following hold:
(1) If x < y, then

(x, r)�dS (y, s)⇐⇒ y − x < r − s.

(2) If x ≥ y, then
(x, r)�dS (y, s)⇐⇒ s+ 1 < r.

In [20] it was proved that (BR,vdS ) is a domain. Next we show that actually it is
an ω-domain.

Theorem 1. (BR,vdS ) is an ω-domain.

Proof. We will show that the domain (BR,vdS ) has a countable basis. Indeed, denote
by Q and Q+ the set of all rational real numbers and the set of all non-negative rational
numbers, respectively. Put B = Q×Q+. Then B is a countable subset of BR.
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Choose an arbitrary (x, r) ∈ BR. Let (rn)n be a strictly decreasing sequence in Q+

such that limn rn = r. Construct a strictly increasing sequence (qn)n in Q satisfying
qn < x < qn + rn − r and qn+1 < qn + rn − rn+1 for all n ∈ N. Clearly (qn, rn)n is an
ascending sequence in B with least upper bound (x, r). Moreover (qn, rn)�dS (x, r) for
all n ∈ N, by Lemma 2. So, in particular, ⇓ (x, r)B 6= ∅.

Now let (y, s), (z, t) ∈⇓ (x, r)B. Then, there is n ∈ N such that (y, s) vdS (qn, rn)
and (z, t) vdS (qn, rn), and hence ⇓ (x, r)B is directed.

Finally, let (z, t) ∈ BR be an upper bound of ⇓ (x, r)B. Then dS(qn, z) ≤ rn − t for
all n ∈ N.

If x ≤ z we have qn < z, so dS(qn, z) = z − qn ≤ rn − t for all n ∈ N, and thus
dS(x, z) = z − x < z − qn ≤ rn − t for all n ∈ N. Since limn rn = r it follows that
dS(x, z) ≤ r − t.

If x > z, we have qn > z eventually, so 1 = dS(qn, z) ≤ rn − t eventually, and thus
1 ≤ r − t. Hence dS(x, z) = 1 ≤ r − t.

We have shown that t(⇓ (x, r)B) = (x, r). This concludes the proof. �

Improving results of [1] we now state the following.

Theorem 2. (BR,vdS ) is a computational model for (R, τS) via the embedding map-
ping i : R→ BR given by i(x) = (x, 0) for all x ∈ R.

Proof. We first observe that Max(BR,vdS ) = {(x, 0) : x ∈ R}. Thus i is clearly a
bijection between R and Max(BR,vdS ).

Now let (y, s) ∈ BR. If 0 < s ≤ 1, we obtain

i−1(⇑ (y, s) ∩Max(BR,vdS )) = {x ∈ R : (y, s)�dS (x, 0)} = [y, y + s[,

and if s > 1, we obtain

i−1(⇑ (y, s) ∩Max(BR,vdS )) =]−∞, y + s[.

Therefore i−1(⇑ (y, s) ∩Max(BR,vdS )) is open for τdS .
Moreover, for each x ∈ R and each ε ∈]0, 2/3[ it follows that

i(BdS (x, ε)) = {(y, 0) : dS(x, y) < ε} = (⇑ (x− ε

2
,
3ε

2
)) ∩Max(BR,vdS ),

and thus i(BdS (x, ε)) is open for the restriction of the Scott topology to Max(BR,vdS ).
Hence i is an homeomorphism between (X, τdS ) and Max(BR,vdS ), when Max(BR,vdS

) is endowed with the restriction of the Scott topology of (BR,vds).
Finally, we show that the restriction of the Scott topology and the restriction of the

Lawson topology agree on Max(BR,vdS ). To this end, let (x, 0) ∈ BR\ ↑ (y, s). Then
dS(y, x) > s, so x 6= y.

If x > y, we have x − y > s. Choose n ∈ N such that x − y > s + 1/n. Put
V =⇑ (]x−1/(n+1), 1/n). Then V is an open set for the Scott topology with (x, 0) ∈ V.
Let (z, t) ∈ V ∩Max(BR,vdS ). Then t = 0 and thus ds(x− 1/(n+ 1), z) < 1/n, so, in
particular, 0 ≤ z − (x− 1/(n+ 1)). Therefore

z − y ≥ x− y − 1/(n+ 1) > x− y − 1/n > s,
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which implies that dS(y, z) = z − y > s, so (z, t) ∈ BR\ ↑ (y, s).
If x < y, we first note that dS(y, x) = 1 > s. Now choose n ∈ N such that y − x >

1/n(n + 1). As in the above case, put V =⇑ (x − 1/(n + 1), 1/n) and let (z, t) ∈
V ∩ Max(BR,vdS ). Then t = 0 and thus dS(x − 1/(n + 1), z) < 1/n, so, z − (x −
1/(n + 1)) < 1/n, and hence z < x + 1/n(n + 1) < y. Therefore dS(y, z) = 1 > s, so
(z, t) ∈ BR\ ↑ (y, s). �

3 The ω-domain (BR,vdS) as a quantitative domain

Improving some results of [3] cited above, Heckmann proved in [8] that for any metric
space (X, d), the function dH : BX ×BX → R+ given by

dH((x, r), (y, s)) = (d(x, y) ∨ |r − s|) + s− r,

for all (x, y), (r, s) ∈ BX, is a weightable quasi-metric on BX, with weight function
w given by w((x, r)) = 2r for all (x, r) ∈ BX, that extends the metric d to BX and
such that its induced topology agrees with the Scott topology of the continuous poset
(BR,vdS ) (actually, Heckmann did his construction in the realm of partial metrics, a
framework equivalent to the one given by weightable quasi-metrics [14, Theorems 4.1
and 4.2]).

According to [20, p. 466], in the sequel we shall refer to the quasi-metric dH as the
Heckmann quasi-metric of (X, d).

It is interesting to point out that Heckmann’s construction provides a model for
metric spaces of a quantitative nature. This fact motivated, in part, the following no-
tions due to Schelleknes [21] and Waszkiewicz [23], and Waszkiewicz [24], respectively.

Definition 3 ([21, 23]). A domain X is called a quantifiable domain if there is a
weightable quasi-metric q on X whose induced topology agrees with the Scott topology
of X.

Definition 4 ([24]). A quantitative domain is a domain X such that there is a
weightable quasi-metric q on X, with weight function w, satisfying the following condi-
tions:

(a) the topology induced by q is weaker than the Scott topology of X;
(b) the weight function w is a measurement on X in the sense of [13];
(c) kerw = CMax(X), where kerw = {x ∈ X : w(x) = 0};
(d) The metric qs induces the Lawson topology of X.

Remark 1. Schellekens [21] and Waszkiewicz [23] independently proved that for each
ω-domain its Scott topology is induced by a weightable quasi-metric, so, by Theorem
1, (BR,vdS ) is a quantifiable domain. For instance, the following is an adaptation of
Schellekens’ construction to (BR,vdS ).

Put Q×Q+ = {(qn, un) : n ∈ N} and denote by dwS the function on BR × BR
defined by

dwS ((x, r), (y, s)) =
∑{

2−n : (qn, un) ∈⇓ (x, r)\ ⇓ (y, s)
}
.

Then [21], dwS is a weightable quasi-metric on BR that induces the Scott topology of
(BR,vdS ) and such that (dwS )−1 is also weightable.
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Next we show that, nevertheless, there is no quasi-metric q on BR inducing the
Scott topology of (BR,vdS ) and such that the embedding i of Theorem 2 provides
an isometry between (R, dS) and Max(BR,vdS ) endowed with the restriction of the
quasi-metric q :

Let q be a quasi-metric on BR such that τq = σ(BR,vdS ). Fix x ∈ R. Since the
sequence ((x−1/(n+ 1), 1/n))n converges to (x, 0) for the Scott topology (compare the
proof of Lemma 3), there is k ∈ N such that q((x, 0), (x− 1/(k + 1), 1/k)) < 1. Choose
y ∈]x−1/(k+1), x[. Then (x−1/(k+1), 1/k) vdS (y, 0), so q((x−1/(k+1), 1/k), (y, 0)) =
0. Then, it follows from the triangle inequality that q((x, 0), (y, 0)) < 1. However
dS(x, y) = 1 because x > y.

On the other hand, Waszkiewicz proved in [24] that each ω-domain is also a quan-
titative domain, so, again by Theorem 1, (BR,vdS ) is a quantitative domain.

We conclude the paper by showing the somewhat surprising fact that the Heckmann
quasi-metric of the ω-domain of formal balls of the metric space (R, e1), where e1 is the
metric on R given by e1(x, y) = |x− y| ∧ 1 for all x, y ∈ R, verifies conditions (a), (c)
and (d) of Definition 4, as well as a weak form of (b).

To this end, we first recall that (R, e1) is a separable complete metric space, and
hence (BR,ve1) is an ω-domain whose Scott topology is induced by the Heckmann
quasi-metric (e1)

H of (R, e1) (recall that (e1)
H is weightable with weight function w

given by w((x, r)) = 2r).

Now we prove the following results.

Proposition 1. σ((BR,ve1)) is strictly weaker than σ((BR,vdS )).

Proof. Let (x, r) ∈ BR and let 0 < ε < 1. We show that ⇑ (x − ε/2, r + ε) ⊂
B(e1)H ((x, r), 2ε).

Indeed, let (y, s) ∈⇑ (x− ε/2, r+ ε). Then dS(x− ε/2, y) < r+ ε− s. We have three
cases:

Case 1. y < x− ε/2. Then 1 < r + ε− s, so e1(x, y) < r + ε− s. Hence

(e1)
H((x, r), (y, s)) < ((r + ε− s) ∨ |r − s|) + s− r = ε.

Case 2. x − ε/2 ≤ y < x. Then e1(x, y) < ε/2, and 0 ≤ y − (x − ε/2) < r + ε − s,
so, in particular, s < r + ε. Hence (e1)

H((x, r), (y, s)) < ε/2 whenever r ≥ s, and
(e1)

H((x, r), (y, s)) < 2ε whenever r < s.
Case 3. x ≤ y. Then 0 ≤ y − (x− ε/2) < r+ ε− s, so 0 ≤ y − x < r− s+ ε/2, and,

in particular, s < r + ε/2. Hence

(e1)
H((x, r), (y, s)) < ((r − s+ ε/2) ∨ |r − s|) + s− r < ε.

We conclude that σ((BR,ve1)) is weaker than σ((BR,vdS )).
Finally, let ε ∈]0, 1/3[ and consider the σ((BR,vdS ))-open neighborhood of (0, 1),

⇑ (−ε, 1 + 2ε). Then, we have (e1)
H((0, 1), (−ε, 2ε)) = 0, but by Lemma 3, (−ε, 2ε) /∈⇑

(−ε, 1 + 2ε).
This completes the proof. �
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Remark 2. Since τ(e1)H = σ((BR,ve1), it follows from Proposition 1 that the weightable

quasi-metric (e1)
H satisfies condition (a) of Definition 4.

Lemma 4. Let (x, r) ∈ BR. Then, the countable family{
⇑ (x− 2−(n+1), r + 2−n) : n ∈ N

}
,

is a base of neighborhoods of (x, r) for σ((BR,vdS )).

Proof. First note that, by Lemma 2, (x, r) ∈⇑ (x − 2−(n+1), r + 2−n) for all n ∈ N
because dS(x− 2−(n+1), x) = 2−(n+1) < (r + 2−n)− r.

Now suppose that there exist k ∈ N and a sequence (zn, tn)n in BR such that

(zn, tn) ∈⇑ (x− 2−(n+1), r + 2−n)\BdwS
((x, r), 2−k),

for all n ∈ N, where, we recall, dwS is the weigthable quasi-metric of Remark 1.
Then, since dwS ((x, r), (zn, tn)) ≥ 2−k, we can assume, without loss of generality, that

there is m < k + 2 such that

(qm, um) ∈⇓ (x, r)\ ⇓ (zn, tn),

for all n ∈ N.
Without loss of generality we distinguish the following two cases:

Case 1. zn = qm for all n ∈ N.
Since (qm, um) /∈⇓ (qm, tn), it follows, from Lemma 3, that 1+ tn ≥ um for all n ∈ N,

and thus 1 + infn tn ≥ um.
Moreover

dS(x− 2−(n+1), qm) < r + 2−n − tn,

for all n ∈ N except, possibly, for a unique n0 (in case that x − 2−(n0+1) = qm), and
thus infn tn ≤ r.

If qm < x, it follows that qm < x−2−(n+1) eventually, so 1 < r+2−n− tn eventually,
and thus 1+infn tn ≤ r. Hence um ≤ r, which contradicts the fact that (qm, um) ∈⇓ (x, r)
(see Lemma 1).

If x ≤ qm, it follows that r+1 < um by Corollary 1. Hence r < um−1 ≤ infn tn ≤ r,
a contradiction.

Case 2. zn 6= qm for all n ∈ N.
Since (qm, um) /∈⇓ (zn, tn), it follows from Lemma 2 that dS(qm, zn) ≥ um − tn for

all n ∈ N.
Moreover

dS(x− 2−(n+1), zn) < r + 2−n − tn,

for all n ∈ N.
If qm < x, it follows that qm < x− 2−(n+1) eventually, and, by Lemma 2, x− qm <

um − r − ε for some ε ∈]0, 1[.
Hence

um − tn ≤ dS(qm, zn) ≤ dS(qm, x− 2−(n+1)) + dS(x− 2−(n+1), zn)

< x− qm − 2−(n+1) + r + 2−n − tn
< um − r − ε+ 2−(n+1) + r − tn,
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eventually. Therefore ε < 2−(n+1), eventually, a contradiction.
If x ≤ qm, it follows that r + 1 < um by Corollary1. Hence

um − tn ≤ dS(qm, zn) ≤ dS(qm, x− 2−(n+1)) + dS(x− 2−(n+1), zn)

< 1 + r + 2−n − tn,

for all n ∈ N. Therefore um ≤ 1 + r, which contradicts the fact that r + 1 < um. This
concludes the proof. �

Let us recall that a measurement on a domain (X,v) is a function µ : X → R+

satisfying the following conditions:
(i) µ is Scott continuous from (X,v) into (R+,≤−1), where r ≤−1 s if and only if

s ≤ r.
(ii) for each V ∈ σ((X,v)) and each y ∈ V there is ε > 0 such that

{z ∈ X : z v y and µ(z) < µ(y) + ε} ⊆ V.
The following example shows that the weight function w of (e1)

H is not a measure-
ment on (BR,vdS ) :

Choose any x ∈ R and k ∈ N. Put V =⇑ (x − 2−(k+1), 2−k). By Lemma 4, V ∈
σ((BR,vdS )). We have (x − 2−(k+1), 0) ∈ V. However, for each ε > 0, the formal
ball (z, ε/4), where z = x − 2−(k+1) − ε/4, satisfies (z, ε/4) vdS (x − 2−(k+1), 0) and
w((z, ε/4)) < w((x− 2−(k+1), 0)) + ε, but (z, ε/4) /∈ V.

Nevertheless, we can prove the following.

Proposition 2. The weight function w for (e1)
H , given by w((x, r)) = 2r, is a Scott

continuous function on (BR,vdS ) such that for each (x, r) ∈ BR and each k ∈ N the
following holds:

Whenever (y, s) ∈⇑ (x−2−(k+1), r+ 2−k),with y 6= x−2−(k+1), there is ε > 0 such that
{(z, t) ∈ BR : (z, t) vdS (y, s) and w((z, t)) < w((y, s)) + ε} ⊆⇑ (x− 2−(k+1), r + 2−k).

Proof. Scott continuity of w is an immediate consequence of the fact that if D is a
directed subset of (BR,vdS ), then tD := (x0, r0) satisfies r0 = inf(x,r)∈D r.

Now let (x, r) ∈ BR, k ∈ N and (y, s) ∈⇑ (x−2−(k+1), r+2−k),with y 6= x−2−(k+1).
We distinguish two cases:

Case 1. y < x− 2−(k+1). Then dS(x− 2−(k+1), y) = 1 < r+ 2−k− s. Choose ε ∈]0, 1[
such that 1 + ε/2 < r + 2−k − s. Then, for (z, t) vdS (y, s) with 2t < 2s + ε, we have
dS(z, y) ≤ t− s < ε/2 < 1, so z ≤ y. Therefore

dS(x− 2−(k+1), z) = 1 < r + 2−k − s− ε/2 < r + 2−k − t,

i.e., (z, t) ∈⇑ (x− 2−(k+1), r + 2−k).

Case 2. x− 2−(k+1) < y. Then dS(x− 2−(k+1), y) = y− (x− 2−(k+1)) < r+ 2−k − s.
Choose ε ∈]0, 1[ such that ε < y− (x− 2−(k+1)) and ε+ y− (x− 2−(k+1)) < r+ 2−k− s.
Then, for (z, t) vdS (y, s) with 2t < 2s + ε, we have as in Case 1, dS(z, y) < ε/2, so
0 ≤ y − z < ε/2. Consequently z − (x − 2−(k+1)) > y − ε/2 − (x − 2−(k+1)) > 0, and
hence

dS(x− 2−(k+1), z) = z − (x− 2−(k+1)) ≤ y − (x− 2−(k+1))

< r + 2−k − s− ε/2 < r − 2−k − t,
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i.e., (z, t) ∈⇑ (x− 2−(k+1), r + 2−k). �

Proposition 3. The weight function w for (e1)
H , given by w((x, r)) = 2r, satisfies

kerw = CMax((BR,vdS )).

Proof. We prove that Max((BR,vdS )) = CMax((BR,vdS )).
Let (x, 0) ∈ Max((BR,vdS )). In order to show that (x, 0) ∈ CMax((BR,vdS )), it

suffices to prove that if (x, 0) /∈↑ (y, s), then there exists a σ((BR,vdS ))-neighborhood V
of (x, 0) satisfying V ⊆ BR\ ↑ (y, s). Indeed, suppose (x, 0) /∈↑ (y, s). Then dS(y, x) > s,
and we distinguish two cases.

Case 1. y > x. Then 1 > s. Choose k ∈ N such that y > x + 2−k. Define V =⇑
(x − 2−(k+1), 2−k) and let (z, t) ∈ V. Then dS(x − 2−(k+1), z) < 2−k − t < 1, so, 0 ≤
z− (x−2−(k+1)) < 2−k− t < y−x, and hence z < y. Therefore dS(y, z) = 1 > s ≥ s− t,
i.e., (z, t) ∈ BR\ ↑ (y, s).

Case 2. y < x. Then x − y > s. Choose k ∈ N such that x − y > s + 2−k. Define
V =⇑ (x − 2−(k+1), 2−k) and let (z, t) ∈ V. As in Case 1, 0 ≤ z − (x − 2−(k+1)).
Hence y + s < x − 2−k < z, and consequently dS(y, z) = z − y > s > s − t, i.e.,
(z, t) ∈ BR\ ↑ (y, s).

Now let (x, r) ∈ CMax((BR,vdS )) and suppose that r > 0. Choose ε ∈]0, r[. Since
(x, r) ∈ CMax((BR,vdS )) there exists k ∈ N such that ⇑ (x−2−(k+1), r+2−k) ⊆ BR\ ↑
(x, r − ε). However (x, r − ε) ∈⇑ (x − 2−(k+1), r + 2−k)∩ ↑ (x, r − ε), which provides a
contradiction. Therefore r = 0, so (x, r) ∈ Max((BR,vdS )).

The fact that kerw = Max((BR,vdS )) concludes the proof. �

Proposition 4. τ((e1)H)s = λ((BR,vdS )).

Proof. We first prove that τ((e1)H)s ⊆ λ((BR,vdS )). To this end, note that from Propo-
sition 1 (or Remark 2), τ(e1)H ⊆ λ((BR,vdS )).

Now we prove that τ((e1)H)−1 ⊆ λ((BR,vdS )).

Let (x, r) ∈ BR and ε ∈]0, 1[. Take k ∈ N such that 2−k < ε and construct the
λ((BR,vdS ))-neighborhood V of (x, r) defined as

V :=⇑ (x− 2−(k+1), r + 2−k) ∩ (BR\ ↑ (x+ ε, r + ε)) ∩ (BR\ ↑ (x− ε, r +
ε

2
)).

We are going to show that V ⊆ B
((e1)

H )−1 ((x, r), 3ε/2). Indeed, choose any (y, s) ∈ V.
Then

(I1) dS(x− 2−(k+1), y) < r + 2−k − s,

(I2) dS(x+ ε, y) > r + ε− s,

(I3) dS(x− ε, y) > r + ε/2− s,

Since 2−k < ε, it follows from inequality (I1) that s− r < ε, and by inequalities (I1)
and (I2) that x− 2−(k+1) ≤ y, and we shall distinguish two cases.

Case 1. y < x. Then x− y ≤ 2−(k+1) < ε/2, and by (I3), y − (x− ε) > r + ε/2− s,
which implies that r − s < ε/2. Therefore

((e1)
H)−1((x, r), (y, s)) = (e1(x, y) ∨ |r − s|) + r − s < 3ε/2.
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Case 2. x ≤ y. Then, by (I1) and (I2), y < x+ε. Since by (I3), y−(x−ε) > r+ε/2−s,
we deduce that r − s < ε/2. Hence, as in Case 1, ((e1)

H)−1((x, r), (y, s)) < 3ε/2.

Therefore τ((e1)H)−1 ⊆ λ((BR,vdS )). We conclude that τ((e1)H)s ⊆ λ((BR,vdS )).

It remains to prove that λ((BR,vdS )) ⊆ τ((e1)H)s . To this end, we first show that
σ((BR,vdS )) ⊆ τ((e1)H)s .

Let (x, r) ∈ BR and V :=⇑ (x−2−(k+1), r+2−k) be a basic σ((BR,vdS ))-neighborhood
of (x, r). We are going to check that B((e1)H)s((x, r), 2

−(k+2)) ⊆ V. Indeed, let (y, s) ∈
B((e1)H)s((x, r), 2

−(k+2)). Then e1(x, y) < 2−(k+2) and |r − s| < 2−(k+2). Since |x− y| <
2−(k+2) we deduce that x− 2−(k+1) < y. Hence

dS(x− 2−(k+1), y) = y − (x− 2−(k+1)) < 2−(k+2) + 2−(k+1)

= 2−k − 2−(k+2) < 2−k + s− r,

and thus (y, s) ∈ V.
Finally we prove that ω((BR,vdS )) ⊆ τ((e1)H)s . Let (x, r) /∈↑ (y, s). We are going to

show that there is ε ∈]0, 1[ such that B((e1)H)s((x, r), ε) ⊆ BR\ ↑ (y, s).
If x < y, we have dS(y, x) = 1 > s − r. Choose ε ∈]0, 1[ such that ε < (y − x) ∧

(1 + r − s). Then, for any (z, t) ∈ B((e1)H)s((x, r), ε), we deduce that |x− z| < ε and
|r − t| < ε. It immediately follows that z < y and 1 > s − t, so dS(y, z) > s − t, i.e.,
(z, t) ∈ BR\ ↑ (y, s).

If y ≤ x, we have dS(y, x) = x − y > s − r. Choose ε ∈]0, 1[ such that x − y >
2ε∨ (s− r+ 2ε). Then, for any (z, t) ∈ B((e1)H)s((x, r), ε) we obtain z− y > x− ε− y >
s− r + ε > s− t, and consequently (z, t) ∈ BR\ ↑ (y, s).

Therefore ω((BR,vdS )) ⊆ τ((e1)H)s . This finishes the proof. �

Remark 3. It follows from Propositions 3 and 4 that the weightable quasi-metric (e1)
H

satisfies conditions (c) and (d) of Definition 4.
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