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Abstract 

The long-term properties and end-of-life of polymers are not antagonist issues. They actually 

are inherently linked by the duality between durability and degradation. The control of the 

service-to-disposal pathway at useful performance, along with low-impact disposal represents 

an added-value. Therefore, the routes of design, production, and discarding of bio-based 

polymers must be carefully strategized. In this sense, the combination of proper valorisation 

techniques, i.e. material, energetic and/or biological at the most appropriate stage should be 

targeted. Thus, the consideration of the end-of-life of a material for a specific application, 

instead of the end-of-life of a material should be the fundamental focus. This review covers the 

key aspects of lab-scale techniques to infer the potential of performance and valorisation of 

polymers from renewable resources as a key gear for sustainability. 

Graphical abstract 

 

Keywords 

long-term properties; durability; stability; end-of-life; degradation; material valorisation; 

energetic valorisation; biological valorisation; bio-based polymers; renewable resources;  

Highlights 

 The long-term properties and the end-of-life of polymers are not antagonist issues  

 The duality between durability and degradation is key for the sustainable design  

 Design, production, valorisation and disposal of bio-based polymers are strategic 

 End-of-life of a material for an application, instead of end-of-life of a material 

 Material, energetic and biological valorisations must be smartly combined. 

  



J.D. Badia, O. Gil-Castell, A. Ribes-Greus. Long-term properties and end-of-life of polymers from renewable 

resources. Polymer Degradation and Stability 2017;137:25-57 

3 

Contents 

 

List of abbreviators ........................................................................................................ 4 

1. Sustainability of polymers from renewable resources ............................................... 5 

2. Long-term properties and end-of-life of polymers .................................................... 8 

3. Durability and simulation of service conditions ...................................................... 11 

3.1. Thermal degradation ......................................................................................... 11 

3.2. Hydrolytic and hydrothermal degradation ........................................................ 12 

4.3. Mechanical degradation .................................................................................... 12 

4.4. Photochemical degradation ............................................................................... 13 

4. Material valorisation of biopolymers ....................................................................... 14 

5. Energetic Valorisation of Biopolymers ................................................................... 17 

5.1. Pyrolysis, gasification or combustion ............................................................... 18 

5.2. Tests to approach the pyrolysis and combustion of bioplastics ........................ 19 

5.3. Thermal decomposition studies of bioplastics .................................................. 20 

6. Biological valorisation of biopolymers .................................................................... 24 

6.1. Steps of biodegradation..................................................................................... 24 

6.2. Requirements for biodegradation ...................................................................... 26 

6.3. Standardized methods of analysis ..................................................................... 27 

6.4. Biodegradation under in-land conditions .......................................................... 31 

6.5. Biodegradation in aqueous conditions .............................................................. 33 

7. Concluding remarks ................................................................................................. 34 

Acknowledgements ...................................................................................................... 36 

References .................................................................................................................... 37 

 

  



J.D. Badia, O. Gil-Castell, A. Ribes-Greus. Long-term properties and end-of-life of polymers from renewable 

resources. Polymer Degradation and Stability 2017;137:25-57 

4 

List of abbreviators 

AFM Atomic Force Microscopy 

AIDS Acquired Immune Deficiency Syndrome  

ASTM American Society for Testing Materials 

ATP Adenosine Triphosphate 

DETA Dielectric Thermal Analysis 

DMTA Dynamic Mechanical-Thermal Analysis 

DSC Differential Scanning Calorimetry 

EN European Standards Organisation 

FTIR Fourier Transformed Infrared Spectroscopy 

GC Gas Chromatography 

GPC Gel Permeation Chromatography 

HV Hydroxyvalerate 

ISO International Standard Organisation 

LCA Life Cycle Assessments 

LMWC Low Molecular Weight Compounds 

MALDI-

TOF-MS 

Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry 

MODA Microbial Oxidative Degradation Analyser  

NMR Nuclear Magnetic Resonance 

OIT Oxidation Induction Time 

PBAT Poly(butylene adipate terephthalate) 

PBF Poly(butylene fumarate) 

PBS Poly(butylene succinate) 

PCL Polycaprolactone 

PE Polyethylene 

PET Poly(ethylene terephtalate) 

PGA Poly(glycolic acid) 

PHAs Polyhydroxyalkanoates 

PHB Polyhydroxybutirate 

PHBV Poly(hydroxybutyrate-co-valerate) 

PHV Polyhydroxyvalerate 

PLA Poly(lactic acid) 

PLGA Poly(lactic-co-glycolic acid) 

PP Poly(propylene) 

PVA Poly(vinyl alcohol) 

PVC Poly(vinyl chloride) 

PS Polystyrene 

PSW Plastic Solid Waste 

SEM Scanning Electron Microscopy 

TE-EC End-Chain Transesterifications 

TE-MC Middle-Chain Transesterifications 

TEM Transmission Electron Microscopy 

TGA Thermogravimetric Analysis 

TPS Thermoplastic Starch 

UV Ultraviolet 

 



J.D. Badia, O. Gil-Castell, A. Ribes-Greus. Long-term properties and end-of-life of polymers from renewable 

resources. Polymer Degradation and Stability 2017;137:25-57 

5 

 
1. Sustainability of polymers from renewable resources 

Plastics currently account for about 20% by volume of municipal solid waste. Even more, they 

are not only generating so much waste, but are also becoming extinct due to finite petroleum-

based reserves. It is estimated that the global resources of oil, natural gas and coal are limited 

and the economic impact could be exhausted in a near future, as prices will rise as these 

resources are more limited [1]. Due to the oscillation of oil prices and the problem of the 

accumulation of waste, which has led to hard environmental policies, polymers from renewable 

resources may become a sustainable solution. Actually, this market has experienced a high 

expansion, being the focus of lots of research studies [2], in many sectors of application, such 

as food packaging, agriculture and biomedicine, among other. 

Food packaging applications aim at substitute traditional polymers [3] [4] by bio-based 

polymers such as poly(lactic acid) (PLA) [5]–[8] or polyhydroxyalkanoates (PHA) [9], [10] , 

along with other polymers [11]–[13], blends [14]–[16], or nanocomposites [17] [18]–[21] [22] 

[23] [24] [25]–[27] [28] [29], [30] [31]. The focus is devoted to the combination of appropriate 

processability, good durability [32], [33] [34] barrier properties [35] [36] [37] [38] [24] [39], 

[40] and tuned biodegradability [33], [41]–[46], as well as to add value with natural additives 

[47], the combination of coatings [48] [35] [36] [49] [50]–[56] [57], [58] and multilayers [37] 

[38] [59] [60] [61] [62] [63] [31] [64], [65], or even the production of edible [66] [67] [68] [69] 

[70] [58], [71], [72] [57], [58] [73] [74] or active properties [75] [76] [77] [78] [79] [80] [81] 

[82], [83] [84] [85] [86] [87]. Agricultural applications [88]  consider the use of polymers from 

renewable resources as films for mulching and protection [88] [89] [90] [91] [92], drug delivery 

[93], [94] [95]–[98] [99] [100] [101] [102], [103] or goods as twines, strings, filaments and 

clips [104]. Biomedical applications based on polymers from renewable resources [105], [106] 

are based on their biodegradability and biocompatibility with low-impact form substance after 

degradation [107] [108] [109], for applications such as tissue engineering [110]–[112] [113] 

[114] [115] [116] [117], [118] [119] [120] [121], which ensure cell proliferation [122]–[124] 

[119], [125]–[128], controlled drug delivery [129], [130] [131]–[135] [136], [137] [138]–[140] 

[141] [142], wound dressing [143] [144], [145] [146]–[148] [149], [150] [151]–[156] [157] 

[158], [159] [117], [160]–[163]. In all cases, all polymers require a tuned balance between their 

performance during service life, and their degradation behaviour after use, that is, between the 

long-term properties and their end-of-life. Nevertheless, polymers from renewable resources 

still involve relatively high production costs and, frequently, they show underperformed 

properties for each application in contrast to their petroleum-based counterparts. In addition, 

concerns are growing into the society about the use of long-life polymers in products in which 

a short-life is expected. Therefore, there is an engagement to base the research in appropriate 
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production-service-waste management mainstreams on an equitable commitment of the three 

pillars of sustainability, i.e. People (social pillar), Planet (environmental pillar) and Profit 

(economic pillar) [164]. 

Specifically, the sustainability of polymers from renewable resources, i.e. bio-based polymers, 

is a topic which has been approached from several perspectives due to its importance and impact 

on wealth, environment and technological development [165]–[170]. Due to their high potential 

of replacement of petroleum-based polymers, the design, use and disposal routes of bio-based 

polymers must be carefully strategized in order to ensure appropriate service conditions and 

adequate valorisation and/or elimination after their service-life [171]. In addition, these 

processes have to be economically efficient, energetically affordable and environmentally 

friendly. Thus, the concepts of applications, long-term properties and end-of-life of bio-based 

polymers have to be constantly linked, as shown in Figure 1. 

 

Figure 1. Perspective of this review: interlinked approach of applications, long-term properties and end-of-life of 

bio-based polymers. 

The applications of bio-based polymers are inherent to both the choice of suitable materials and 

their particular obtaining process to ensure the expected performance during service, which is 

related to their long-term properties. This combination of process and performance must be 

efficiently balanced, to guarantee correct end-of-life of the bio-based goods, not only 

understood as the disposal and reintegration of carbon source into the life cycle, but also from 

the point of view of its possible valorisations into feedstock, the same or different materials 

and/or energy. In this sense, in this review, the long-term properties of polymers are approached 

from the point of view of the durability facing different degrading agents such as temperature, 

sun light or humidity. The three following sections are devoted to material, energetic and 

biological valorisations, as alternatives to extend the value of polymers, depending on the 

expected performance and end-of-life opportunities. Finally, a list of different opportunities to 
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foster the background of a correct alignment between long-term properties and end-of-life is 

proposed, in order to contribute to the field of sustainable design of polymers from renewable 

resources. 
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2. Long-term properties and end-of-life of polymers 

The terms durability and degradation, as well as long-term properties and end-of-life are 

inherently linked. The emphasis on each term will be showed depending on the focus of the 

analysis under consideration. Whether the conservation of the high-level performance of bio-

based polymers is aimed, the preservation of its durability will determine the improvement of 

long-term properties. On the contrary, if the elimination of plastic waste after discarding is 

sought, monitoring and favouring the most effective degradation pathway will be focused. 

However, both ideas are not antagonist. In fact, both must be considered together at the steps 

of design or choice of appropriate materials for specific applications. A correct balance between 

an appropriate durability of a plastic good and a simple end-of-life pathway without energetic 

or environmental impact should be addressed. Even more, the consideration of the end-of-life 

of a material for an application, instead of the end-of-life of a material should be kept in mind 

in order to favour second-life uses, and thus enlarge its service-life, giving an extra value to this 

material. Sending discarded material to downgraded applications, combine them with other 

materials to upgrade them, obtaining energy, feedstock or recover the carbon sources by 

biological methods should be considered as added-value alternatives for bio-based polymers. 

Different strategies to simulate service-life conditions, and thus focus on the durability of the 

materials, or to simulate different valorisation options, therefore aiming the degradation 

pathways, can be taken into account, as schematised in Figure 2. 

 

Figure 2. Types of durability and degradation studies summarised in this review. 

The physico-chemical properties of bio-based materials subjected to different service-life or 

valorisation conditions must be followed in order to respectively evaluate, on the one hand, the 

preservation of performance or, on the other hand, to monitor the extent of degradation to ensure 

correct valorisation. In this sense, as shown in Figure 3, the evaluation of properties goes from 
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micro-approach, i.e., structure-morphology, to macro-response, i.e. mechanical, thermal or 

rheological properties, connecting with the application at the durability stage, and with the 

surroundings and impact on environment and human health with the analysis of release of low-

molecular weight compounds, at the degradation stage. 

Structural and morphological observation by means of techniques such as Gel Permeation 

Chromatography (GPC) [172], Matrix-Assisted Laser Desorption-Ionization Time-of-Flight 

Mass Spectrometry (MALDI-TOF-MS) [173]–[175], Nuclear Magnetic Resonance (NMR) 

[176], or Fourier-Transform Infrared Spectrometry (FTIR) [177] are used for determining the 

molar-mass distributions and to identify the chemical nature of the polymer chains and/or their 

chemical groups. As well, micrographic techniques such as Scanning/Transmission Electron 

Microscopy (SEM/TEM) or Atomic Force Microscopy (AFM) allow the observation of the 

topology of polymers as well as the analysis of interfaces in blends or composites [178]. In 

addition, Differential Scanning Calorimetry (DSC) can be used to determine the main thermal 

properties and the balance between crystalline and mobile and rigid amorphous fractions [179], 

[180]. As well, Dielectric Thermal Analysis (DETA) and Dynamic-Mechanical Thermal 

Analysis (DMTA) is of great importance to test the segmental rearrangements and dynamic 

fragility of polymers [181]–[184], which modifications are not perceptible by other 

macroscopic techniques.  

The macroscopic response, in terms of rheological, thermal and mechanical performance is of 

great importance and currently the focus of most reports, due to the technology-driven and 

market-pulling of applications for bio-based polymers. The mechanical characterization of the 

stress and strain at break or impact to check the resistance of second-life applications is 

fundamental. The control of the rheological properties in order to assure proper flow during 

processing, as well as the study of the stability indicators such as the Oxidation Induction Time 

(OIT) or the Temperature of Oxidation (TOX), the thermal and thermo-oxidative decomposition 

temperatures or the melting temperatures are of immediate application and use in industrial 

quality labs to infer the necessary processing windows. In addition, those polymers designed 

for specific applications need specific analyses which may inform about the suitability of these 

materials to be used in second-life applications or should be sent to other valorisation routes. 

This could be the case of polymers used for packaging, which need gas transmission 

experiments [185]–[187]. As well, those used in electrical or insulating applications may rely 

on dielectric characterisation [181]. Moreover, for those which serve in contact with food or in 

aggressive environments, the ecotoxicity should be assessed [188]–[190]. Finally, for those 

applications in contact with humans, animals, plants or to be used in cosmetics, food packaging 

or as drugs carriers, for example, the controlled extraction and identification of low molecular 

weight compounds has to be considered [191], [192]. 
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Figure 3. Analytical strategies to monitor durability or degradation. 
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3. Durability and simulation of service conditions 

Bio-based polymers are subjected to different service conditions, which can be more or less 

aggressive depending on their application, being thus exposed to some degrading factors which 

individually or in combination can affect their physico-chemical properties, and thus the 

durability of their properties. In general terms, the types of degradation can be thermal, 

hydrolytic/chemolytic, photochemical or mechanical. In order to simulate the performance of 

these materials under these conditions, different normalised and accelerated protocols can be 

applied. 

3.1. Thermal degradation 

Thermal degradation comprises the negative response, i.e., loss of properties, due to the 

subjection of bio-based materials to specific temperatures during extended time. In general 

terms, one must differ between (i) thermal degradation at temperatures below the glass 

transition temperature, which can induce structural rearrangements know as physical ageing 

[193][194][195]; (ii) thermal degradation at temperatures between the glass transition 

temperature and the melting temperature, which can provoke from loss of dimensions due to 

flow of material to crystallisation processes or starting of thermal decomposition of low 

molecular weight additives; (iii) thermal degradation at temperatures above the melting 

temperature and below the decomposition onset temperature, which will be extremely 

important to know to ensure processability of second-life bio-based goods, or (iv) thermal 

degradation above thermal decomposition, which is treated as energetic valorisation option in 

section 5. In order to test the thermal degradation of bio-based polymers, different 

methodologies can be used. On the one hand, the use of ovens permits the analysis of every 

type of thermal degradation, preferably those without decomposition, and then evaluate 

degradation by analysis of molar masses and physico-chemical properties. Differential 

Scanning Calorimetry (DSC) is interesting to test thermal degradation at temperatures up to the 

melting temperature, as well as to monitor degradation by means of indicators such as the glass 

transition temperature, the degree of crystallinity, the crystallisation and cold-crystallisation 

temperatures or the crystallinity degree. However, it is not advisable to induce thermal 

degradation at temperatures below the glass transition by DSC due to the high consumption of 

time. The use of Dynamic Mechanical Thermal Analysis (DMTA) is suitable to test the impact 

of thermal degradation until temperatures far below the melting temperature on mechanical 

properties by means of creep experiments. Finally, the use of Thermogravimetric Analysis 

(TGA) is essential to test the thermal decomposition of polymer-based materials, both under 

inert or oxidative conditions. Some studies have been reported for neat [196], [197] and 
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reprocessed [198] PLA, PLA-based composites [199]–[202], PHAs [203], PCL [204], 

polyester-based blends [205] or starch-based blends [206], among other. 

3.2. Hydrolytic and hydrothermal degradation 

Hydrolysis of ester linkages is one of the most established types of bio-based polymer 

degradation, and therefore most of bio-absorbable polymers for biomedical applications are 

based on polyesters. There are two main ways by which biopolymers can be hydrolyzed, 

passively by chemical hydrolysis, or actively by enzymatic reaction. The latter method is more 

important for naturally occurring polymers such as polysaccharides and PHAs [207]. PLA and 

PGA degrade by simple hydrolysis of the ester bond and do not require the presence of enzymes 

to catalyse hydrolysis [208]. The hydrolysis of ester linkages occurs through a series of 

overlapping stages, progressively reducing the molar mass and thus affecting to the 

macroscopic physico-chemical properties. Simulation of service-life conditions of biomedical 

materials usually follows the ISO10993-13:2010 normative [209]. Shortly, materials are 

exposed to the analytic medium, which can be water, phosphate buffer solution or human fluid 

simulants, during different times at 37 ºC, to mimic human conditions. The monitoring of 

degradation can be followed both in the liquid and in the solid fractions. Several reports for 

PLA [210]–[213], PCL [214], PHAs [215], poly(butylene fumarate) (PBF) [216], or 

copolyesters [217]  can be found in literature, among others. 

For non-biomedical purposes, modified water absorption protocols such as the ISO62:2008 

[218] can be used to induce accelerated hydrothermal degradation on polymers. In this sense, 

both agents, water and temperature can sinergically act to simulate real service conditions. This 

has been reported for neat [219], [220] and reprocessed PLA [221], [222], PHAs [223], [224], 

PCL, and blends [225] or composites such as PLA/sisal [226], [227], PHBV/sisal [228], or 

poly(butylene sebacate) (PBS)/montmorillonite [229], among others. 

4.3. Mechanical degradation 

Bio-based polymers can be subjected to several types of mechanical solicitations during 

processing, storage and use. These mechanical stresses can be tensile, compressive, shearing or 

bending, in the form of vibrations, agitations, grinding or hard extrusion. 

The basic phenomenon involved when subjecting the polymer to very powerful shearing forces 

is the breakage of the macromolecule. Mechanical degradation reduces the average molecular 

weight of the polymer [230]. Although mechanical factors are not predominant during 

biodegradation, they can activate or accelerate it [208]. In order to simulate mechanical 

degradation, common experiments of fatigue or creep can be performed on polymers by DMTA 
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[184], which not only serve for classical mechanical analysis, but also gives the chance of 

applying several vibrating frequencies and combine them with thermal effect. 

4.4. Photochemical degradation 

Photodegradation of polymers is induced by the action of light, due to UV absorption, mainly 

by carbonyl groups of polyesters [231]. Photodegradation mechanisms are mainly expressed 

by the Norrish reactions that transform the polymers by photoionization (Norrish I) and chain 

scission (Norrish II) [232]. Photodegradation can conduce to Norrish reactions and/or cross-

linking reactions, or oxidative processes [233]. Polymers such as PLA or PCL [234] have 

shown Norrish-type photodegradation, whereas others such as Poly(butyrate adipate 

terephthalate) (PBAT) or Ecoflex® have shown main routes of cross-linking and chain scission 

[235], [236]. 

Photodegradation and sunlight oxidation test protocols are practices such as ASTM D5071  

with Xenon lamps [237], ASTM D5208 with fluorescence lamps [238], or ASTM D5272 for 

outdoor conditions [239] are preferably used for exposing a plastic to some form of radiation 

and subsequently measuring the loss of any property, usually molar mass and mechanical 

properties, such as tensile or impact resistances or show the performance of additives to protect 

them such as ZnO [240], Si colloids [241] and other stabilizers to prevent them from 

degradation [242]. These techniques allow setting not only UV wavelengths, but also 

temperatures, day-night cycles, or controlled floating, rain or humidity. Some studies have been 

reported for neat PLA [196] and composites [243]–[245], PHAs [246]–[248], PCL [234], 

starch-based blends [249], [250] or cellulose [251], [252], among others.  
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4. Material valorisation of biopolymers 

Short-time applications from bio-based and biodegradable plastics have attracted much interest  

in different industrial, social and economic sectors [253]. It is known that bio-based materials 

are suitable for biological waste treatment such as composting, thus having a great potential to 

contribute to the reduction of the amount of waste sent to landfill and generating valuable soil 

improvers, which is of great importance for industries, governments and consumers [254]. 

However, the presumably high amount of bio-based plastic waste surpassing the capability of 

composting facilities has to be taken into account [255]. Actually, including the end-of-life 

stage in Life Cycle Assessments (LCA) provides more comprehensive life pathways for bio-

based polymers, but simultaneously introduces greater amounts of uncertainty and variability. 

Although there is little life-cycle data available on the impacts of different ways of disposal, it 

has been argued that it would be critical for future sustainability assessments [256], [257]. The 

necessary implementation of operation units  during the dismantling process, new separation 

technologies, and the logistics of handling additional streams of materials will require 

significant study, development, and monitoring in order to develop robust and effective 

recovery methods [258]. In this sense, to explore the chances to enhance the valorisation of 

bioplastic-based goods, by means of mechanical recycling would be advisable to explore the 

possibilities of extending their service lives before finally discarding them to bio-disposal 

facilities [259], [260]. 

Mechanical recycling represents one of the most cost-effective methodologies, though recycled 

materials are usually directed to downgraded applications, due to the inherent thermo-

mechanical degradation affecting its mechanical, thermal and rheological performance [261]. 

During re-processing, polymers are subjected to the synergic influence of degrading agents 

such as oxygen, UV-light, mechanical stresses, temperature and water, which, separately or in 

combination, during its material loop (synthesis-processing-service-life-discarding-recovery), 

results in chemical and physical changes that alter their stabilization mechanisms and long-term 

properties [262], [263]. Degradation usually provokes a reduction of physical properties and 

functional quality of polymers and, hence, reprocessed products of high confidence are difficult 

to obtain. Traditional simulation of mechanical recycling by multiple processing and service-

life by accelerated thermal ageing was previously developed for commodities such as PE [264], 

PP [265], poly(styrene) (PS) [191], [192], poly(vinyl chloride) (PVC) [266] or PET [179], 

[267]–[269], among others. Concerning bio-based polymers, the main effort has been dedicated 

to PLA in great extension, and other materials such as PHAs [270]–[272], poly(caprolactone) 

[273] or biocomposites with matrixes of PLA or thermoplastic starch (TPS) [274]. 
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The mechanical recycling of PLA has been approached in lab-scale studies by means of 

multiple injection [183], [275]–[277] and extrusion [278]–[281] steps, and the recyclates 

characterized in terms of structural and morphological analysis rheological, thermal and 

mechanical properties, release of low molecular weight compounds (LMWC) [282], and 

application-driven techniques such as mass-transport [221] or dielectric properties [181]. A 

review devoted to the mechanical recycling of PLA [261] showed that, in general terms, 

reprocessing of PLA was responsible for a decrease in molecular weight, modification of 

thermal properties and crystallization kinetics, dynamic fragility or permeation performance, 

among other parameters [261]. As a general idea, PLA could be reprocessed without losing 

most of its properties up to 2 cycles, but this affirmation strongly depends on the PLA grade 

used and the care during reprocessing. Studies focused on the characterization of multi-injected 

PCL have revealed that PCL technological waste is suitable to be reused as an additive to a neat 

polymer [273]. Regarding PHAs, their performance of mechanical recycling was tested during 

successive injection [270], [271] and extrusion cycles [272], showing successive diminution of 

molecular weight after increasing cycles, with its consequent decrease in mechanical properties. 

 

Figure 4. Scheme of material valorisation through mechanical recycling and up-grading options. 

Figure 4 shows a schematic material flow from virgin to recycled polymer in a closed loop, i.e. 

within the same polymer fraction, or in combination with other material, which hinders the 

continuation of material flow inside the mechanical recycling loop and thus suggests the design 

for further valorization.  Due to degradation during re-processing, the performance of 
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bioplastics is usually downgraded and thus several strategies to improve and upgrade materials 

can be followed. This is the case of the application of physical treatments such as annealing  to 

increase young modulus and yield strength of PLA [275], [283] or the use of chemical 

stabilizers such as tropolone, quinones or irgafos/irganox  during processing to prevent 

transesterification [284], [285]. Other options include the blending of recycled polymers with 

other ones that can act as plasticizers or tougheners  (blending – in) [277], [286]–[288], or the 

use of recycled bioplastics as value-added modifiers for other plastic matrixes (blending – out) 

[289]–[291]. The case of the combination of PLA and PHBV is remarkable [272]. The effects 

of 6 recycling cycles on the structure and properties of neat PHBV, neat PLA and PHBV/PLA 

(50/50 wt%) blends elaborated by injection moulding were investigated. In contrast to PLA, 

PHBV seems to be relatively more sensitive to the thermomechanical degradation, where the 

presence of PLA in the PHBV–PLA blend tends to partially prevent the degradation of PHBV. 

Even more, it was suggested that the recyclability of PHBV/PLA blends was affordable after 

several reprocessing cycles, since the values of mechanical properties remained at the original 

level, as well as the molar mass slightly reduced [272]. Other studies focused on blends such 

as that of PLA/TPS have shown worsening of the thermal properties as a function of 

reprocessing cycles, especially for those with high concentration of TPS [292]. 

Finally, the option of compositing recycled bioplastics following the same compositing routes 

as for neat polymers may also provide with upgraded performance. Lopez et al. studied the 

recycling ability of biodegradable matrices such as PLLA and Mater-Bi and their cellulose-

reinforced composites in a plastic recycling stream [293]. In the same direction, the behaviour 

of polylactide/flax composites was evaluated after several recycling cycles [294]. Moreover, 

polylactide-recycled wood fibre composites were prepared and characterised by Pilla et al 

[295]. Other applications of reused natural fibre reinforced composites such as in polymer 

mortars were considered by Grozdanov et al [296].  

Once the extent of material valorisation has been exhausted, there are still possibilities to make 

profit from bioplastics without the need of sending them to landfilling. This is the case of 

energetic or biological valorisation, as shown in the next sections. 

  



J.D. Badia, O. Gil-Castell, A. Ribes-Greus. Long-term properties and end-of-life of polymers from renewable 

resources. Polymer Degradation and Stability 2017;137:25-57 

17 

5. Energetic Valorisation of Biopolymers 

Energetic valorisation is compressed under the term chemical recycling, which covers both 

chemical methods to recover feedstock from wastes and thermolytic processes to obtain energy. 

Figure 5 shows the relationship between these technologies put in practice.  

Feedstock valorisation refers to advanced technological processes which convert plastic 

materials into smaller molecules, usually liquids or gases, which are suitable for being used as 

a feedstock for the production of new petrochemicals and plastics. The technology behind its 

success is the depolymerisation –both chemically and thermally driven– process that can result 

in a profitable and sustainable industrial scheme, providing a high product yield and minimum 

waste [297]. However, for the case of bioplastics, the effort in recovering monomers could be 

more expensive and harmful for the environment than just obtaining them as raw material. 

Concerning the energy balance and costs, these processes lay between re-melting and 

combustion [298]. In fact, chemical recycling options could be suitable when the amount of 

wastes surpass the capabilities of biological valorisation facilities. More literature of feedstock 

recycling can be found in terms of chemically-driven obtaining of lactic acid by hydrolysis of 

PLA [299]–[301] and thermally-driven obtaining of L-L-lactide from PLA [302]–[304] or vinyl 

monomers from PHAs [3]. It must be pointed out that feedstock recycling might be particularly 

interesting for blends of biopolymers with commodities when high performance at service 

conditions is no more expected, especially for those difficult to separate mechanically, or those 

which have different thermal decomposition profiles. This could be the case of blends of 

PHBV/PE [305], PLA/PET [306], PLA/PE [307], [308] or PLA/PBS [309]. 

Energetic valorisation implies thermal cracking of waste to produce energy in the form of heat, 

which may be converted into steam and further to electricity by a conventional thermoelectric 

plant. Polymer-based materials possess a very high calorific value when burned, especially 

when considering that they are derived from crude oil. Since the heating value of plastics is 

high, they make a convenient energy source, such as heating oil and coal [310]. Thermolytic 

processes consider pyrolysis, gasification, combustion, liquid–gas hydrogenation, viscosity 

breaking, steam or catalytic cracking, and the use of plastic solid waste as a reducing agent in 

blast furnaces [311]. 
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Figure 5. Chemical recycling options. Detail of thermolytic processes for energetic valorisation. Redrawn from ref 

[255]. 

Not only healthy monomer fractions can be recovered up to 60% [312], but also valuable 

petrochemicals can be produced, such as gases (hydrocarbons), tars (waxes and liquids very 

high in aromatic content) and chars (carbon black and/or activated carbon). However, one must 

consider that, in general, post-consumer plastic waste consists of a variety of long chain 

polymer molecules, chemical contaminants and hetero-atoms such as chlorine, oxygen or 

nitrogen. Physical impurities like fillers, pigments or adhered dirt are present as well as larger 

inorganic material, arising from incomplete sorting. In order to use this waste as feedstock for 

new plastics or fuel components, the following problems need to be overcome [313]: (i) Larger 

inorganic particles have to be discharged from the process in order to prevent the process to be 

blocked by, as well as to avoid the erosion of pipes and pumps; (ii) Inorganic particles have to 

be mechanically separated; (iii) Long polymer chains have to be cracked; and (iv) Hetero-atoms 

need to be chemically separated.  

5.1. Pyrolysis, gasification or combustion 

Pyrolysis has the ability to produce high calorific value gas by thermal cracking in inert 

atmospheres at temperatures up to 800 ºC [313]. The solid char can be used in-site to release 

its energy content by further thermal processes or used off-site to valorise its inorganic residues 

in further applications. In contrast to other thermolytic technologies, pyrolysis has the 

advantages of being less energy consumer, using low pressures and preventing the generation 
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of pollutants [311], [313]. Examples of pyrolysis for Plastic Solid Waste (PSW) [312], biomass 

[314] or rubbers [315] have been reported. Of all the biopolymers investigated, PHB is the most 

promising material, followed by aliphatic-aromatic copolyesters, PLA-based polymers, potato 

starch, corn starch and starch based biopolymers in order of decreasing profits [208], [316]–

[319]. 

Gasification operates at temperatures up to 1300 ºC and use controlled addition of oxygen as 

reagent [313]. It mainly produces syngas, which is a mixture of carbon monoxide and hydrogen, 

which can be used as fuel, substituting natural gas. Additionally, a significant amount of char 

is produced which has to be further treated. If this inorganic ash is bounded into a glassy matrix, 

it can be used as a component in concrete or mortar due to its high acid resistance [313]. As 

well, the emission of pollutants is reduced due to the use of high temperatures and low oxygen 

partial pressure in its operational parameters [313]. Some applications of gasification of 

conventional plastic fractions have been developed for PVC [320], PP [321] or PET [322], as 

well as for bio-based polymers such as PLA and others [323]–[325]. 

Incineration involves the combustion of polymer wastes to obtain mainly carbon dioxide, water 

and inorganic ashes. Despite the unpopular not-in-my-backyard syndrome, its use as centralized 

alternative for landfill could be significant, considering that the technologies of control of 

pollutants are efficient enough. In fact, it could be advisable for not-recoverable plastics coming 

from biomedical applications, drugs, hazardous-goods packaging, electronics or highly 

contaminated plastics. The inorganic fraction of the waste, if any, is essentially mineralised in 

an inert slag that can be used in cement kilns for materials for construction of roads. 

5.2. Tests to approach the pyrolysis and combustion of bioplastics 

Appropriate design and scale are of paramount importance when it comes to thermal treatment 

plants. Thermolysis behaviour in laboratory scale enables the assessment of a number of 

important parameters, such as thermal stability temperature of polymers, thermal kinetics, 

activation energy assessment or product formation [311]. 

To design a chemical reactor, the expression for the decomposition rate must be ascertained. 

Assuming the reaction is known not to be elementary, the search for a mechanism that describes 

the reaction taking place or use experimental data directly must be aimed. Mechanisms can be 

hypothesized as the sum of a series of elementary reactions with intermediates. Using methods 

developed by physical chemists, whether the proposed mechanism fits the actual experimental 

evidence can be hypothesized. Systems kinetics will not only develop appropriate models that 

will predict systems products and their interaction, but through solving the derived 

mathematical expressions, they will predict the product interaction behaviour. This will assist 
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in reducing side reactions and undesired by-products on an industrial scale. Developing rate 

expressions of the materials being treated will then be utilized in determining the optimum unit 

operation to be used and its required supply of power and proper media of operation, in the case 

of pyrolysis, the sufficient amount of inert atmosphere in the pyrolyser or the ratio of steam to 

oxygen in a gasifier [326]. 

In the attempt of developing a model for thermal and thermo-oxidative decompositions in full-

scale systems, the main purpose is to describe the behaviour of polymers in terms of intrinsic 

kinetics, in which heat and mass transfer limitations are not included. General kinetic models 

are proposed in literature for plastics and biomasses [327]. These models do not take into 

account the rigorous and exhaustive description of the chemistry of thermal decomposition of 

polymers and describe the process by means of a simplified reaction pathway. Each single 

reaction step considered is representative of a complex network of reactions [328]. 

Pyrolysis is usually the first process in a thermal plant. This could be approached via the 

understanding of the systems kinetics by Thermogravimetric Analysis (TGA) and scale pilots, 

using inert atmospheres such as Ar or N2. Combustion/Gasification systems can also be 

approached by using O2 or mixtures of N2/O2 rich in the O2 phase [311] . Therefore, TGA stands 

out as fast, cost-effective and reliable characterization technique to ascertain a deeper 

knowledge about the ongoing thermal and thermo-oxidative decomposition of plastics. 

Completing this experimental technique with a proper theoretical model-fitting methodology is 

commonly used for the study of kinetic parameters such as the apparent activation energy Ea, 

the pre-exponential factor A and the reaction model f(α) , which yield the so-called kinetic 

triplet [329], [330]. The hyphenation with techniques such as GC-MS or FT-IR for 

identification and quantification of gases [331], as well as the use of 2D-correlation 

spectroscopy to set the sequences of release of gases complete the analysis [330], [332], [333]. 

These parameters are essential to further optimise the design of the thermal valorisation 

processes in computer simulation software to achieve a better understanding of the process to 

obtain the optimum operational parameters in a thermal equipment [329], [334]. 

5.3. Thermal decomposition studies of bioplastics 

Applications of TGA to model thermal decomposition of bioplastics are reported for PHAs 

[203], [335]–[340], PLA [276], [333], [341]–[343], PCL [344]–[348], celluloses [349]–[352], 

and chitosan [353], among others. 

Studies on PHAs  showed that their thermal decomposition occurred through a simple reaction 

mechanism [335]. This supported the hypothesis that the controlling step was the 
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depolymerization of the macromolecular chains. The results clearly indicated an increase in 

activation energy with increasing hydroxyvalerate content. 

Concerning decomposition of PLA, Kopinke and Mackenzie [354], [355] surveyed previous 

studies and concluded that the thermal decomposition of PLA is mainly driven by 

transesterification and homolytic reactions, as shown in Figure 6 and Figure 7, respectively and, 

with minor participation, catalyser (Sn)-based depolymerization or cis-elimination. 

 

Figure 6. Transesterification reactions of thermal decomposition of PLA, as adapted from [356]. Note that R is an 

undefined PLA chain fraction.  
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Figure 7. Homolytic reactions of thermal decomposition of PLA, as adapted from [354]. Reproduced with 

permission from [255]. Note that R is an undefined PLA chain fraction. TE-MC stands for middle-chain 

transesterifications. 

Combinations of valorisation procedures of PLA have been considered. This is the case of the 

thermal simulation of the decomposition process of recycled PLA [333]. It was found that PLA, 

as well as its successive recyclates, described a mass-loss profile driven by one decomposition 

stage in inert conditions and two in oxidizing conditions. In both cases, the first step could be 

ascribed to the pyrolysis of the backbone. The second mass-loss step under O2 was related to 

the decomposition of the remaining char, representing a ~2% of mass. The mathematical 

description of the kinetics allows technicians to use mechanically-recycled PLA as raw PLA in 

thermally-driven energetic valorisation facilities. 

The thermal decomposition of PCL was investigated in bulk and solution by Sivalingam and 

Madras [344]. They found that the polymer degrades by random chain scission and specific 

chain end scission in solution and bulk, respectively. The activation energy of the processes, 

determined from the temperature dependency of the rate coefficients, was found to be 

significantly higher than that of the degradation in solution. The use of several strategies to 

modulate and tune the thermal decomposition of biopolymers such as PCL are of great 

importance, as demonstrated by Albertsson et al., who enhanced the degradation of PCL 

through the incorporation of recycled oxidized model polyethylene powder as a filler in 

polyethylene/polycaprolactone blends [357]. 
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The thermal decomposition of cellulose over the wide range of mass loss is essentially the same 

in both air and nitrogen. At the beginning of the decomposition, oxygen interacts only with 

surface cellulose, resulting in only ≅ 3% of mass loss. The two-phase model of cellulose was 

proposed to explain all observable phenomena related to both the pyrolysis and the oxidative 

decomposition. According to the report of Mamleev et al. [349], the decomposition occurred 

through a migration of chain ends from the phase of polymer cellulose into the phase of 

products, i.e. char, gases and high-boiling tar. 

  



J.D. Badia, O. Gil-Castell, A. Ribes-Greus. Long-term properties and end-of-life of polymers from renewable 

resources. Polymer Degradation and Stability 2017;137:25-57 

24 

6. Biological valorisation of biopolymers 

In contrast to previous sections, this one deals with the valorisation of plastics from the point 

of view of the reincorporation of polymers into the Carbon cycle under biotic conditions. The 

design of plastic materials from renewable resources for high-consume applications such as 

packaging or agricultural mulches moves towards the design of sustainable polymers with 

controlled degradability and enhanced bio-reintegration. Cradle-to-cradle design enables the 

establishment of completely beneficial industrial systems driven by the synergistic search of 

positive economic, environmental and social goals by enabling a perpetual flow within 

both biological and technical metabolisms [358]. Although certain biodegradable polymers can 

be used in long-term applications, the commercialization of these materials is continuously 

increasing in markets for products that have a short lifetime. Biodegradable polymers are much 

beneficial when they can actually biodegrade in the environment [359]. Thus, the understanding 

of the degradation mechanisms, as well as the standard methodologies to test the 

biodegradability of natural polymers by microorganisms and enzymes should open new 

prospects in the field of biodegradable plastics [360]. 

6.1. Steps of biodegradation 

Biodegradation of plastics occurs through non-competitive and likely-coincident stages, which 

erode and disintegrate the polymeric segments by depolymerisation, being the cleavage chains 

reintegrated into the carbon cycle by assimilation and mineralisation in the media. Three main 

stages can thus be distinguished: deterioration, fragmentation and assimilation. 

The deterioration of biopolymers could proceed through bulk or surface erosion [360]. In the 

case of bulk erosion, fragments are lost from the entire polymer mass and the molar mass 

decreases due to bond cleavage. This breakage is provoked by chemicals such as H2O, acids, 

bases, transition metals and radicals, but not by enzymes, since they are too large to penetrate 

throughout the matrix framework. In the case of surface erosion, matter is lost but there is no 

relevant change in the molar mass. One should note that if the diffusion of chemicals throughout 

the material is faster than the cleavage of polymer bonds, the polymer undergoes bulk erosion. 

In contrasts, if the cleavage of bonds is faster than the diffusion of chemicals, the process occurs 

mainly at the surface of the matrix. 

The fragmentation of biopolymers is considered when low molecular weight molecules are 

found within the media [360]. The fragmentation is a lytic phenomenon necessary for the 

subsequent assimilation of the broken polymeric chains into the surrounding environment. 

Fragmentation is fundamentally an electron transfer process [361]. Biological energy is 

obtained through the oxidation of reduced materials, where the enzymes catalyse the electron 
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transfer. The loss of oxygen induces a change in the activity and composition of the soil 

microbial population. Facultative anaerobic organisms can use oxygen, when it is present, or 

can switch to alternative electron acceptors, such as nitrates and sulphates [361]. 

The assimilation is the unique event in which there is a real integration of atoms from fragments 

of polymeric materials inside microbial cells, ending up in mineralisation [233], [362]. This 

integration brings to microorganisms the necessary sources of energy, electrons and elements 

such as carbon, nitrogen, oxygen, phosphorus, or sulphur, among others, for the formation of 

the cell structure. Assimilation allows microorganisms to grow and reproduce consuming 

nutrient substrate, i.e, polymer segments, from the environment. Monomers surrounding the 

microbial cells must go through the cellular membranes to be assimilated. Inside the cells, the 

transported molecules are usually oxidised through catabolic pathways conducing to the 

production of adenosine triphosphate (ATP) and constitutive elements of cells structure. The 

existence of appropriate micro-organisms to synthesize the specific enzymes required to 

depolymerize and mineralize the targeted polymer is essential. Actually, these two steps in the 

biodegradation process may not involve the same microorganism. Naturally occurring 

polymers, such as polysaccharides, proteins, and cellulose, are easily biodegraded since many 

micro-organisms that produce the enzymes required to metabolize these compounds are readily 

available in nature [363]. 

Depending on the microbial abilities to grow in aerobic or anaerobic conditions, there exist 

three essential catabolic pathways to produce the energy to maintain cellular activity, structure 

and reproduction [364]–[366]: 

(i) In the case of aerobic respiration, numerous microorganisms are able to use oxygen as the 

final electron acceptor. These microorganisms need substrates that are oxidised into the 

cell. Firstly, basic catabolic pathways (e.g. glycolysis, β-oxidation, aminoacids catabolic 

reactions, and purine and pyrimidine catabolism) produce a limited quantity of energy. 

Secondly, more energy is then produced by the oxidative phosphorylations performed by 

electron transport systems that reduce oxygen to water. 

(ii) During anaerobic respiration, several microorganisms are unable to use oxygen as the final 

electron acceptor. However, they can perform complete oxidation by adapted electron 

transport in membrane systems. They use final electron acceptors other than oxygen, such 

as like NO3
-, SO4

2-, CO2, Fe3+ or fumarate. The result is also the synthesis of more ATP 

molecules than in an incomplete oxidation. 

(iii) Fermentation, an incomplete oxidation pathway, is a way to produce energy when the 

microorganisms lack of electron transport systems and are unsuitable to use oxygen or 

other exogenous mineral molecules as final electron acceptors. In this case, endogenous 
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organic molecules synthesised by the cell itself are used as final electron acceptors. The 

products of fermentation can be mineral and/or organic molecules excreted into the 

environment, such as CO2, ethanol, lactate, acetate or butanediol. Frequently, these 

molecules can be used as carbon sources by other organisms, since they still have a 

reduction power. 

6.2. Requirements for biodegradation 

The study of the biodegradation mechanisms should contribute to further developments of the 

next generation of materials having a high environmental acceptability and recyclability, which 

would become a powerful tool for the sustainable design of polymers from renewable resources 

[367]. The requirements for biodegradation of polymers at the fragmentation stage are related 

to the nature and morphology of the polymer and to the environment of biodegradation, in terms 

of abiotic and biotic conditions [368]. 

(i) Concerning the nature of the polymer [369], it must contain cleavable polymer 

groups, liable to enzymatic hydrolysis or oxidation. The balance among hydrophilicity 

and hydrophobicity will determinate the velocity of chain scission, being as well faster 

the lower the molecular weight of the polymers is. 

(ii) Regarding the morphology, the amorphous regions are more susceptible to 

degradation both by enzymatic and non-enzymatic hydrolysis, ascribed to the ease of 

water penetration into the polymer matrix [367]. Thus, the lack of branching and lower 

crystallinity enhance biodegradability. 

(iii) A well-tuned environment where the specific microorganisms can flourish is 

essential to assure proper biodegradation. Abiotic factors include appropriate 

temperature range, presence of H2O, nature and level of salts, action of oxygen to 

perform from aerobic to anaerobic modes, trace metals, pH, environmental stability, 

flux, or pressure [370]. The biotic factors concern the action of specific enzymes, which 

are catalytic proteins that decrease the level of activation energy of molecules favouring 

chemical reactions [362].  

Several enzymes can be found depending on the class of groups preferred during a given 

chemical reaction: oxidoreductases, transferases, hydrolases, lyases, isomerases or ligases. 

Enzymatic hydrolysis and oxidation are the main fragmentation pathways. 

(i) The enzymatic hydrolysis is mainly concerned by enzymes that belong to 

hydrolases, such as cellulases, amylases or cutinases, which are readily synthesised by 

soil microorganisms to hydrolyse natural abundant polymers like cellulose, starch or 



J.D. Badia, O. Gil-Castell, A. Ribes-Greus. Long-term properties and end-of-life of polymers from renewable 

resources. Polymer Degradation and Stability 2017;137:25-57 

27 

cutin. Regarding polyesters, lipases and esterases are responsible for the hydrolysis of 

ester, carbonate, amide and glycosidic linkages [371]. 

(ii) When the scission reactions by specific enzymes are difficult, e.g. due to crystalline 

area, hydrophobic zones and steric hindrances, enzymatic oxidation can be implicated 

[372]. Such is the case of mono-oxygenases and di-oxygenases, like oxidoreductases, 

which incorporate, one and two oxygen atoms respectively, forming alcohol or peroxyl 

groups that are more easily fragmentable. Other transformations are catalysed by 

peroxidases leading to smaller molecules. They are hemoproteins, enzymes containing 

a prosthetic group with an iron atom that can be electron donor or acceptor, i.e. act in 

both reduced or oxidative ways. Peroxidases catalyse reactions between a peroxyl 

molecule, e.g. H2O2 and organic peroxide, and an electron acceptor group as phenol, 

phenyl, amino, carboxyl, thiol or aliphatic unsaturation [233]. Polymers such as PE, 

natural and polyisoprene rubbers, lignin and coal are first subjected to biological 

oxidation by oxidoreductases, such as oxygenases, monooxygenases, peroxidases and 

oxidases in the biodegradation process [367]. It should be stressed that, though 

crystalline structures and highly organised molecular networks such as cellulose-based 

polymer are not favourable to the enzymatic attack, several soil decomposers, 

particularly fungi, are able to produce H2O2 to catalyse the fragmentation [233]. 

6.3. Standardized methods of analysis 

Studies aimed to enhance the suitability and the reproducibility of laboratory methods to assess 

the biodegradation of polymers are in continuous progression [373]. This is due to the fact that 

some operative difficulties can arise during the performance of the tests, thus affecting the 

accuracy of the measurements as based on the monitoring of suited parameters of choice, as 

well as the outstanding number of new and structurally different renewable polymer materials 

[188]. 

Studies are usually performed under land or water conditions. Landfills, compost or soils are 

used to simulate degradation under land, whereas sewage, marine water or sludge are used to 

simulate aqueous conditions. All environments furnish different rates of degradation. In fact, it 

is possible that some polymers that are degradable in one environment may or may not degrade 

in another environment. In-land experiments might show difficulties during the performance of 

tests designed to assess the extent of biodegradation as CO2 release or O2 uptake in the presence 

of media such as mature compost. In contrast, the tests carried out in aqueous media are 

considered easier to set up and generally more reproducible, but are not significant for 

simulating conditions of buried plastics. 
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The biodegradation kinetics of a test material under in-land conditions can be influenced by the 

concentration of the material in the solid medium, as well as by the nature of the microbial 

populations, whereas the test results might vary significantly depending upon the test duration 

and a reference material designed in the standard test specifications [188]. A critical discussion  

has argued that the technical specifications should be rephrased in a unique, condensed and 

practical norm, in order to avoid confusion between the available normative from different 

certification agencies with very close characteristics [374]. 

Several analytical strategies can be considered to test biodegradation of polymers from 

renewable resources, depending on the stage focused on: deterioration or assimilation. 

(i) Polymer deterioration can be tested by several methods such as the evaluation of 

macroscopic modifications in the materials, such as roughening of the surface, formation 

of holes and cracks, changes in colour or development of microorganisms over the surface 

[375]–[377]. There exist normalised tests to estimate the deterioration by the colonisation 

of microorganisms on Petri dishes [378]. A positive result of the test is considered as an 

argument indicating the consumption of the polymer by the microbial species. This way, 

different microscopy techniques [234], [379]–[381] are used to refine the analysis, along 

with the study of changes in mechanical, rheological or thermal properties [341], [382]–

[384]. In particular, the measurement of the weight loss is frequently used for the 

estimation of biodegradability, but actually it may not be really representative of a material 

biodegradability, since this loss of weight can be due to the vanishing of volatile and 

soluble impurities [226], [228]. 

(ii) Polymer assimilation is generally estimated by standardised respirometric methods [385], 

which mainly consist in measuring the consumption of oxygen or the evolution of carbon 

dioxide or methane, depending on the respirometric mode. The decrease of oxygen is 

detected by the diminution of the pressure and may be fully automated. The experiment 

can be conducted with oxygen limitation or not. In anaerobic conditions, gases are released 

and the augmentation of the pressure is then measured. The identification of the evolved 

gases is performed by gas chromatography (GC), infrared analysis (FTIR) [374] or 

titration [386], [387] . Failure in one test does not necessarily exclude biodegradation, but 

it merely indicates that under the environmental conditions and/or the timeframe where 

the experiment was conducted, no or incomplete biodegradation occurred. Thus, more than 

one test method is usually needed to entirely assess biodegradability. 

Table 1 shows a summary of the application of different standards from the American Society 

for Testing and Materials (ASTM), European Standards Organisation (EN) and International 

Organization for Standardization (ISO), respectively, on different polymers from renewable 
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resources of the families of polyesters and polysaccharides. Next sections cover examples of 

biodegradation studies under in-land and aqueous conditions. 
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Table 1. Studies based on ASTM, EN and ISO standards on different polymers from renewable resources. 

Organisation Code Title 
Material 

PLA PCL PHAs Cellulose Lignin/wood Starch 

ASTM 

D5209 

Standard test method for determining the aerobic 

biodegradation of plastic materials in the presence of 

municipal sewage sludge 

[388] - [389], [390] - - - 

D5338 

Standard test method for determining aerobic biodegradation 

of plastic materials under controlled composting conditions, 

incorporating thermophilic temperatures 

[190], [391]–[393] [394] - - [395], [396] - 

D5526 

Standard test method for determining anaerobic 

biodegradation of plastic materials under accelerated landfill 

conditions 

[397] [397] - - - - 

D5988 
Standard test method for determining aerobic biodegradation 
of plastic materials in soil 

[391] - [248], [398], [399] [400] [398] [102], [401] 

EN 

14046 

Packaging - Evaluation of the ultimate aerobic 

biodegradability and disintegration of packaging materials 
under controlled composting conditions - Method by analysis 

of released carbon dioxide 

- - - [402], [403] - - 

14806 

Packaging - Preliminary evaluation of the disintegration of 

packaging materials under simulated composting conditions 

in a laboratory scale test 

[189] - - - - - 

ISO 

14852 

Determination of the ultimate aerobic biodegradability of 

plastic materials in an aqueous medium - Method by analysis 
of evolved carbon dioxide 

[404]–[406] [405], [407], [408] [405], [406] [409], [410] [411] [404], [408], [412] 

14855 

Determination of the ultimate aerobic biodegradability of 

plastic materials under controlled composting conditions - 

Method by analysis of evolved carbon dioxide 

[190], [393], [404], 
[413]–[424] 

[414], [418], [425] [426], [427] 
[403], [421], [424], 

[428] 
- 

[415], [419], [421], 
[429]–[432] 

16929 

Plastics - Determination of the degree of disintegration of 

plastic materials under defined composting conditions in a 

pilot-scale test 

- - [427] - - [433] 

17556 

Plastics - Determination of the ultimate aerobic 
biodegradability of plastic materials in soil by measuring the 

oxygen demand in a respirometer or the amount of carbon 

dioxide evolved 

- - [399] - [411] - 

20200 

Plastics - Determination of the degree of disintegration of 

plastic materials under simulated composting conditions in a 

laboratory-scale test 

[35], [185], [434]–
[440] 

[441] [185], [434], [435] [438], [439] - - 

Review [188], [233], [256], [372], [373], [442]–[453] 
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6.4. Biodegradation under in-land conditions 

In-land biodegradation experiments mainly comprise biotic in-soil and in-compost studies 

[452]. In vitro degradation studies based on the application of microorganisms such as fungi or 

bacteria are of high interest to tune the binomial soil-bioplastic. Fungal organisms such as 

Aspergillus niger, Aspergillus flavus, Chaetomium globosum and Penicillium funiculosum, as 

well as bacterial standards such as Pseudomonas aeruginosa are suggested in some test 

protocols according to international standards, and evaluated for growth on suitable plastics, 

thus correlating them with the susceptibility of the plastic to biodegradation [454], [455]. A list 

of different microorganisms that have been shown able to degrade different groups of plastics 

can be found in literature [372]. Compostability covers not only naturally-occurring 

disintegration and biodegradation understood as the lytic action of microorganisms, but also 

the application of an accelerated process to favour the conversion of plastics into CO2, H2O and 

cell biomass, with no toxicity [456]. For that reason, high temperature, humidity and aeration 

systems are used, while the compost proceeds through an initial mesophilic phase, a subsequent 

thermophilic phase and a final maturation phase. 

6.4.1. Aerobic Studies 

There are several standardized methods to control and determine aerobic biodegradability and 

disintegration of plastic materials. Among them, the ISO 14855 is one of the most used norms. 

This ISO standard specifies a method for determining the ultimate aerobic biodegradability of 

the plastics, under controlled composting conditions by measuring the amount of carbon 

dioxide generated and the degree of disintegration of the material at the end of the assay. The 

test material is exposed to an inoculum derived from compost. Composting takes place in an 

environment in which temperature, ventilation and humidity are controlled. The test method is 

designed to provide the percentage of conversion of carbon in the test material that generated 

carbon dioxide as well as the conversion speed. The method applies to several kinds of 

materials. For plastic materials from renewable resources, several studies have been published. 

The most studied materials are those that involve degradation of PLA and its derivatives. In 

this sense, Kunioka et al. proposed the use of PLA powders as the reference test materials for 

the ISO 14855 methods [417]. They selected mechanical crushing at low temperature of 

polymer pellets using dry ice for powder production. The degree of biodegradation for this PLA 

powder was approximately 91% for 35 days. Moreover, they studied the biodegradation of PLA 

samples in different shapes [414]. Their studies found that biodegradabilities of polymer pellets, 

polymer films, polymer products and polymer composites in controlled compost could be 

evaluated according to ISO 14855-2. Final degrees of biodegradation and biodegradation 

curves of samples prepared from biodegradable polymers with various shapes showed almost 
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the same tendency. However, Kale et al. studied the biodegradability of PLA bottles in real and 

simulated composting conditions [190]. They found that biodegradation matched well with 

theoretical degradation and biodegradation mechanisms; however, some variability existed in 

both conditions, suggesting that the standard methodologies are limited to the plastic material 

and not to the whole package. On the other hand, Pantani et al. studied the influence of 

crystallinity on the biodegradation rate of injection-moulded PLA [393]. As expected, the 

crystallinity was found to decrease the PLA degradation rate. The dense structure of the initially 

crystalline sample was more impermeable to the enzymatic attach and to oligomer diffusion.  

Other kind of biodegradable bio-based materials have been studied such as PHAs, PCL, 

cellulose or starch based materials. For PHBV films, Weng et al. worked on the influence of 

the chemical structure [426]. They compared the degradation behaviour of the homopolymer 

(PHB) as starting material with copolymer PHBV with several amounts of hydroxyvalerate 

(HV) units. They found that the higher the presence of HV was, the faster the biodegradation 

ocurred. Moreover, they performed a comparison of the biodegradation in both pilot scale and 

laboratory scale tests following the ISO14855 standard [427]. The PHBV film was completely 

disintegrated in the pilot-scale composting test, while the degree of biodegradation was 81% in 

the laboratory-scale control composting test. Thus, degradation in a semi-real environment at 

pilot-scale is suggested to be similar while slightly faster than under the standard guidelines. 

The biodegradabilities of cellulose, PCL and PLA powders in a controlled compost at 58 °C 

were also investigated according to the ISO14855 standard [414]. Polymer powder samples 

were obtained from PCL pellets and PLA pellets by mechanically crushing and sieving. The 

biodegradations of the samples were measured by the Microbial Oxidative Degradation 

Analyser (MODA). The reproducibility and repeatability of the biodegradation tests using 

MODA were confirmed for cellulose powders as the reference material, PCL powders and PLA 

powders. 

6.4.2. Anaerobic Studies 

Anaerobic conditions are important for different end-of-life in-land scenarios, such as landfills 

and anaerobic digestion systems, which are tackled in the section of degradation under liquid 

media. Conditions in landfills vary considerably in terms of geography, age of waste or 

management practices [457]. The potential production of CH4 has been approached in literature 

from the point of view of greenhouse gas monitoring and, as an added-value alternative, due to 

its promising performance as a source of energy [458]. In this line, most lab-scale studies have 

been focused on celluloses and hemicelluloses, due to the traditional presence of paper and 

cardboard in landfills [459]. Since anaerobic microorganisms have a much limited set of 

enzymes than under the presence of oxygen, and the energy benefit is lower without presence 
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of O2, the rates of degradation are normally lower [460]. Concerning plastic waste, few 

examples can be highlighted for PLA [388], [461], PHAs [447], PCL [461]–[463], starch/PCL 

[461], PBAT [461], PBS [463]. It was found that PHB was degraded anaerobically more rapidly 

than the copolyester PHBV, when tested with either mixed cultures or a single strained isolate, 

whereas PCL tended to degrade slower than the natural polyesters PHB and PHBV [462]. As 

well, it was reported that PLA can be considered as a compostable material, being stable during 

use at mesophilic temperatures, but rapidly degrading during waste disposal in compost or 

anaerobic treatment facilities. Actually, the biodegradation of PLA was much faster in 

anaerobic solid state conditions than in aerobic aquatic conditions [388]. Other study showed 

that anaerobic bacteria degraded PCL-starch blend, showing an 83% biodegradability for 139 

days, although its biodegradation rate was relatively slow compared to that of cellulose used as 

a reference material. Conversely, PBS was barely degraded under anaerobic conditions, with 

only 2% biodegradability in 100 days [463]. 

6.5. Biodegradation in aqueous conditions 

The study of biodegradation of plastics under liquid environments has to be considered from a 

double point of view. On the one hand, the design of novel materials to prevent wastes from 

ships and offshore platforms under seas and oceans, and on the other hand as a faster comparing 

methodology to test biodegradability of bioplastics. This could be the case of fishery equipment 

to be biodegradable to reduce harmful impact to sea life if lost during fishing [460]. 

Different studies have been performed for polymers such as PLA [397], PCL [397], PHB [464] 

or PBS [464]. In particular, it has been shown that the biodegradability of PCL and PLA 

powders under aquatic conditions can be tested with sludges at thermophilic conditions 

(~55ºC). The biodegradability of PCL was 92% in the diluted sludge [397]. Other studies at 

mesophilic conditions (~37ºC) showed that bioplastics could be ranked as PHB >> PLA > PCL 

in terms of anaerobic biodegradation rate, relating it to the detection of the same eubacteria. On 

the contrary, PBS could not be anaerobically biodegraded by the sludge used in this study [464]. 

For PHAs, an experiment on PHBV and PE-Starch blends in a freshwater environment showed 

steady degradation rates of 10–20 mg per day for PHBV even under relatively extreme 

conditions. Conversely, PE-Starch blends showed no degradation after one year [465]. It was 

also shown that degradation of PHBV occurred most rapidly in anaerobic sewage sludge, then 

estuarine sediment, aerobic sewage, soil, and finally in seawater [466]. Concerning 

microorganisms, it was found that Pseudoalteromonas could be isolated as predominant 

PHBV-degrading bacterium from a tropical marine environment [467]. 
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7. Concluding remarks 

Due to their high potential of replacement of petroleum-based polymers, the design, use and 

disposal routes of bio-based polymers must be carefully strategized in order to ensure 

appropriate service conditions and adequate valorisation and/or elimination after their service-

life. In this sense, the long-term properties and end-of-life of polymers are not antagonist issues, 

since both are inherently linked by the duality between durability and degradation.  

Despite certain biodegradable polymers could be used in long-term applications, the 

commercialization of bio-based plastics is continuously increasing in markets for products that 

have a short lifetime. The technological efforts in adding value to these plastic goods are 

therefore misused. The consideration of the end-of-life of a material for an application, instead 

of the end-of-life of a material could be therefore kept in mind in order to favour second-life 

uses, and thus enlarge their service-lives. 

Concerning durability, performance tests can be designed to experimentally simulate individual 

or synergic effects of degrading agents such as temperature, water, chemicals, mechanical 

stresses or sun light. The control of physico-chemical properties must be monitored in a from-

micro-to-macro approach, in order to connect structure to behaviour and, therefore, help decide 

further steps in the application-to-disposal pathway. Regarding degradation at the end-of-life 

stage, material, energetic and biological valorisations should be carefully combined. This field 

is still a matter of interest and offers a wide field of opportunities, as suggested hereby: 

(i) Material valorisation would benefit from more specialised sorting technologies for 

plastic waste, so as the reuse before recycling might be enhanced, as well as the 

recycled fractions offer more homogeneity in their compositions. As well, the options 

of using additivities, blending and/or compositing to upgrade recycled plastics should 

foresee the following steps of valorisation and/or disposal. Finally, one should consider 

that, during real recycling, plastic fractions would be commingled and previously 

subjected to degrading agents during service life. More standardisation and real-scale 

studies should therefore be performed for recycled materials, since most are currently 

run at lab conditions by multiple reprocessing with individual polymers.  

(ii) Energetic/Feedstock valorisation could be prioritised after material valorisation 

when the obtaining of chemicals is relevant and/or the biological facilities cannot cover 

the treatment of bio-based wastes. Nowadays the studies are devoted, on the one hand, 

to the analysis of the solid-state thermal and thermo-oxidative kinetics at lab conditions 

and, on the other hand, to the obtaining of calorific values of bio-based polymers at 

pilot-scale. In order to link labs with real-scale applications, a current challenge would 
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be to connect, via computer simulation, solid-state kinetics with operational units such 

as pyrolysers or gasifiers. The optimisation of working parameters would produce more 

complete thermal transformation, therefore with higher thermal efficiency and lower 

emission of gases. This connection would release useful information to set up 

standards, which may help homogenise the studies and benchmark the applicability of 

energetic/feedstock valorisation for bio-based polymers. 

(iii) Biological valorisation to reintegrate sources into the C cycle is essential for bio-

based polymers, obviously for controlled management of wastes via current facilities 

such as composters and, even more, to ensure the lowest impact of non-controlled 

disposed bio-based goods. Due to the environmental concern and deep knowledge of 

the different stages of biodegradation through deterioration, fragmentation and 

assimilation, and the different media of degradation both aqueous and in-land 

environments, the amount of standards are sometimes very similar, which complicates 

the choice of the most appropriate one to certify biodegradation. Therefore, and effort 

in unifying the standards of certification of biodegradation remains a challenge. As 

well, the proliferation and optimisation of specific composting facilities for bio-based 

plastics would help clarify the disposal pathways and therefore reduce the impact of 

treatment of these wastes.  

In conclusion, the balance between the long-term properties and the end-of-life of bio-based 

polymers is key to set up a design for sustainability. A smart combination of the routes of 

production, valorisation and disposal might lead to reduce the environmental impact and gear 

bio-based polymers towards added-value applications.  
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Captions 

Figure 1. Perspective of this chapter: interlinked approach of applications, long-term properties 

and end-of-life of bio-based polymers. 

Figure 2. Types of durability and degradation studies summarised in this chapter. 

Figure 3. Analytical strategies to monitor durability or degradation. 

Figure 4. Scheme of material valorisation through mechanical recycling and up-grading 

options. 

Figure 5. Chemical recycling options. Detail of thermolytic processes for energetic valorisation. 

Redrawn from ref [255]. 

Figure 6. Transesterification reactions of thermal decomposition of PLA, as adapted from 

[356]. Note that R is an undefined PLA chain fraction. 

Figure 7. Homolytic reactions of thermal decomposition of PLA, as adapted from [354]. Note 

that R is an undefined PLA chain fraction. 

Table 1. Studies based on ASTM, EN and ISO standards on different polymers from renewable 

resources. 
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