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Nanolayered Co-Mo-S Catalysts for the 

Chemoselective Hydrogenation of Nitroarenes  
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Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de 

Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.  

ABSTRACT: Nanolayered molybdenum disulfide cobalt promoted materials (Co-Mo-S) have 

been established as chemoselective catalysts for the hydrogenation of nitroarenes under 

relatively mild conditions. Co-Mo-S catalysts have been prepared by a one-pot hydrothermal 

synthesis that allows for obtaining unsupported catalysts with a high number of active sites per 

unit volume. Applying these catalysts, the hydrogenation of the nitro functionality has been 

carried out selectively in the presence of double and triple bonds, aldehydes, ketones as well as 

carboxylic acid derivatives groups, thus affording the corresponding anilines in good to excellent 

yields. Interestingly, the partial hydrogenation of some dinitroarenes has also been successfully 

accomplished. In addition, its catalytic performance has been evaluated for the preparation of the 

bio-active compound paracetamol through a one-pot direct hydrogenative amidation reaction.  

Selective hydrogenation; Nitroarenes; Heterogeneous catalysis; Functionalized anilines; Green 

hydrogenation chemistry; Nanolayered materials; Co-Mo-S catalysts 
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INTRODUCTION 

Anilines are important intermediates in the industrial production of agrochemicals, 

pharmaceuticals, pigments, dyes and polymers.
1
 In addition, since they can easily undergo 

further derivatization reactions, they also represent essential building blocks for the preparation 

of novel highly-valuable organic compounds at laboratory scale.
2
 Typically, their synthesis 

involves the introduction of a nitro group into an aromatic compound by nitration, followed by 

reduction.
3
 Therefore, it is not surprising that the transformation of nitroarenes into anilines 

represents one important reaction in organic synthesis that continuously attracts the attention of 

chemists.  

Currently, the environmentally benign commercial production of anilines functionalized with 

other easily reducible groups, such as unsaturated bonds, remains as an important challenge. In 

fact, stoichiometric amounts of sodium hydrosulfite,
4
 iron,

5
 tin,

6
 or zinc in ammonia hydroxide

7
 

are still being used as reductants to get a preferential selectivity to the nitro group. Among the 

amenable reduction methodologies, catalytic hydrogenation over heterogeneous catalysts is the 

preferred choice to substitute these stoichiometric processes.
3a,8

 Traditionally, noble metal-based 

heterogeneous catalysts are by far the most widespread materials used for the chemoselective 

hydrogenation of nitroarenes.
9
 For instance, Blaser et al. reached chemoselectivity by applying 

commercially available Pt supported catalysts modified with Pb or H3PO4, but additional 

amounts of iron and vanadium salts in solution were required respectively to avoid the 

accumulation of partially reduced intermediates.
10

 Later on, by tailoring the particle size and 

controlling the metal-support interactions, we developed heterogeneous chemoselective catalysts 

based on gold,
11

 platinum and ruthenium
11e,11f,12

 with an optimal and broad-spectrum 
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performance. Our work was followed by others
13

 that expanded the catalysts available to other 

metals such as silver
14

 and rhodium.
15

  

However, the high price and limited availability of these precious metals prevent their large 

scale application, and therefore there exists a strong initiative to design heterogeneous catalysts 

based on earth-abundant metals for the chemoselective hydrogenation of nitroarenes.
8b

 

Nonetheless, only a scarce number of cost-effective catalysts that can selectively hydrogenate 

nitro compounds in the presence of olefinic bonds have so far been described (Scheme 1). 

 

Scheme 1. Hydrogenation of nitroarenes functionalized with C=C double bonds over non-

precious metal-based heterogeneous catalysts 

In 2008, our group developed a TiO2-supported Ni-based catalyst able to carry out this 

chemoselective hydrogenation under mild conditions (15 bar H2; Scheme 1a).
12a

 Later, Beller et 

al. reported the hydrogenation of nitroarenes under considerably higher pressure conditions (50 

bar H2) by applying cobalt- or iron-based carbon supported catalysts (Co-Co3O4/NGr@C or 

Fe2O3/NGr@C), in which nanoparticles are encapsulated by a nitrogen-enriched graphene-layer 

matrix (Scheme 1b).
16

 Recently, their catalytic activity has been improved, but equimolecular 

amounts of base in solution are required.
17

 Lately, other catalysts based on cobalt nanoparticles 

supported on nitrogen-doped carbon matrix have been also applied for the hydrogenation of 
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nitroarenes achieving a remarkable selectivity although they also work under high hydrogen 

pressures (Scheme 1c).
18 It should be noticed that for all of these nanostructured metals modified 

by N-doped carbon supports, the presence of nitrogen has been established crucial for the 

catalytic performance of these systems. Interestingly, quite recently we have demonstrated that 

the hydrogenation of nitroarenes can be conducted selectively on nitrogen-free Co@C 

nanoparticles under much milder conditions (7 bar H2; Scheme 1d).
19

  

Dinuclear and trinuclear molybdenum (IV) complexes containing bridging sulfide ligands have 

been proposed as efficient homogeneous catalysts for the preparation of functionalized anilines 

from the corresponding nitroarenes in the presence of different reducing agents, such as, 

hydrogen, formates or hydrosilanes.
20

 Commercial MoS2 and an oxygen-implanted MoS2 

catalyst can also efficiently catalyze this transformation by transfer hydrogenation using 

hydrazine as the hydrogen source.
21

 However, to the best of our knowledge, the use of 

molybdenum sulfide-type heterogeneous catalysts for the more benign hydrogenation of 

nitroarenes is scarce. There exists only few examples in which the non-functionalized aniline has 

been achieved in low yield (<40 %) or under harsh conditions (<300 ºC and/or up to 40 bar H2) 

by using MoS2,
22

 Zr-intercalated MoS2,
23

 or the Chevrel phases
24

 as catalysts in the presence of 

hydrogen. 

Herein, we show the synthesis of nanolayered molybdenum disulfide cobalt promoted 

materials (Co-Mo-S) by a one-pot hydrothermal synthesis. These unsupported materials with a 

high number of active sites per unit volume are able to carry out the chemoselective 

hydrogenation of substituted nitroarenes under mild reaction conditions (Scheme 1e). Based on 

their catalytic behavior, we also show that these nanolayered Co-Mo-S catalysts allow carrying 

out the synthesis of paracetamol through a one-pot direct hydrogenative amidation reaction.   
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RESULTS AND DISCUSSION 

Catalysts Preparation and Characterization 

Molybdenum sulfide bulk materials has been described as a layered structure wherein the 

covalent bonded S-Mo-S trilayers are weakly held together by van der Waals interactions.
22,25

 

Interestingly, active sites of these catalysts are supposed to be located on the edges of the 

sandwich S-Mo-S layers, which can absorb cobalt as promoter leading to a Co-Mo-S phase and 

thereby increasing considerably their catalytic activity.
26

 This promotional effect has been 

attributed to a lower binding energy of cobalt relative to that of molybdenum with sulfur at the 

edges of MoS2, thus making easier the generation of vacant active sites.
27

 Additionally to these 

coordinatively unsaturated sites, the “brim” of the edges with metal-like electronic states has also 

been established as potentially active sites able to activate different organic molecules.
26l,26o,28

 

For decades, tremendous efforts have been made worldwide to enhance the activity of metal 

sulfide catalysts. Since the development of the so-called NEBULA catalyst,
29

 which include a 

higher population of actives sites per unit volume, unsupported metal sulfides have emerged as a 

convenient alternative for conventional supported catalysts.
30

 In this respect, different 

methodologies have been developed for the preparation of unsupported sulfide catalysts.
31

 

Among them, the hydrothermal synthesis represents the most potential process for producing 

highly homogeneous materials and for controlling their morphology.
30a,32

 

Based on this background, we attempted the preparation of an active MoS2-based catalyst able 

to catalyze the hydrogenation of nitroarenes under relatively mild conditions by exploring the 

preparation of unsupported Co-Mo sulfide catalysts by a one-pot hydrothermal method. More 

specifically, ammonium molybdate as the Mo source, sulfur powder and variable amounts of 



 6 

cobalt (II) acetate were reacted at different temperatures in the presence of an aqueous solution 

of hydrazine. The resultant nanolayered catalysts were denoted as Co-Mo-S-X-T, where X and T 

represent the Co/(Mo+Co) mole ratio in the final catalyst determined by ICP analysis and the 

temperature used in its preparation, respectively. For comparison, the cobalt-free molybdenum 

disulfide material was also synthetized by using the same preparation methodology (see 

experimental section for details on the preparation).
33

 

 

Figure 1. XRD patterns of nanolayered catalysts MoS2 and Co-Mo-S with different cobalt 

contents 

Figure 1 shows the XRD patterns of a series of catalysts prepared at the same temperature (180 

ºC) with increasing amounts of cobalt. All of them exhibit some broad diffraction picks at 2θ = 

14⁰, 33⁰, 36⁰, 59⁰ corresponding to the (002), (100), (103) and (110) basal planes of the poorly 

crystalline hexagonal structure of MoS2 (PDF code 96-101-0994). In addition, some other 

diffraction picks that match well with CoS2 (PDF code 00-041-1471) become noticeable and 

sharper progressively by increasing the cobalt loading. The absence of these picks in the catalyst 

prepared with lower amount of cobalt (Co-Mo-S-0.17-180) indicates that CoS2 is highly 
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dispersed on MoS2 and/or as very small particles.
32c

 In general, XRD picks of the ternary Co-

Mo-S phase are not detected, probably owing to its overlapping with diffraction picks of MoS2, 

or because this phase exists as very small nano-crystallites.
27,32a

 

 

Figure 2. XRD patterns of nanolayered catalysts Co-Mo-S-0.39 prepared at different 

temperature 

The effect of the temperature in the catalyst preparation was also studied. As shown Figure 2, 

XRD patterns of the amorphous Co-Mo-S-0.39-T (T = 150, 180 and 210 ºC) catalysts present 

significant differences, meaning that temperature has a high impact on the crystal structure. At 

150 ºC the XRD pattern is characteristic of a poorly crystallized MoS2-like phase with no 

obvious formation of CoS2. However, the CoS2 phase becomes perceptible with the increase of 

temperature, suggesting the progressive formation of separated CoS2 in large particle size on the 

surface of the catalyst. It is noteworthy that the (002) peak, associated with the stacking of the 

atomic layers, undergoes a significant increase with the temperature.  
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Figure 3. HRTEM images of MoS2 (a), Co-Mo-S-0.17-180 (b), Co-Mo-S-0.26-180 (c-d), Co-

Mo-S-0.39-180 (e-f) and Co-Mo-S-0.50-180 (g-h) 

 

Figure 4. STEM-HADDF images of Co-Mo-S-0.39-180 (a, b). Elemental mapping of sulfur, 

cobalt, and molybdenum (c-h)  
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The micro-structure and elemental distributions of the nanolayered MoS2 and Co-Mo-S 

catalysts prepared at 180 ºC with different Co/(Mo+Co)  mole ratio were investigated by electron 

microscopy. As shown Figure 3, all catalysts display the typical parallel black thread-like fringes 

with an interlayer distance of 0.65 nm, which is characteristic of the (002) basal planes of the 

hexagonal MoS2 structure.
34

 It should be note that no clear differences in the slab and stack size 

distribution (ca. 50 and 5 nm, respectively) of these black thread-like fringes have been observed 

with the increase of cobalt loading. Notably, no other fringes are detected in catalyst Co-Mo-S-

0.17-180 (Figure 3b) because cobalt is highly dispersed on the catalyst surface, as reveals the 

XEDS elemental mapping (Figure S1 in the Supporting Information). However, in the HRTEM 

images of catalysts with higher cobalt loading a separated CoS2 phase can also be detected in the 

form of large nanoparticles with a wide range of size distributions (Table S1 in the Supporting 

Information) that present the characteristic spacing of 0.25 nm of its lattice fringes (Figure 3c-h). 

In concordance with XRD results, this separated CoS2 phase becomes more evidenced with the 

increase of cobalt loading in the catalyst. Nevertheless, a homogeneous distribution of cobalt on 

the lamellar structure of MoS2 can still be observed in all catalysts by XEDS elemental mapping 

(Figure 4 and Figures S2 and S3 in the Supporting Information). 

Textural parameters of the catalysts prepared at 180 ºC are listed in Table 1. Cobalt-free MoS2 

catalyst presents a surface area and pore volume of 50.6 m
2
/g and 0.06 cm

3
/g, respectively. They 

are smaller than for related materials previously reported, as consequence of the use of different 

preparation methods.
30a,32c

 Under hydrothermal conditions the particle agglomeration is produced 

in some extent, thus leading to a lower surface area of the resulting materials.
32f

 Interestingly, by 

increasing the cobalt loading, both surface area and pore volume first decrease to 8.1 m
2
/g and 

0.02 cm
3
/g in catalyst Co-Mo-S-0.17-180, and then increase up to 74.0 m

2
/g and 0.17 cm

3
/g with 



 10 

the highest cobalt containing catalyst (Co-Mo-S-0.50-180), respectively. This behavior in the 

textural parameters upon addition of a metal promoter (Co or Ni) has already been reported for 

other related materials.
32j,35

 The first decreasing on surface area and pore volume in catalyst Co-

Mo-S-0.17-180 is ascribed to the blockage of the pore channels of MoS2. However, in catalysts 

with higher cobalt loading the CoS2 phase, which has been inferred from XRD and TEM results, 

can also act as a support for MoS2 and the presumed generated Co-Mo-S phase, thus increasing 

considerably the surface area and pore volume of the catalysts.  

 

Catalytic Results 

As we highlighted above, chemoselectivity is crucial for the current applicability of 

heterogeneous catalysts in nitroarenes hydrogenation. Therefore, 3-nitrostyrene (1a) was selected 

as a model substrate because the nitro group is accompanied by one of the most easily reducible 

functionalities, i.e. an olefinic group. Initial hydrogenation experiments, focused on the 

identification of the most active nanolayered Co-Mo-S catalyst, were conducted under relatively 

mild conditions (11 bar of H2, 150 ºC) and using toluene as solvent. Previous experiments using 

only toluene as reactant, showed no hydrogenation activity under our reaction conditions. As 

shown Figure 5a, the use of cobalt as promoter in the catalyst preparation has a significant effect 

Table 1. Textural parameters of MoS2 and Co-Mo-S catalysts synthetized at 180 ºC 

Catalyst 
Surface Area  

(m
2
/g) 

Pore Volume 

(cm
3
/g) 

Pore Diameter 

(nm) 

MoS2 50.6 0.06 6.8 

Co-Mo-S-0.17-180 8.1 0.02 15.4 

Co-Mo-S-0.26-180 24.9 0.06 10.8 

Co-Mo-S-0.39-180 71.4 0.16 9.2 

Co-Mo-S-0.50-180 74.0 0.17 9.7 
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in their catalytic activity. Indeed, an enhanced conversion of 1a is achieved by increasing the 

cobalt loading up to a Co/(Mo+Co) mole ratio of 0.39, as result of the formation of more active 

sites with the progressive addition of cobalt.
32a

 Interestingly, under otherwise the same reaction 

conditions the Co-Mo-S-0.39-180 catalyst displays a slightly higher activity (measured by the 

initial reaction rates normalized to the mass of metal weight) that the recently reported nitrogen-

free Co@C nanoparticles.
19a

 However, a further increase of this ratio leads to detrimental results 

that could be associated to the over-formation of the separated CoS2 phase, as it has been 

inferred from XRD and TEM characterization (see Figure 1 and 3, respectively). Indeed, only a 

negligible conversion of 1a was achieved by using CoS2 as catalyst (Table 2, entry 1). 

Likewise, since catalyst preparation temperature affects to the phase composition of the 

resulting materials (see Figure 2), an important impact on their catalytic activity should be also 

expected. As shown Figure 5b, the catalytic activity increase when the catalyst preparation 

temperature is augmented from 150 ºC to 180 ºC. Nevertheless, 1a undergoes a lower conversion 

in the presence of the catalyst prepared at 210 ºC (Co-Mo-S-0.39-210), temperature for which 

the separated CoS2 phase is produced in larger extent.  

To further investigate the role of the separated CoS2 phase in the hydrogenation of nitroarenes 

catalyzed by the nanolayered Co-Mo-S catalysts, some control experiments were carried out on 

the model substrate 1a. For this purpose, two additional catalysts with the same Co/(Mo+Co) 

mole ratio (0.21) were prepared, one by a two-step hydrothermal method (MoS2-CoS2-0.21-180; 

see Figures S4 and S5 in the Supporting Information), and the other one physically mixing 

separately prepared MoS2 and CoS2 (MoS2+CoS2-0.21). It should be note that while some 

ternary Co-Mo-S phase can be formed by the two-step hydrothermal method, it must be excluded 

in the mechanical mixture. Even so, if the promotional influence of cobalt results from a 
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synergetic contact effect between MoS2 and CoS2 phases, both catalysts should present a similar 

catalytic activity. However, when 1a was submitted to the optimized conditions in the presence 

of catalyst MoS2-CoS2-0.21-180, a moderate yield of 3-vinylaniline (2a) was afforded (59%; 

Table 2, entry 3). Meanwhile, only 16% yield of 2a was obtained with catalyst MoS2+CoS2-0.21 

(Table 2, entry 4), which can be ascribed to the activity of the separated phases of MoS2 and 

CoS2. Therefore, in agreement with the Edge Decoration model proposed by Topsøe et al.,
26a-

c,26e,26l
 the high activity of the prepared nanolayered catalysts for the hydrogenation of 

nitroarenes can be attributed to the formation of Co-Mo-S active structures rather than to a 

synergistic effect between MoS2 and CoS2 phases.
36

 

 

Figure 5. Catalytic performance for the hydrogenation of 3-nitrostyrene (1a) to 3-

vinylaniline (2a) in the presence of: a) nanolayered catalysts with different cobalt content; 

b) Co-Mo-S-0.39 catalysts prepared at different temperature. c) Concentration/time 
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diagram and selectivity for catalyst Co-Mo-S-0.39-180. The inset shows the by-products 

detected by GC-Mass  

 

With respect to selectivity, as shown Figure 5c, the most active catalyst (Co-Mo-S-0.39-180) 

displays a good chemoselectivity toward the hydrogenation of the nitro group affording 3-

vinylaniline (2a) in 91% yield after full conversion with only residual amounts of 3-ethylaniline 

(3a) (Table 2, entry 7). Traces of a second by-product, generated by the auto-hydroamination of 

2a, were also detected by GC-Mass analysis (see inset of Figure 5c). It should be noted that 

Table 2. Co-Mo-S catalyzed hydrogenation of 3-nitrostyrene (1a)
a
 

 

Entry Catalyst Conv. (%)
b
          Yield (%)

b
 

   2a 3a 

1 CoS2 21 19 - 

2 MoS2 20 17 - 

3 MoS2-CoS2-0.21-180 65 59 4 

4 MoS2+CoS2-0.21 20 16 - 

5 Co-Mo-S-0.17-180 79 74 2 

6 Co-Mo-S-0.26-180 83 77 2 

7 Co-Mo-S-0.39-180 >99 91 (83) 3 

8 Co-Mo-S-0.5-180 75 71 1 

9 Co-Mo-S-0.39-150 95 88 5 

10 Co-Mo-S-0.39-210 69 63 1 

11
c
 Co-Mo-S-0.39-180 94 89 2 

12
c,d

 Co-Mo-S-0.39-180 84 82 - 

13
c,e

 Co-Mo-S-0.39-180 90 85 3 

14
f
 Co-Mo-S-0.39-180 79 74 1 

15
g
 Co-Mo-S-0.39-180 60 55 - 

a
Reaction conditions: 1a (0.25 mmol), catalyst (4.9 mg), toluene (1.5 mL). 

b
Determined by GC using dodecane as an 

internal standard; yield of isolated product in parentheses.
 c

6 h.
 d

MeOH as solvent.
 e
EtOH as solvent. 

 f
120 ºC, 21 h. 

g
6 bar H2 
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selectivity gradually decreases for longer reaction times because of the unavoidable 

polymerization of 2a, and to a lesser extend to the formation of 3a. (Figure S6 in the Supporting 

Information). Interestingly, high chemoselectivity is achieved in all prepared materials, being 

their catalytic differences mainly on activity (Table 2, entries 5-10; see also Figure S6 in the 

Supporting Information). It is well-established that the way in which the substituted nitroarene is 

adsorbed on the catalyst surface determines the degree of selectivity.
11c,19a

 Since CoS2 and the 

non-promoted MoS2 catalysts also display a high chemoselectivity in the hydrogenation of 1a 

(Table 2, entries 1-2), the electronic effects generated because of the presence of cobalt as 

promoter should be disregarded as the main cause of the selectivity. So, the presence of metal-

sulfur bonds appears to have a key role on the preferential adsorption through the nitro group.     

The use of different solvents in the presence of catalyst Co-Mo-S-0.39-180 was also 

investigated (Table S2 in the Supporting Information). Excellent conversions and selectivities 

were reached with protic solvents such as methanol and ethanol, but toluene remained as the best 

tested solvent (Table 2, entries 11-13). Interestingly, H2-D2 exchange experiments (Figure S7 in 

the Supporting Information) reveals that catalyst is able to activate the H2 molecule at 120 ºC. 

Indeed, a moderate yield of 2a was obtained at this temperature or at lower hydrogen pressure (6 

bar) by increasing the reaction time (Table 2, entries 14 and 15, respectively). 

Table 3. Co-Mo-S catalyzed hydrogenation of different nitroarenes.
a 

 

Entry Substrate Product Conv. 
(%)

b
 

Yield 
(%)

b
 

Entry Substrate Product Conv. 
(%)

b
 

Yield 
(%)

b
 

1
c
   >99 

>99 
(95) 19

g,e
 

  
>99 (90) 
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2   >99 
>99 
(91) 20

g,i
 

  
>99 (90) 

3 
  

>99 
>99 

(95) 
21

g,h
 

  

>99 (94) 

4   >99 
>99 
(92) 22   >99 

90 

(83) 

5   >99 
>99 
(87) 23 

  
96 

86 

(81) 

6   >99 
>99 

(85) 
24

i
 

  
98 

89 

(81) 

7
d
   >99 

99 

(90) 
25 

  
>99 (94) 

8 
  

>99 
>99 

(96) 
26 

  

>99 (93) 

9 
  

>99 
99 

(88) 
27

i,j
   >99 

80 

(69) 

10 
  

>99 
96 

(91) 
28

f,j,k 

  

>99 95 

11   >99 
>99 
(94) 29

f,j,k 

  

>99 (90) 

12 
  

>99 
>99 

(92) 
30 

  

>99 
99 

(91) 

13 
  

>99 
89 

(80) 
31 

  

>99 
96 
(86) 

14
e
 

  
>99 (94) 32

h
 

  
>99 

>99 
(92) 
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15
f
 

  
>99 

97 
(90) 33

h
 

  
>99 (90) 

16
g,h

   >99 (85) 34
h 

  >99 (91) 

17
g,e

 
  

>99 (95) 35 
  

>99 
>99 
(95) 

18
g,i

 
  

>99 (89) 36
f 

  

>99 
99 
(93) 

a
Reaction conditions: substrate (0.25 mmol), catalyst (4.9 mg), toluene (1.5 mL). 

b
Determined by GC using dodecane as an 

internal standard; yield of isolated product in parentheses. 
c
Conversion and yield determined using hexadecane as an 

internal standard; yield of isolated product on 10 mmol scale. 
d
14 h, 120 ºC. 

e
10 h. 

f
15 h. 

g
Catalyst (9.8 mg). 

h
8 h. 

i
12 h. 

j
Please, see Extension of Table 3 in the Supporting Information. 

k
30 bar H2, 120 ºC. 

 

The scope of catalyst Co-Mo-S-0.39-180 was evaluated in the hydrogenation of a wide range 

of nitroarenes containing diverse substituents groups (Table 3). Simple nitrobenzene, alkyl- and 

trifluoromethyl-substituted nitroarenes are smoothly hydrogenated giving quantitative yields 

(Table 3, entries 1-4). Halide-containing anilines are obtained in up to 99% yield by 

hydrogenation of the corresponding nitro compounds, albeit a lower temperature (120 ºC) was 

used for 4-chloronitrobenzene to avoid dehalogenation (<3% at 150 ºC) (Table 3, entries 5-10). 

The electron-donating metoxy- and N-methylated groups are also well tolerated affording the 

corresponding anilines in quantitative yields (Table 3, entries 11-12). Likewise, N-heterocyclic 

nitro compounds are full converted at longer reaction times giving excellent yields of the 

respective amino-substituted N-heterocycles (Table 3, entries 14-15). However, a slightly lower 

yield (89 %) is achieved for 4-(methylthio)aniline because a hydrodesulfurization (HDS) 

reaction is produced in some extent (Table 3, entry 13). 
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Aromatic diamines are of industrial interest as monomers for the synthesis of multifunctional 

polymers.
37

 So, the hydrogenation of different dinitro compounds was investigated. Pleasingly, 

by using a higher catalyst loading these substrates were successfully hydrogenated to the 

diamines in good to excellent yields (Table 3, entries 16-21). The partial hydrogenation of these 

dinitroaromatics was also attempted, and for non-substituted dinitrobenzene compounds, the 

corresponding nitroanilines are achieved in high yields independently of the nitro groups ring 

position (Table 3, entries 22-24). To the best of our knowledge, this partial hydrogenation 

remains elusive in the presence of heterogeneous catalysts. A reaction profile of the 

hydrogenation of 1,4-dinitrobenzene in the presence of catalyst  Co-Mo-S-0.39-180 reveals its 

lower reactivity compared with the partially hydrogenated 4-nitroaniline, thus suggesting that 

this selectivity is associated with a preferential adsorption of the dinitro compounds on the 

catalyst surface (Figure S8 in the Supporting Information). 

To further investigate the chemoselectivity of the nanolayered catalyst Co-Mo-S-0.39-180, 

some additional substrates containing other easily reducible moieties were also tested. Apart 

from the benchmark substrate, 1a, two olefinic nitro compounds were processed under optimize 

reaction conditions. In both cases, double bonds are retained obtaining the corresponding anilines 

in excellent yields, and only traces (<2%) of products with reduced C=C double bond (Table 3, 

entries 25-26) were detected. The alkyne group of 1-ethynyl-3-nitrobenzene is also well tolerated 

and the hydrogenated 3-ethynylaniline is obtained in 80% yield (Table 3, entry 27; see also 

Scheme S1 in the Supporting Information). Hydrogenation of the nitro group is susceptible to the 

presence of aldehydes functionalities. Even so, by using an increased pressure (30 bar H2) 

excellent yields of the aldehyde-substituted anilines are achieved (Table 3, entries 28-29; for 

experimental details, see Section SI6 in the Supporting Information). Interestingly, substrates 
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containing keto substituents in different ring position are also smoothly converted into the 

corresponding amines in up to 99% yield (Table 3, entries 30-31). Moreover, carboxylic acid 

derivatives, such as cyanide, acids, esters and amides, are also suitable groups to be present in 

the selective hydrogenation of the nitro functionality because they remain totally unaffected, thus 

furnishing the expected anilines in excellent yields (Table 3, entries 32-36).  

It should be noted that no traces of reaction intermediates, such as the azoxy-, azo-, hydrazo- 

or hydroxylamine derivatives were detected. However, hydrogenation of these reaction 

intermediates affords the expected aniline in nearly quantitative yield, thus suggesting that both 

generally accepted reaction routes, the direct or the dimerization pathway,
38

 are feasible for this 

catalytic system (Scheme S2 and Table S3 in the Supporting Information). 

 

Scheme 2. Catalytic synthesis of paracetamol by a one-pot hydrogenative amidation of p-

nitrophenol with acetic acid 

On the bases of the good hydrogenation reactivity of the nanolayered molybdenum disulfide 

cobalt promoted material Co-Mo-S-0.39-180, we thought that this could be a good catalyst for 

the synthesis of paracetamol (N-acetyl-p-aminophenol, acetaminophen) through a one-pot 

hydrogenative amidation reaction. As shown Scheme 2, paracetamol has been isolated in 82% 

yield by reaction of p-nitrophenol with acetic acid in the presence of molecular hydrogen. Many 

commercial routes have been explored for paracetamol production, and some of them involve the 

reduction of p-nitrophenol, followed by N-acetylation in two separated individual stages.
39

 In 
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principle, the one-pot direct amidation reaction might allow for a more benign and practical 

approach for the synthesis of paracetamol since the isolation of the amine intermediate is 

avoided. However, the direct acetamidation reaction of p-nitrophenol has been scarcely 

investigated. So far, paracetamol has been prepared in 60% yield through a thiocyanate-mediated 

one-step reaction.
40

 In addition, catalytic systems, such as Pt nanowires/H2
41

 or Co 

complexes/silanes,
42

 have been also applied for the direct reductive amidation with acetic acid 

affording paracetamol in 82 and 85% yield, respectively. Interestingly, our catalytic sequence 

offers compelling advantages since it avoids different drawbacks of these protocols, i.e. the use 

of noble metals, low atom-efficiency or laborious workup procedures. 

The catalyst recyclability was explored by using 3-nitrostyrene (1a) and nitrobenzene as 

substrates. The nanolayered catalyst Co-Mo-S-0.39-180 was reused five and seven times, 

respectively, without any reactivation (Figure 6 and Figure S9 in the supporting Information). In 

both cases, catalytic activity is gradually decreased, although excellent yields and selectivities 

are obtained after prolonged reaction times.    

 

Figure 6. Catalyst recycling for the hydrogenation of 3-nitrostyrene (1a). Please, see Table 

3 for reaction conditions  
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Figure 7. Morphological characterization of Co-Mo-S-0.39-180-R1 in two different areas. 

Low-magnification TEM images (a-b). HRTEM images (c-d). STEM-HADDF image (e). 

Elemental mapping of sulfur, cobalt and molybdenum (f-h) 
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Figure 8. Morphological characterization of Co-Mo-S-0.39-180-R7 in two different areas. 

Low-magnification TEM images (a-b). HRTEM images (c-d). STEM-HADDF image (e). 

Elemental mapping of sulfur, cobalt and molybdenum (f-h) 

Next, to get insights on the deactivation of this nanolayered Co-Mo-S catalyst, electron 

microscopy studies were carried out on the catalyst after the first and the seven run (Co-Mo-S-

0.39-180-R1 and Co-Mo-S-0.39-180-R7, respectively). As shown Figure 7 and 8, while catalyst 

Co-Mo-S-0.39-180-R1 still displays the same morphology than the fresh catalyst (please, see 

also Figure 3e-f), a significant change can be noticed for catalyst Co-Mo-S-0.39-180-R7. In fact, 

its layered structure becomes less well defined being more deteriorated and with more disordered 

fringes. In addition, a detailed XEDS elemental mapping also reveals noticeable differences on 

its composition. Catalyst Co-Mo-S-0.39-180-R1 still shows a homogeneous distribution of cobalt 

on MoS2 with Co/Mo weight ratios that range from 1:7 to 1:21 in concordance with the existing 

in the fresh catalyst. However, after the seven run these Co/Mo weight ratios become much 

higher (even up to 1:1) in some areas of catalyst Co-Mo-S-0.39-180-R7. These observations 

suggest that desorption of cobalt species from the MoS2 backbone has occurred during 

successive reaction cycles, resulting in the formation of separated and agglomerated CoS2, and 

thereby with the concomitant partial elimination of the Co-Mo-S like structures. In agreement 

with the Edge Decoration model proposed by Topsøe et al., these Co-Mo-S structures, which 

consist of small MoS2-like domains with cobalt promoter atoms adsorbed on MoS2 edges, are 

proposed to be responsible for the promotion of the catalytic activity.
26a-c,26e,26l

 Therefore, its 

partial elimination should lead to a progressive dropping of the catalytic activity, as it has been 

observed during the successive reaction cycles.   
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SUMMARY 

We have found that it is possible to carry out the hydrogenation of nitroarenes with high 

chemoselectivity in the presence of nanolayered molybdenum disulfide cobalt promoted 

materials (Co-Mo-S). With this type of catalysts, a wide range of nitroarenes have been 

hydrogenated to the corresponding anilines under relatively mild conditions. Notably, easily 

reducible functional moieties, such as double and triple bonds, aldehydes, ketones as well as 

carboxylic acid derivative groups, have been well tolerated allowing for obtaining the 

corresponding anilines in good to excellent yields. Interestingly, the partial hydrogenation of 

some dinitroarenes has also been successfully achieved in the presence of these nanolayered Co-

Mo-S catalysts. In addition, through the preparation of paracetamol, the suitable use of these 

catalysts for the direct hydrogenative amidation of nitroarenes with carboxylic acids has been 

confirmed. In general, it constitutes a convenient catalytic protocol for the hydrogenation of 

nitroarenes since it makes use of an unsupported non-noble metal-based heterogeneous catalyst 

with a high number of active sites per unit volume, which offers compelling advantages for 

industrial applications. Comparing to their supported counterparts, these catalysts might allow 

for a more efficient reactor filling, thus providing the capability to process more feedstock. 

Active nanolayered Co-Mo-S catalysts have been prepared by a one-pot hydrothermal method by 

using cheap and abundant precursors. The effects of the catalyst preparation temperature and the 

cobalt content on the catalytic activity for the chemoselective hydrogenation of nitroarenes have 

been well established. It seems that the enhanced catalytic activity observed with the promoting 

effect of cobalt could be explained by the Edge Decoration model with the formation of Co-Mo-

S like structures, and therefore their transformation lead to a variation in the hydrogenation 

activity.  
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EXPERIMENTAL SECTION 

Preparation of Unsupported Catalysts 

Unsupported Co-Mo-S catalysts were prepared by a one-pot hydrothermal synthesis. The 

catalyst preparation was carried out in a 130 mL Parr stirred reactor. Ammonium molybdate 

[(NH4)6Mo7O24·4H2O] (750 mg), elemental sulfur (283.4 mg) and cobalt acetate 

[Co(OAc)2·4H2O] were put in a stainless steel autoclave vessel. Then, distilled water (57 mL) 

and hydrazine monohydrate (64-65%, 5.5 mL) were added, the autoclave was enclosed tightly 

and purged twice with nitrogen as a leak testing. The mixture was heated and stirred until the 

desired internal temperature (150-210 ºC) was reached (aprox. 60-90 min), and then maintain in 

static conditions at this temperature. After 22 h, the autoclave was naturally cooled to room 

temperature, and the generated gas was carefully released. The resulting nanolayered catalyst 

was recovered by filtration, washed with distilled water, ethanol and diethyl ether. Finally, the 

black solid catalyst was dried under vacuum for 1 h and stored under a nitrogen environment.  

The composition of Co-Mo-S catalysts with different Co/(Mo+Co) mole ratio (0.17, 0.26, 0.39, 

0.50) was change by using different amount of cobalt acetate in their preparation (92.6, 190.8, 

295.6, 396.8 mg, respectively). The non-promoted MoS2 catalyst was prepared by the same 

procedure as for the Co-Mo-S catalysts, but without addition of the cobalt precursor.
33

 

Catalysts Characterization 

Powder X-ray diffraction (XRD) measurements were performed in a HTPhilips X’Pert MPD 

diffractometer equipped with a PW3050 goniometer using CuKα radiation and a multisampling 

handler. 
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Samples for electron microscopy studies were prepared by dropping a suspension of the 

nanolayered MoS2-based catalysts in CH2Cl2 directly onto the holey-carbon-coated nickel grids. 

All measurements were performed in a JEOL 2100F microscope operating at 200 kV both in 

transmission (TEM) and scanning-transmission modes (STEM). STEM images were obtained 

using a high-angle annular dark-field detector (HAADF), which allows Z-contrast imaging. 

The specific surface area and pore structures of the nanolayered MoS2-based catalysts were 

determined by physisorption of N2 by using the Brunauer–Emmett–Teller (BET) and Barrett-

Joyner-Halenda (BJH) methods at 77 K and low relative pressure (P/P0) of 0-0.25. The 

measurements were carried out in a Micromeritics ASAP 2420 gas adsorption analyzer, after 

degassing the samples at 473K for 24 h.  

Hydrogenation of Nitroarenes 

Catalytic hydrogenations were carried out in a 6 mL reinforced glass reactor equipped with a 

pressure control. The glass reactor containing a stirring bar was charged with the substrate (0.25 

mmol), nanolayered Co-Mo-S catalyst (4.9 mg), dodecane (50 µL) as an internal standard and 

toluene (1.5 mL). Once sealed, reactor was purged by flushing five times with 10 bar of 

hydrogen, then pressurized to 11 bar and place into aluminum block preheated at 150 ºC. After 

reaction time, the reactor was cooled naturally to room temperature and the remaining gas was 

carefully released. Finally, the reaction mixture was diluted with ethyl acetate and analyzed by 

GC. All catalytic reactions were performed at least twice to ensure reproducibility. For the 

kinetic studies, magnetic stirring was switched off for 1 min to collect the catalyst on the bottom, 

and then 50 µL of the reaction mixture was taken out for GC analysis at different reaction times. 

To determine the isolated yields of the final amines, no internal standard was added. After 
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reaction, the mixture was diluted with ethyl acetate, filtered over celite to separate off the 

catalyst and taken to dryness under vacuum. It should be note that for some amines purification 

by silica gel chromatography was also carried out (see Supporting Information). 

ASSOCIATED CONTENT 

The Supporting Information is available free of charge via the Internet at http://pubs.acs.org.  

Extended data about nanolayered Co-Mo-S catalysts characterization, optimization of 

reaction conditions, additional experimental results and procedures, characterization data 

of isolated products 

AUTHOR INFORMATION 

Corresponding Author 

*acorma@itq.upv.es 

Notes 

The authors declare no competing financial interest. 

ACKNOWLEDGMENT 

The financial support of the European Union (FP7-NMP-2013-EU-Japan-604319-NOVACAM) 

is gratefully acknowledged.  I.S. thanks Spanish MINECO for a “Formación Postdoctoral” 

fellowship. The authors also thank the Microscopy Service of Universitat Politècnica de 

València for kind help with TEM and STEM measurements. 

REFERENCES 

(1) Wittcoff, H. A.; Reuben, B. G.; Plotkin, J. S. in Industrial Organic Chemicals 2nd ed.; 

Wiley-Interscience New York, 2004. 



 26 

(2) (a) Lawerencem, S. A. in Amines: Synthesis, Properties and Applications Cambridge 

University Cambridge, 2004. (b) Rappoport, Z. in The Chemistry of Anilines, Part 1; 

John Wiley &  Sons Ltd Chichester (England) 2007. 

(3) (a) Downing, R. S.; Kunkeler, P. J.; vanBekkum, H. Catal. Today 1997, 37, 121-136. (b) 

Ono, N. in The Nitro Group in Organic Synthesis; Wiley-VCH: New York, 2001. 

(4) Kovar, F.; Armond, F. E.  U.S. Patent 3,975,444, 1976. 

(5) Suchy, M.; Winternitz, P.; Zeller, M.  World (WO) Patent 91/00278, 1991. 

(6) Butera, J.; Bagli, J.  World (WO) Patent 91/09023, 1991. 

(7) Burawoy, A.; Critchley, J. P. Tetrahedron 1959, 5, 340-351. 

(8) (a) Blaser, H.-U.; Siegrist, U.; Steiner, H. in Aromatic Nitro Compounds: Fine Chemicals 

Through Heterogeneous Catalysis; Wiley-VCH: Weinheim, Germany, 2001. (b) Kadam, 

H. K.; Tilve, S. G. RSC Adv. 2015, 5, 83391-83407. 

(9) (a) Blaser, H.-U.; Steiner, H.; Studer, M. Chemcatchem 2009, 1, 210-221. (b) Serna, P.; 

Corma, A. Acs Catal. 2015, 5, 7114-7121. 

(10) Siegrist, U.; Baumeister, P.; Blaser, H.-U.; Studer, M. Chem. Ind. (Dekker) 1998, 75, 

207-219. 

(11) (a) Corma, A.; Serna, P. Science 2006, 313, 332-334. (b) Corma, A.; Serna, P. Nat. 

Protoc. 2007, 1, 2590-2595. (c) Boronat, M.; Concepción, P.; Corma, A.; González, S.; 

Illas, F.; Serna, P. J. Am. Chem. Soc. 2007, 129, 16230-16237. (d) Corma, A.; 

Concepción, P.; Serna, P. Angew. Chem. Int. Ed. 2007, 46, 7266-7269. (e) Serna, P.; 

Concepción, P.; Corma, A. J. Catal. 2009, 265, 19-25. (f) Serna, P.; Boronat, M.; Corma, 

A. Top. Catal. 2011, 54, 439-446. 

(12) Corma, A.; Serna, P.; Concepcion, P.; Calvino, J. J. J. Am. Chem. Soc. 2008, 130, 8748-

8753. 

(13) (a) Shimizu, K.-i.; Miyamoto, Y.; Kawasaki, T.; Tanji, T.; Tai, Y.; Satsuma, A. J. Phys. 

Chem. C 2009, 113, 17803-17810. (b) Matsushima, Y.; Nishiyabu, R.; Takanashi, N.; 

Haruta, M.; Kimura, H.; Kubo, Y. J. Mater. Chem. 2012, 22, 24124-24131. (c) Makosch, 

M.; Lin, W.-I.; Bumbalek, V.; Sa, J.; Medlin, J. W.; Hungerbuehler, K.; van Bokhoven, J. 

A. Acs Catal. 2012, 2, 2079-2081. (d) Wei, H.; Liu, X.; Wang, A.; Zhang, L.; Qiao, B.; 

Yang, X.; Huang, Y.; Miao, S.; Liu, J.; Zhang, T. Nat. Commun. 2014, 5, 5634. 

(14) (a) Shimizu, K.-i.; Miyamoto, Y.; Satsuma, A. J. Catal. 2010, 270, 86-94. (b) 

Mitsudome, T.; Mikami, Y.; Matoba, M.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. 

Angew. Chem. Int. Ed. 2012, 51, 136-139. 

(15) Furukawa, S.; Yoshida, Y.; Komatsu, T. Acs Catal. 2014, 4, 1441-1450. 

(16) (a) Westerhaus, F. A.; Jagadeesh, R. V.; Wienhoefer, G.; Pohl, M.-M.; Radnik, J.; 

Surkus, A.-E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M.; Brueckner, A.; Beller, M. 

Nat. Chem. 2013, 5, 537-543. (b) Jagadeesh, R. V.; Surkus, A.-E.; Junge, H.; Pohl, M.-

M.; Radnik, J.; Rabeah, J.; Huan, H.; Schuenemann, V.; Brueckner, A.; Beller, M. 

Science 2013, 342, 1073-1076. (c) Jagadeesh, R. V.; Stemmler, T.; Surkus, A.-E.; Bauer, 

M.; Pohl, M.-M.; Radnik, J.; Junge, K.; Junge, H.; Brueckner, A.; Beller, M. Nat. Protoc. 

2015, 10, 916-926. (d) Jagadeesh, R. V.; Stemmler, T.; Surkus, A.-E.; Bauer, M.; Pohl, 

M.-M.; Radnik, J.; Junge, K.; Junge, H.; Brueckner, A.; Beller, M. Nat. Protoc. 2016, 11, 

192-192. (e) Jagadeesh, R. V.; Stemmler, T.; Surkus, A.-E.; Junge, H.; Junge, K.; Beller, 

M. Nat. Protoc. 2015, 10, 548-557. 

(17) Formenti, D.; Topf, C.; Junge, K.; Ragaini, F.; Beller, M. Catal. Sci. Technol. 2016, 6, 

4473-4477. 



 27 

(18) (a) Wei, Z.; Wang, J.; Mao, S.; Su, D.; Jin, H.; Wang, Y.; Xu, F.; Li, H.; Wang, Y. Acs 

Catal. 2015, 5, 4783-4789. (b) Schwob, T.; Kempe, R. Angew. Chem. Int. Ed. 2016, 55, 

15175-15179. (c) Wang, X.; Li, Y. J. Mol. Catal. A: Chem. 2016, 420, 56-65. 

(19) (a) Liu, L.; Concepción, P.; Corma, A. J. Catal. 2016, 340, 1-9. (b) For other example 

mediated by a nitrogen-free Co/CoO@C catalyst under harsher reaction conditions, see: 

Chen, B.; Li, F.; Huang, Z.; Yuan, G. ChemCatChem 2016, 8, 1132-1138.    

(20) (a) Casewit, C. J.; Coons, D. E.; Wright, L. L.; Miller, W. K.; DuBois, M. R. 

Organometallics 1986, 5, 951-955. (b) Sorribes, I.; Wienhoefer, G.; Vicent, C.; Junge, 

K.; Llusar, R.; Beller, M. Angew. Chem. Int. Ed. 2012, 51, 7794-7798. (c) Pedrajas, E.; 

Sorribes, I.; Junge, K.; Beller, M.; Llusar, R. Chemcatchem 2015, 7, 2675-2681. (d) 

Pedrajas, E.; Sorribes, I.; Gushchin, A. L.; Laricheva, Y. A.; Junge, K.; Beller, M.; 

Llusar, R. ChemCatChem 2017, 9, in press, http://dx.doi.org/10.1002/cctc.201601496. 

(21) (a) Huang, L.; Luo, P.; Xiong, M.; Chen, R.; Wang, Y.; Xing, W.; Huang, J. Chin. J. 

Chem . 2013, 31, 987-991. (b) Zhang, C.; Zhang, Z.; Wang, X.; Li, M.; Lu, J.; Si, R.; 

Wang, F. Appl. Catal., A 2016, 525, 85-93. 

(22) Srivastava, S. K.; Avasthi, B. N. J. Mater. Sci. 1993, 28, 5032-5035. 

(23) Sun, D.-Y.; Lin, B.-Z.; Xu, B.-H.; He, L.-W.; Ding, C.; Chen, Y.-L. J. Porous Mater. 

2008, 15, 245-251. 

(24) Kamiguchi, S.; Arai, K.; Okumura, K.; Iida, H.; Nagashima, S.; Chihara, T. Appl. Catal., 

A 2015, 505, 417-421. 

(25) (a) Topse, H.; Clausen, B. S.; Massoth, F. E.; (Eds. Anderson, J. R.; Moudart, M. in 

Hydrotreating Catalysis-Science and Technology; Springer-Verlag: Berlin, 1996; Vol. 

11. (b) Brorson, M.; Carlsson, A.; Topsoe, H. Catal. Today 2007, 123, 31-36. (c) 

Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. 

Science 2007, 317, 100-102. (d) Wang, S.; Zhang, J.; He, D.; Zhang, Y.; Wang, L.; Xu, 

H.; Wen, X.; Ge, H.; Zhao, Y. J. Phys. Chem. Solids 2014, 75, 100-104. 

(26) (a) Topsoe, H.; Clausen, B. S.; Candia, R.; Wivel, C.; Morup, S. J. Catal. 1981, 68, 433-

452. (b) Wivel, C.; Candia, R.; Clausen, B. S.; Morup, S.; Topsoe, H. J. Catal. 1981, 68, 

453-463. (c) Clausen, B. S.; Topsoe, H.; Candia, R.; Villadsen, J.; Lengeler, B.; 

Alsnielsen, J.; Christensen, F. J. Phys. Chem. 1981, 85, 3868-3872. (d) Breysse, M.; 

Bennett, B. A.; Chadwick, D.; Vrinat, M. Bull. Soc. Chim. Belg. 1981, 90, 1271-1277. (e) 

Topsoe, N. Y.; Topsoe, H. J. Catal. 1983, 84, 386-401. (f) Kasztelan, S.; Toulhoat, H.; 

Grimblot, J.; Bonnelle, J. P. Appl. Catal. 1984, 13, 127-159. (g) Topsøe, H.; Clausen, B. 

S. Appl. Catal. 1986, 25, 273-293. (h) Daage, M.; Chianelli, R. R. J. Catal. 1994, 149, 

414-427. (i) Byskov, L. S.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H. J. Catal. 1999, 

187, 109-122. (j) Schweiger, H.; Raybaud, P.; Toulhoat, H. J. Catal. 2002, 212, 33-38. 

(k) Lauritsen, J. V.; Bollinger, M. V.; Lægsgaard, E.; Jacobsen, K. W.; Nørskov, J. K.; 

Clausen, B. S.; Topsøe, H.; Besenbacher, F. J. Catal. 2004, 221, 510-522. (l) Topsoe, H. 

Appl. Catal., A 2007, 322, 3-8. (m) Lauritsen, J. V.; Kibsgaard, J.; Olesen, G. H.; Moses, 

P. G.; Hinnemann, B.; Helveg, S.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H.; 

Lægsgaard, E.; Besenbacher, F. J. Catal. 2007, 249, 220-233. (n) Berhault, G.; Perez De 

la Rosa, M.; Mehta, A.; Yácaman, M. J.; Chianelli, R. R. Appl. Catal., A 2008, 345, 80-

88. (o) Besenbacher, F.; Brorson, M.; Clausen, B. S.; Helveg, S.; Hinnemann, B.; 

Kibsgaard, J.; Lauritsen, J. V.; Moses, P. G.; Nørskov, J. K.; Topsøe, H. Catal. Today 

2008, 130, 86-96. (p) Gandubert, A. D.; Krebs, E.; Legens, C.; Costa, D.; Guillaume, D.; 

Raybaud, P. Catal. Today 2008, 130, 149-159. (q) Krebs, E.; Silvi, B.; Raybaud, P. 



 28 

Catal. Today 2008, 130, 160-169. (r) Kibsgaard, J.; Tuxen, A.; Knudsen, K. G.; Brorson, 

M.; Topsøe, H.; Lægsgaard, E.; Lauritsen, J. V.; Besenbacher, F. J. Catal. 2010, 272, 

195-203. (s) Zhu, Y.; Ramasse, Q. M.; Brorson, M.; Moses, P. G.; Hansen, L. P.; 

Kisielowski, C. F.; Helveg, S. Angew. Chem. Int. Ed. 2014, 53, 10723-10727. 

(27) Byskov, L. S.; Hammer, B.; Norskov, J. K.; Clausen, B. S.; Topsoe, H. Catal. Lett. 1997, 

47, 177-182. 

(28) (a) Lauritsen, J. V.; Nyberg, M.; Norskov, J. K.; Clausen, B. S.; Topsoe, H.; Laegsgaard, 

E.; Besenbacher, F. J. Catal. 2004, 224, 94-106. (b) Berit, H.; Poul Georg, M.; Jens, K. 

N. J. Phys.: Condens. Matter 2008, 20, 064236. (c) Temel, B.; Tuxen, A. K.; Kibsgaard, 

J.; Topsøe, N.-Y.; Hinnemann, B.; Knudsen, K. G.; Topsøe, H.; Lauritsen, J. V.; 

Besenbacher, F. J. Catal. 2010, 271, 280-289. (d) Rangarajan, S.; Mavrikakis, M. Acs 

Catal. 2016, 6, 2904-2917. 

(29) (a) Soled, S. L.; Miseo, S.; Krycak, R.; Vroman, H.; Ho, T. C.; Riley, K.  U. S. Patent 

6,299,760 to Exxonmobil, 2001. (b) Plantenga, F. L.; Cerfontain, R.; Eijsbouts, S.; van 

Houtert, F.; Anderson, G. H.; Miseo, S.; Soled, S.; Riley, K.; Fujita, K.; Inoue, Y. In 

Stud. Surf. Sci. Catal.; Anpo, M., Onaka, M., Yamashita, H., Eds.; Elsevier: 2003; Vol. 

Volume 145, p 407-410. 

(30) (a) Yoosuk, B.; Tumnantong, D.; Prasassarakich, P. Chem. Eng. Sci. 2012, 79, 1-7. (b) 

Eijsbouts, S.; Mayo, S. W.; Fujita, K. Appl. Catal., A 2007, 322, 58-66. 

(31) Liu, N.; Wang, X.; Xu, W.; Guo, D.; Tang, J.; Zhang, B. Prog. Chem. 2013, 25, 726-734. 

(32) (a) Yoosuk, B.; Song, C.; Kim, J. H.; Ngamcharussrivichai, C.; Prasassarakich, P. Catal. 

Today 2010, 149, 52-61. (b) Yoosuk, B.; Tumnantong, D.; Prasassarakich, P. Fuel 2012, 

91, 246-252. (c) Wang, W.; Zhang, K.; Li, L.; Wu, K.; Liu, P.; Yang, Y. Ind. Eng. Chem. 

Res. 2014, 53, 19001-19009. (d) Itthibenchapong, V.; Ratanatawanate, C.; Oura, M.; 

Faungnawakij, K. Catal. Commun. 2015, 68, 31-35. (e) Wang, W.; Li, L.; Wu, K.; Zhu, 

G.; Tan, S.; Li, W.; Yang, Y. RSC Adv. 2015, 5, 61799-61807. (f) Wang, W.; Li, L.; Wu, 

K.; Zhang, K.; Jie, J.; Yang, Y. Appl. Catal., A 2015, 495, 8-16. (g) Wang, W.; Li, L.; 

Tan, S.; Wu, K.; Zhu, G.; Liu, Y.; Xu, Y.; Yang, Y. Fuel 2016, 179, 1-9. (h) Wang, W.; 

Li, L.; Wu, K.; Zhu, G.; Tan, S.; Liua, Y.; Yang, Y. RSC Adv. 2016, 6, 31265-31271. (i) 

Wang, W.; Wu, K.; Li, L.; Tan, S.; Zhu, G.; Li, W.; He, Z.; Yang, Y. Catal. Commun. 

2016, 74, 60-64. (j) Wang, W.; Zhu, G.; Li, L.; Tan, S.; Wu, K.; Zhang, X.; Yang, Y. 

Fuel 2016, 174, 1-8. 

(33) (a) Peng, Y. Y.; Meng, Z. Y.; Zhong, C.; Lu, J.; Yu, W. C.; Jia, Y. B.; Qian, Y. T. Chem. 

Lett. 2001, 772-773. (b) Peng, Y. Y.; Meng, Z. Y.; Zhong, C.; Lu, J.; Yu, W. C.; Yang, Z. 

P.; Qian, Y. T. J. Solid State Chem. 2001, 159, 170-173. 

(34) (a) Park, S.-K.; Yu, S.-H.; Woo, S.; Ha, J.; Shin, J.; Sung, Y.-E.; Piao, Y. CrystEngComm 

2012, 14, 8323-8325. (b) Wang, Z.; Chen, T.; Chen, W.; Chang, K.; Ma, L.; Huang, G.; 

Chen, D.; Lee, J. Y. J. Mater. Chem. A 2013, 1, 2202-2210. 

(35) Yi, Y.; Zhang, B.; Jin, X.; Wang, L.; Williams, C. T.; Xiong, G.; Su, D.; Liang, C. J. 

Mol. Catal. A: Chem. 2011, 351, 120-127. 

(36) (a) Delmon, B. C. R. Hebdo. Seances Acad. Sci. Serie C 1979, 289, 173-176. (b) Delmon, 

B. Bull. Soc. Chim. Belg. 1979, 88, 979-987. (c) Weng, L. T.; Delmon, B. Appl. Catal., A 

1992, 81, 141-213. (d) Stumbo, A. M.; Grange, P.; Delmon, B. Catal. Lett. 1995, 31, 

173-182. (e) Delmon, B.; Froment, G. F. Catal. Rev. Sci. Eng. 1996, 38, 69-100. (f) 

Stumbo, M.; Grange, P.; Delmon, B.; (Eds. Li, C.; Xin, Q. in Spillover and Migration of 

Surface Species on Catalysts; Elseiver Science B.V., 1997. 



 29 

 (37) Li, X.-G.; Huang, M.-R.; Duan, W.; Yang, Y.-L. Chem. Rev. 2002, 102, 2925-3030. 

(38) Haber, F. Z. Elektrochem. 1898, 22, 506. 

(39) Joncour, R.; Duguet, N.; Metay, E.; Ferreira, A.; Lemaire, M. Green Chem. 2014, 16, 

2997-3002. 

(40) Bhattacharya, A.; Purohit, V. C.; Suarez, V.; Tichkule, R.; Parmer, G.; Rinaldi, F. 

Tetrahedron Lett. 2006, 47, 1861-1864. 

(41) Li, M.; Hu, L.; Cao, X.; Hong, H.; Lu, J.; Gu, H. Chem. Eur. J. 2011, 17, 2763-2768. 

(42) Kumar, V.; Kumar, M.; Sharma, S.; Kumar, N. RSC Adv. 2014, 4, 11826-11830. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 30 

TABLE OF CONTENTS ARTWORK 

 

 

 

 

 


