

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://doi.org/10.1061/(ASCE)0733-9496(2000)126:4(251)

http://hdl.handle.net/10251/101129

American Society of Civil Engineers

1

 Parallel Computing in Water Network Analysis and Leakage

Minimization

José M. Alonso1, Fernando Alvarruiz1, David Guerrero1, Vicente Hernández2,

Pedro A. Ruiz1, Antonio M. Vidal3

 Fernando Martínez4, Juan Vercher5, Bogumil Ulanicki6

Keywords: High performance computing, hydraulic simulation, water quality simulation,

leakage simulation, leakage reduction, EPANET.

Abstract.

In this paper, a parallel computing based software demonstrator for the simulation and

leakage minimization of water networks is presented.

This demonstrator, based on EPANET package, tackles three different types of problems

making use of parallel computing. First, the solution of the hydraulic problem is treated by

1 Ph.D. student, Parallel Computing Group, Departamento de Sistemas Informáticos y

Computación, Universidad Politécnica de Valencia. C/ Camino de Vera s/n, 46022, Valencia.

Spain.

2 Professor, Parallel Computing Group, Departamento de Sistemas Informáticos y

Computación, Universidad Politécnica de Valencia. C/ Camino de Vera s/n, 46022, Valencia.

Spain. Phone: +34 96 387 7356. Fax: +34 96 387 7359. e-mail: vhernand@dsic.upv.es.

3 Professor, Parallel Computing Group, Departamento de Sistemas Informáticos y

Computación, Universidad Politécnica de Valencia. C/ Camino de Vera s/n, 46022, Valencia.

Spain.

4 Professor, Departamento de Ingeniería Hidráulica y Medio Ambiente, Universidad

Politécnica de Valencia, C/ Camino de Vera s/n, 46022, Valencia. Spain.

5 Research fellow, Departamento de Ingeniería Hidráulica y Medio Ambiente, Universidad

Politécnica de Valencia, C/ Camino de Vera s/n, 46022, Valencia. Spain.

6 Professor, Water Software Systems, De Monfort University, The Gateway, Leicester, LE1

9BH.

mailto:vhernand@dsic.upv.es

2

means of the Gradient Method. The key point in the parallelization of the method is the

solution of the underlying linear systems, which is carried out by means of a multifrontal

Cholesky method. Second, the water quality simulation problem is approached by using the

Discrete Volume Element Method. The application of parallel computing is based on dividing

the water network in several parts using the Multilevel Recursive Bisection graph

partitioning algorithm. Finally, the problem of leakage minimization using Pressure

Reducing Valves (PRVs) is approached. This results in the formulation of an optimization

problem for each time step, which is solved by means of Sequential Quadratic Programming.

Since these sub-problems are independent of each other, they can be solved in parallel.

Introduction.

The High Performance Computing (HPC) technology, which is nowadays synonymous with

parallel computing (several processors working together to solve the same problem) (Kumar

et al. 1994), is a well-established technology. However, its use has been restricted until

recently to large enterprises and universities. This was due to the high cost of HPC hardware,

which has represented a barrier to its adoption by smaller companies. The advent of low cost

multiprocessor systems offers now a powerful choice for industry at large. HPC makes

possible, by means of the interconnection of PCs or workstations, to reach a computational

power similar to that of the supercomputers at lower costs.

As will be described in this paper, the objective of HIPERWATER (ESPRIT project 24003;

http://www. hiperttn.upv.es/hiperwater) has been to build a software demonstrator showing

that HPC technology reduces the time spent on water network analysis processes, enabling

the acceleration of tasks such as simulation and leakage control. EPANET (Rossman 1993a),

a well-known water network simulation package, has been used as the starting point for the

demonstrator.

The first technical direction of HIPERWATER was toward simulation processes, specifically

hydraulic analysis and water quality modeling. The hydraulic analysis problem involves the

solution of a non-linear system of equations using a parallelized version of Todini’s gradient

algorithm. Water quality is simulated using the Discrete Volume Element Method (DVEM),

which was also modified to a parallel algorithm.

HIPERWATER’s second direction moved beyond simulation to a methodology for leakage

minimization by finding the optimal pressure reducing valve settings. This optimization

http://www.hiperttn.upv.es/hiperwater

3

problem, formulated as series of non-linear programming problems, is solved by a parallel

algorithm based on Sequential Quadratic Programming.

Throughout the paper results are shown with performance of the parallel algorithms. These

results have been obtained on a cluster of Pentium-Pro PCs linked with a Fast-Ethernet

network. Operating system is Windows (95, 98, NT), and MPI (Message Passing Interface)

(Dongarra et al. 1996) communication library is used. Each PC has 64 Mb RAM and runs at

200 MHz.

Background.

Although computer performance has steadily increased during the last few decades, the limit

imposed by the speed of light indicates that this situation will not last forever. One way to

circumvent this difficulty is to use an ensemble of interconnected processors. This is also a

cost-effective way of obtaining an increase in raw computational power. As pointed out in

(Kumar et al. 1994), the cost-performance ratio for computers can be represented by a curve

similar to that shown in Figure 1. For low prices, performance increases significantly with

cost until a saturation point is reached. Beyond this point, small increases of performance

come at a high cost. Parallel computing is an economic alternative to obtain extra

performance at a low cost.

Parallel scientific and engineering computing is becoming of paramount importance in

several industrial applications, especially when the solution of large and complex problems

must be done in a reduced time. Computational fluid mechanics, structural engineering,

computational chemistry, electronic and electro-magnetic circuits, signal and image

processing, are some engineering areas where parallel computing has been successfully

applied (Palma et al. 1998).

In the context of water networks, the use of Geographical Information Systems (GIS)

facilitates constructing detailed realistic network models. The analysis of these large

networks however is extremely complex. As a consequence, more powerful computing

resources are needed hence the interest in the use of parallel computing.

In addition, it is not unusual for the water quality simulations to require a long simulation

period to reach equilibrium due to a lack of understanding of the initial water quality

conditions in the system. As the simulation advances, the quality conditions tend to a cyclical

pattern that repeats over 24-hour periods. Thus, a water quality analysis may extend over a

4

simulation time (not computing time) of several weeks. In this context the computing time

can be important, and the use of parallel computing is justified.

Finally, water industry desires to solve water-network optimization problems that are more

complex and computationally-intensive than simulation problems. Optimization problems

can be formulated for design and operational purposes. In the latter case, a typical problem

faced by water companies is that of finding pump, valve and water production schedules to

satisfy user demands and to provide feasible operational conditions at the least cost. In many

networks, leakage is significant but can be reduced by proper operational decisions. In any

case, water network optimization problems are one of the areas that can benefit from the

introduction of parallel computing.

Indeed, parallel computation can help water companies increase their productivity by

substantially reducing the time to analyze networks. This technology can also allow more

complex problems to be solved that are not technologically possible today using traditional

(non-HPC) approaches.

Hydraulic Simulation.

The equations which model the water networks (and piping networks in general) are non-

linear and therefore require an iterative solution, i.e. the problem is reduced to the solution of

a sequence of systems of linear equations. One of the most effective solution methods is the

Hybrid or Gradient Method, (Hamam and Brameller 1971; Todini 1979; Todini and Pilati

1987). This method consists in the application of the Newton-Raphson technique, both in

terms of nodal heads and pipe flows, to the simultaneous solution of the equations of

conservation of mass and energy. It is represented by the following coupled equations that

need to be solved iteratively:

i) Nodal head update:

       qQAHAQAGAAGAH kkk  )(
21010

)(
11

1
21

1

12
1

21
)1(, (1)

ii) Pipe flow update:

    010
)1(

12
1)(

11
1)1(HAHAGQAGIQ kkk   , (2)

where:

k: Gradient Method iteration counter,

H: piezometric head, column vector of NNNS elements,

NN: total number of nodes,

5

NS: number of source nodes (reservoirs or tanks),

H0: piezometric head of source nodes, column vector of NS elements,

Q: flowrate, column vector of NP elements,

NP: number of network links (pipes, valves or pumps),

q: known nodal consumption, column vector of NNNS elements,

A12: (NPNH) edge-to-non-source-node connectivity matrix,

NH = NNNS, number of non-source nodes,

A21 = A12
T (transpose of matrix A12),

A10: (NPNS) edge-to-source-node connectivity matrix,

A11 = diag(iQi
kn-1 + i/Qi

k), (NPNP) diagonal matrix,

i, i: known characteristic parameters of the link i,

n: headloss-flow exponent,

G = N A11’,

N = diag(n), (NPNP) diagonal matrix,

A11’ = diag (iQi
kn-1), (NPNP) diagonal matrix,

I: identity matrix.

Equation (1) represents a linear system of NH equations in the unknown piezometric heads,

and it can be expressed in the standard format of a linear system:

      qQAHAQAGAHAGA kkk  )(
21010

)(
11

1
21

)1(
12

1
21 . (3)

System (3) is a standard linear problem A x = b, where the coefficient matrix is sparse,

symmetric and positive definite.

In the remainder of this section, a parallel algorithm for hydraulic simulation will be

described. This algorithm is based on the EPANET hydraulic simulation method which is

outlined in the following subsection.

Hydraulic Simulation Process.

A scheme of the algorithm used in EPANET to perform the hydraulic simulation can be seen

in Figure 2.

After an initialization phase, loop A simulates the network hydraulic behavior over an

extended period of time, iterating for successive time steps for the duration of the simulation

period. The most important and computationally expensive task is loop B, in which the

6

system of non-linear equations is solved. A linear system of equations is solved by means of

the Cholesky factorization in each iteration of the loop, until convergence is achieved.

Parallel Hydraulic Simulation.

To reduce computation times, the major effort is to apply an efficient parallel algorithm to

solve the sparse symmetric positive definite linear systems of equations (loop B).

In addition, the remaining steps of the hydraulic simulation have also been parallelized. One

of the processors is in charge of reading the input file and broadcasting most of its contents to

the rest of processors. Given the network data, the coefficient matrix structure is generated

following the rowwise block-striped partitioning method (Kumar et al. 1994), while the

parallel solution of the linear equations is performed by means of a Multifrontal Cholesky

Factorization (Liu 1992; Heath et al. 1991). The problem consists of solving the system Ax =

b, where A is a sparse, symmetric and positive definite matrix. Cholesky factorization is

composed of four consecutive phases: fill-reducing ordering, symbolic factorization,

numerical factorization and solution of triangular systems. During the ordering phase, a

permutation matrix P is computed so that the matrix PAPT will incur a minimal fill-in during

the factorization phase. During the symbolic factorization phase the non-zero structure of the

triangular Cholesky factor L is determined. The role of the symbolic factorization phase is to

increase the performance of the numerical factorization phase. The necessary operations to

compute the values in L that satisfy PAPT = LLT, are performed during the phase of numerical

factorization. Finally the solution to Ax = b is computed by solving two triangular systems,

Ly = b´ followed by LTx´ = y, where b´ = Pb and x´ = Px. The former system is solved by

means of a forward elimination algorithm, while the solution of the latter involves a

backward substitution process. The final solution, x, is obtained using x = PTx´.

In the case of hydraulic simulation, the ordering and symbolic factorization stages need to be

performed only once as an initialization process prior to the simulation, because the matrix

structure does not change in the different time steps.

In essence, the algorithms are driven by the elimination tree of matrix A (see Figure 3). A set

of consecutive nodes in the elimination tree, each with only one child, is called a supernode.

Nodes in each supernode are joined to form a supernodal elimination tree, which is a binary

tree with top log p levels, where p is the number of processors involved. In order to factorize

the sparse matrix in parallel, portions of the elimination tree are assigned to processors using

a subtree-to-subcube assignment strategy. The topmost supernode is assigned to all

7

processors. The two subtrees of the root are assigned to subcubes of p/2 processors each.

Each subtree is further partitioned recursively using the same strategy. Thus, the p subtrees at

a depth of log p supernodal levels are each assigned to individual processors. Figure 3 shows

the elimination tree of a sparse symmetric matrix, with the subtree-to-subcube mapping onto

8 processors (P0 to P7). The non-zero elements in the original coefficient matrix are denoted

by “” and fill-in elements are denoted by the symbol “o”.

Fill-Reducing Ordering.

The serial approach of the Multilevel Nested Dissection (MND) algorithm is applied to obtain

a fill-reducing ordering (Bui and Jones 1993; Heath et al. 1991) of the coefficient matrix.

The ordering scheme is a key factor determining the efficiency of both serial and parallel

implementations. In the first case, the objective is to minimize the memory requirements and

the number of operations during the factorization of the coefficient matrix. In the parallel

case, it also has to be taken into account that the degree of parallelism during the factorization

must be high.

As an example, the Minimum Degree (MD) algorithm (used in EPANET) has been found to

produce very good orderings on serial computers. However, nested-dissection-based

orderings lead to more concurrence and better load balance during parallel factorization than

MD. Moreover, MND is usually faster than MD for large matrices and, whereas MD is serial

in nature, MND can be effectively parallelized.

In fact, experiences have shown that not only is MND preferable to MD in parallel

implementations, but also in the sequential case, especially when large matrices are

encountered. MND reduces the number of non-zero elements in the matrix factorization,

accelerating the phases of factorization and triangular systems solution.

The MND algorithm is based on the multilevel graph bisection partitioning technique (Bui

and Jones 1993). Briefly, the multilevel graph bisection involves gradual coarsening of a

graph to a few hundred vertices, then partitioning this smaller graph, and finally, projecting

the partitions back to the original graph by gradually refining them. Further details of this will

be given in the section devoted to the water quality simulation.

Figure 4 (a) shows the non-zero structure of the coefficient matrix A corresponding to test

network 1 (see Table 1 for the features of the test networks); Figure 4 (b) presents the

corresponding structure of the Cholesky lower triangular matrix L when the MD ordering

8

method is used; finally, Figure 4 (c) shows the structure of L when the MND method is

employed. It can be clearly appreciated that MND results in a smaller number of operations

during numerical factorization, due to the smaller number of non-zero elements.

Symbolic Factorization.

In this second stage, the non-zero structure of the triangular Cholesky factor L is computed.

In the parallel algorithm applied, the supernodal elimination tree is distributed among the

processors using the subtree-to-subcube mapping and the columns of the coefficient matrix of

each supernode are distributed using a bitmask based block-cyclic strategy. The structure of L

is obtained in a bottom-up fashion, where the non-zero structure of the leaf nodes is

computed first, and sent upwards in the elimination tree to the processors that store the

supernode in the upper level. These processors compute the non-zero structure of their

supernode and join it with the structure received from their children nodes. Moreover, the

structure of two nonoverlapping subtrees can be computed concurrently.

Numerical Factorization.

In the third stage of the direct solution method, a parallel numerical Cholesky factorization is

performed (using a parallel multifrontal algorithm (Heath et al. 1991, Liu 1992)) and the

values in L are computed.

Broadly speaking, there are two levels of parallelism in this numerical phase. First, the

processing of the frontal/update matrices associated with two non-overlapping subtrees can

be treated as completely independent tasks. Second, since the amount of computation

involved in the assembly and partial elimination of a frontal matrix can be quite substantial, a

further subdivision of the task into smaller subtasks must be considered.

Here, the supernodal elimination tree is distributed among the processors following the same

subtree-to-subcube strategy mentioned in the symbolic factorisation phase. The frontal matrix

of each supernode is assigned to each processor using the same bitmask based block-cyclic

strategy. With this distribution, the extend-add operations of the algorithm are computed in

parallel and each processor exchanges approximately half of its data with its partner from the

other subcube. The parallel factor operation at each supernode is based on the dense column

Cholesky factorisation.

9

Triangular Systems Solution.

Finally, two triangular systems (first Ly = b´, followed by LTx´ = y) must be solved by using

parallel approaches of forward elimination and backward substitution respectively, where b´

= Pb and x’ = Px. The final solution x is then given by x = PTx´. The parallel version of the

algorithm is again governed by the supernodal elimination tree and it uses the same subtree-

to-subcube mapping and the same two-dimensional distribution of the matrix L as mentioned

in both factorizations. Whereas for the forward elimination the computation proceeds in a

bottom-up fashion, the parallel backward substitution proceeds from the top supernode of the

tree down to the leaf. In both triangular systems, two dimensional pipelined dense algorithms

are used.

Experimental results.

Three water networks (Test 1, 2 and 3) have been used to test the algorithms of hydraulic and

water quality simulation. In order to show the computing time reduction by using HPC

techniques, large water networks are needed. From a hydraulic point of view, these networks

are simple. They are fed by gravity pipes from one or more variable head tanks. Demand

modulation is classified into five previously fixed patterns distributed among all the network

nodes. Table 1 shows some summary information for the networks.

Figure 5 presents the time spent on the hydraulic simulation for test networks 1, 2 and 3,

using both EPANET on a single processor, and HIPERWATER on 1, 2 and 4 processors

(HW-1p, HW-2p and HW-4p, respectively). Due to the design of the parallel algorithm, the

number of processors must be a power of 2.

It can be seen that HIPERWATER on one processor is slightly faster than EPANET. This is

due to the fact that HIPERWATER uses the more efficient MND ordering.

On the other hand, we can appreciate that, while the parallel algorithm shows good

performance for test 2, this is not the case with tests 1 and 3. This is due to the fact that the

solution of the underlying linear systems does not contain sufficient computational

complexity. For test 1, the size of the network (2,500 nodes) accounts for this lack of

complexity. In test 3, although the network is large (32,404 nodes), the small number of pipes

(34,516) with respect to the number of nodes produces a reduced number of non-zero

elements in the coefficient matrix, resulting in a low number of floating-point operations in

10

the system solution. Thus although test 3 is larger than test 2, the computation time (with

EPANET and HIPERWATER-1p) for test 3 is lower than the computation time for test 2.

The difference of complexity of the linear systems corresponding to the test cases can be also

seen by estimating the average solution time per set of equations for a sequential algorithm,

such as HW-1p. For test 1, a total of 102 linear systems are solved in the process of hydraulic

simulation, the total computing time being 9.82 seconds for HW-1p. Thus, each linear system

solution takes less than 0.1 seconds. Test 2 involves the solution of 52 linear systems with a

total computing time of 50.65 seconds, which yields 0.97 seconds per linear system. Finally,

52 linear systems are solved in test 3 within a total computing time of 21.98 seconds, which

gives 0.42 seconds per linear system. When using parallel computation, it is typical to obtain

poorer simulation times when very small computational load is assigned to each processor

and the number of processors is increased, as is the case with tests 1 and 3. This is due to the

fact that the communication overhead rises and the computational benefits are not available.

As a conclusion, we can say that the performance of the parallel hydraulic simulation

algorithm, in terms of execution time, highly depends on the complexity of the underlying

linear equations to be solved. This is not surprising if we take into account that the

parallelization approach for the simulation process is driven mainly by the parallelization of

the linear systems solution. In any case, an interesting outcome is the good performance for

the developed algorithm on a single processor.

Parallel Water Quality Simulation.

Various methods can be used for water quality simulation. EPANET employs the Discrete

Volume Element Method (DVEM) (Rossman et al. 1993b). This method is fast and flexible,

and can perform three different quality simulations: substance concentrations, water age

analysis and percentage of flow from a source.

Each hydraulic time step is divided into smaller DVEM steps. Since the different DVEM

steps have to be performed in a sequential manner, the basic idea to parallelize the quality

simulation is to divide the water network in several parts, one for each processor in the

system. Thus each DVEM step can be performed in parallel. The parallel algorithm for the

hydraulic simulation is based on two tasks: the initial network partitioning, and the parallel

algorithm for a DVEM step. These two points are discussed in the following subsections.

11

Network Partitioning.

A network can be considered as a graph where the vertices are given by the nodes and the

edges of the graph are the pipes and valves of the network. Graph partitioning algorithms can

be used to obtain a partition in which a similar number of elements (nodes) is assigned to

each part and the number of edges (pipes) connecting different parts is minimized (as a

consequence of this, inter-processor communications will be reduced). This initial network

partitioning plays an important role to minimize communications and balance the

computational load.

In particular, the approach used is known as Multilevel Recursive Bisection technique (Bui

and Jones 1993; Hendrickson and Leland 1993). Since the partition of the network is

performed only once and it is not a time-consuming task (for the test networks the time

involved is less than a quarter of second) a sequential version of this algorithm has been

applied.

This algorithm, as other multilevel partitioning algorithms, works in the way shown in Figure

6. First, a coarsening phase takes place, where the size of the graph to be partitioned is

reduced, by collapsing vertices and edges. This phase consists of successive steps, a graph

with a few hundred vertices being eventually obtained. Then, a bisection of this small graph

is carried out. This is called the partitioning phase, in which two subgraphs are obtained, with

a minimum number of edges with nodes situated in different parts, and a similar amount of

vertices in each subgraph. Finally, the uncoarsening phase takes place, where the objective is

to project back the partition to the original graph, by reversing the process of collapsing

vertices and edges. For this purpose, the partition is successively refined. In each finer graph

there are more degrees of freedom, which are used to improve the quality of the partition by

moving elements from one part to the other.

This complete process quickly produces a good partition for the graph. It must be noted that

the graph partitioning determines how the nodes are assigned to each processor, but nothing

is said about the distribution of the pipes. As one would expect, a pipe will belong to the

processor owning their end nodes. If the two end nodes belong to different processors, the

pipe will be arbitrarily assigned to one of them. Actually, this means that a frontier between

network parts crosses nodes and not pipes, although the associated frontier in the graph

crosses edges and not vertices. Whenever a graph frontier crosses an edge, the network

12

frontier is moved to one of the two end nodes of the corresponding pipe. We refer to the

nodes situated in a network frontier as shared nodes.

Parallel DVEM Iterations.

The parallel algorithm for the basic quality time step is largely given by the sequential one

applied in each processor to the corresponding local portion of the network. Of course,

communication operations have to be carried out, since the different network portions are not

independent of one another. In particular, in order to perform the transport of substance into

the shared nodes, each processor has a local instance of these nodes into which the transport

is done, obtaining the local values of mass and volume. Then, a communication operation is

required in which the local contributions of the shared nodes are combined to obtain the final

mass and water volumes, values which are then sent back to the processors sharing the nodes

(this communication operation can be implemented by means of a single MPI function). The

rest of the steps in the sequential DVEM algorithm are not altered.

On the other hand, the process of computing the water quality time step is done by computing

locally the minimum travel time for each network portion, then obtaining the minimum of

these values. Note also that since each pipe is completely owned by a single processor, the

process of recalculating the concentrations of the pipe segments when a new hydraulic time

step is started, is carried out locally in each processor, without communications.

Experimental Results

Time spent on this parallel water quality simulation scheme is shown in Figure 7, where HW-

1p, HW-2p, HW-3p and HW-4p correspond to 1, 2, 3 and 4 processors, respectively. The 3

sample networks introduced earlier have been used. The results are compared with those

obtained with the sequential EPANET water quality simulation. It can be seen that the use of

the parallel algorithm leads to important reductions in computation time. In particular, a

speed-up of up to 3.1 is obtained when 4 processors are used in test 1. In parallel computing

context, speed-up is defined as the ratio of the time taken to solve a problem on a single

processor to the time required to solve the same problem on a parallel computer with several

identical processors

13

Overlapping Hydraulic and Quality Simulations.

This section presents a parallel approach complementary to that presented in previous

sections. Since hydraulic and water quality simulations are frequently performed together, the

idea is to overlap both simulations, so that they take place simultaneously.

In EPANET, hydraulic simulation is completely carried out before water quality simulation

starts. This is shown in Figure 8, where hydraulic and water quality simulations are divided in

several cells, each corresponding to a time step. After solving a time step of the hydraulic

simulation, the results that will be necessary for the water quality simulation (link flows) are

stored in a file. Later, these results are read before solving a time step of the water quality

simulation. The subdivision of each hydraulic time step in smaller water-quality steps will not

be considered in this section. Consequently the term time step will be used always with the

meaning of hydraulic time step.

An alternative parallel computing approach is described in this section, in which one or

several processors are in charge of the hydraulic simulation and one or several other

processors are in charge of the quality simulation. As soon as the first processor group

completes the hydraulic simulation of the first time step, the results (link flows) are sent to

the second processor group. Then, while the first processor group proceeds with the hydraulic

simulation of the next step, the second group can perform the quality simulation of the first

time step (see Figure 9). In this way, both simulations are performed simultaneously, with the

exception of the hydraulic simulation of the first time step and the quality simulation of the

last time step. The result is an important reduction in the execution time, as can be

appreciated by comparing Figure 8 with Figure 9.

The computation time required for the hydraulic simulation of a time step can be

considerably different from (either greater than or less than) that required for the quality

simulation, thus causing one of the processor groups to be idle most of the time. However,

this can be avoided by selecting an adequate number of processors for each simulation,

assigning more processors to the simulation which is observed to be more expensive.

A secondary advantage of this approach is that it is not necessary to write a temporary file

with the hydraulic results, thus time is saved on input/output operations. Only part of this

time is needed for communication between processors.

Figure 10 shows the computing time spent on the complete (hydraulic + water quality)

simulation when this overlapping approach is used. In particular, tests have been made with

14

2, 3 and 4 processors (HW-2p, HW-3p and HW-4p respectively), one being in charge of the

hydraulic simulation and the rest performing the water quality simulation. Time for EPANET

on a single processor is also included. Speed-up reaches 4.56 (with 4 processors on test 2),

showing that this parallel approach is the best choice when both simulations are performed.

Leakage Minimization.

Leakage Model.

Taking into account that permanent leakage is the consequence of defects in the network,

leakage characterization may be based on the equation for a discharge through an orifice

 )(21 ppKq  ,

where
1p stands for pressure upstream of the orifice,

2p is the pressure downstream of the

orifice, and  is an exponent taking the value of 0.5 according to both theory and laboratory

experiments. K is a coefficient that depends on the shape and size of the orifice.

Leaks through defects can be associated with a discharge to atmosphere, so 02 p . The

coefficient  must be determined from experience. A series of experiments to quantify the

effect of pressure on leakage from a water supply network were carried out in (Goodwin,

1980). The experiments were conducted by operating districts with little or no night metered

consumption at varying pressures and recording the net night flows. The results show that 

is larger than 0.5 and takes values around 1.18. This could be justified by the deformation of

defects with pressure.

Consequently, the following expression will be considered for leakage

18.1

jjj pKq  , (4)

where jq represents the leakage flow for a network node and jp is the pressure at the

leakage node. The variable jK represents a leakage coefficient to be determined for each

node, and remains constant for long periods of time.

To obtain the values of the jK , we make use of a method described in (Martínez et al. 1999),

which takes into account the total leakage percentage observed in the whole network for

district metering areas, under well-defined operating conditions.

Taking into account leakage, the process of network analysis for a given time instant is

carried out by the following iterative process:

15

1. Leakage flows are initially assumed to be zero at every node.

2. Temporary network pressures are determined by means of the standard Gradient Method

described earlier.

3. By means of equation (4), an initial approximation of leakage for every node can be

obtained.

4. Leakage flows are then added to real demands and new global consumption values are

obtained.

5. The iterative process ends if leakage values at any node remain constant within a given

desired accuracy, else return to step 2.

Leakage Minimization.

The problem of minimizing leakage over the whole simulation period is approached by

minimizing leakage at a series of different instants, according to a predefined time-step.

Leakage is minimized by controlling pressures with a number of Pressure Reducing Valves

(PRV). We make the assumption that leakage is minimized at each time instant

independently. This independence is not strictly true, since PRV settings at an instant can

alter the flows into/out of tanks, and therefore the network state at subsequent steps.

However, this is a reasonable assumption, taking into account that PRVs usually control

sectors with no tanks.

The problem of leakage minimization is formulated as the minimization of a nonlinear

function subject to nonlinear constraints, or





NH

j

j xqxfmin
1

)()(

 (5)

 subject to: cjj Ijpmxp  ,)(

where:

x: PRV settings, a column vector of NV elements,

NV: Number of PRV valves that we can act on,

NH: Number of non-source nodes in the network,

qj(x): leakage flow at node j, expressed as a function of the PRV settings, given by

18.1)()(xpKxq jjj  ,

Kj: leakage coefficient for node j,

pj(x): pressure at node j, given by pj(x) = Hj(x)-Ej,

16

Hj(x): piezometric head at node j,

Ej: elevation of node j (constant for each node),

pmj: Minimum pressure imposed on node j,

Ic: subset of nodes where a minimum pressure is imposed.

An alternative, more standard way to express pressure constraints is:

 cjjj Ijxppmxg  ,0)()(,

where constraint functions gj(x) are introduced.

Note that the equations corresponding to hydraulic equilibrium do not appear explicitly, but

implicitly through the functions qi(x) and pi(x). In particular, given a value of x, we can

compute the corresponding values Hj(x) and qj(x) by solving the hydraulic analysis problem

(with leakage). Then calculation of f(x) and gj(x) is straightforward.

The optimization problem stated can be solved by many different methods. In this paper we

explore the use of the Sequential Quadratic Programming method (SQP), for the solution of

the leakage minimization problem.

SQP method requires the availability of derivative information (derivatives of the objective

and constraint functions). Thus, the elements that we have to provide for application of the

SQP method are:

 The objective function f(x) and the constraint functions gj(x). As indicated above, this

involves the problem of hydraulic equilibrium.

 Gradients of the previous functions with respect to the decision variables x: f(x) and

gj(x). These gradients are computed by finite differences.

The Application of Sequential Quadratic Programming.

The stated optimization problem is solved by means of the Sequential Quadratic

Programming method (SQP), by making use of a general purpose method implemented in

CFSQP (C Code for Feasible Sequential Quadratic Programming) (Lawrence et al. 1997).

Here, we will outline the basic features of CFSQP, although the interested reader should

consult (Lawrence et al. 1997) and (Panier and Tits, 1993) for further details.

The CFSQP implements a complex and sophisticated algorithm, being able to cope with a

large number of optimization problems, with different kinds of constraints. However, the

complexity of the algorithm reduces considerably when dealing with problems like those

appearing in the context of leakage minimization, i.e.

17

 minimize)(xf

 subject to 0)(xg , (6)

where xn, g:n  p, with g(x) = [g1(x), g2(x), ..., gp(x)]T.

Given a current approximation of the solution kx , and an approximation kH of the Hessian

of the Lagrangian (a quasi-Newton approach with the BFGS formulation (Broyden Flecher

Goldfarb Shanno) can be used for obtaining kH), the standard iteration of the SQP method

consists of first computing a search direction 0d by solving the quadratic program

)(minimize 000

2
1

0 k

T

k

T

d
xfddHd 

 subject to pjxgdxg kj

T

kj  1,0)()(0 , (7)

and then obtain 1kx by performing a line search along direction 0d , with a particular merit

function. This method presents, among others, two main difficulties. First, although the

original constraints are consistent, the linear approximations appearing in the quadratic

programs can easily become inconsistent. Additionally, selecting an adequate merit function

is a difficult issue.

CFSQP circumvents these difficulties by requiring that each approximation kx be feasible,

which eliminates possible inconsistencies in the linearized constraints, and makes the

objective function an appropriate choice as a merit function.

However, feasibility of kx does not guarantee feasibility of the standard SQP direction 0d .

Even when 0d is feasible, the line search may not allow a full step of one to be taken in a

neighborhood of a solution, thus preventing superlinear convergence.

In order to overcome these difficulties,
0d is “tilted”, i.e. replaced by a combination

10)1(ddd   , of 0d and an (essentially arbitrary) feasible descent direction 1d .

Additionally, search direction is also “bent”, which means that the line search will be carried

out along an arc dttdx
~2 . The purpose of d

~
 is to allow a full step of one to be taken near

a solution.

18

Parallel Algorithm for Leakage Minimization.

To parallelize the optimization process, an alternative approach takes advantage of the time-

step subproblems being independent of each other. Thus each time step is assigned to a

different processor, leading to a simple yet efficient coarse-grain parallel implementation.

This implies that tank levels should not affect the optimal PRV settings, which happens when

the area to be controlled by the valves does not contain tanks, and is connected with the rest

of the network only by means of one or more active PRVs.

The approach is very suitable to a master-slave paradigm. The master is a process whose only

task is to distribute the time-step subproblems among the different slave processes. The

master has a set of subproblems to be solved, (e.g. if the time-step size is 1 hour and the

simulation duration is 24 hours, there would be 25 subproblems corresponding to hours 0 to

24). It initially gives one sub-problem to each slave. As soon as a slave process completes the

solution of its sub-problem, it sends a message informing the master of the value of the

solution. Upon receipt of this message, the master selects a new sub-problem from the set and

gives it to the slave process. This scheme of dynamic allocation of sub-problems, enables a

good load balance while not requiring a sophisticated implementation.

Sending a subproblem from the master to a slave involves only the communication of an

integer number (indicating the time-step of the subproblem). Other information such as

network topology, roughness coefficients, demand patterns, control rules, etc. is already

known to the slaves, as it has been sent to them in a prior initialization stage. Messages from

a slave to the master, returning information about the solution of a sub-problem, are also

limited, as they contain only the PRV settings and information concerning the success of the

optimisation process.

Experimental Results

The leakage reduction process described above has been applied to two water networks (see

Table 2). Test network 5 contains four tanks. The level of 3 tanks is fixed to keep the

distribution of the injected flow while the last varies during the simulation. Two interacting

PRVs control the pressures and consequently the leakage flow.

Test network 4 is controlled by three PRVs which allow a combined or independent

management. Both possibilities have been analyzed, results indicating that an independent

19

management is better from the point of view of leakage reduction, and its results are reported

below.

Each of the PRVs in network 4 is placed at the supply point of a corresponding network

sector. Initially, we consider the case in which the PRVs are open (thus producing no

headloss), and we assume that the percentage of leakage volume with respect to the injected

volume in the network is 12%, over a simulation period of 24 hours. This initial leakage

percentage is fixed arbitrarily, only to show the possibilities offered by the leakage reduction

method. Using the leakage simulation process described earlier, the spatial leakage

distribution shown in Figure 11 (at 0:00 hrs) is obtained.

Next, the best settings for the PRVs at each hour are obtained by means of the leakage

minimization method. The result is that leakage is reduced to a value of 4.71%. Figure 12

shows the new leakage distribution at 0:00 hrs.

Table 3 shows leakage rates obtained with and without the application of the minimization

algorithm, for tests 4 and 5.

On the other hand, time spent on the solution of the leakage minimization problem for test

networks 4 and 5 is analyzed in Figure 13, where execution time of the parallel algorithm

with different number of processors (from 1 to 5) is shown. A speed-up of 5.0 is obtained

with 5 processors for test 4.

Conclusions.

This paper shows the application of HPC techniques in water network hydraulic and water

quality simulation and leakage reduction.

The application of parallel computing in the water-network computational processes can take

into account the complexity of optimization problems, the growing level of detail of network

models related to the use of GIS, or the long simulations required for water-quality problems.

The performance of the parallel hydraulic simulation algorithm, in terms of execution time, is

highly dependent on the complexity of the underlying systems of linear equations. An

interesting outcome is that the Multilevel Nested Dissection ordering leads to reduced

computation time even for sequential computations.

Performance of the HIPERWATER approach compared to the EPANET water quality

simulation is very satisfactory. This is especially important if we take into account that it is

20

not unusual for the water quality simulations to require a long simulation period to reach an

equilibrium situation.

Finally, parallel algorithms developed for hydraulic and quality simulations have been

successfully combined, carrying out both simulations simultaneously. This approach provides

good results even for smaller networks.

The methodology presented for the determination of optimal pressure reducing valve settings

minimizing leakage requires considerable computational power, which can be provided by

means of the parallel algorithm described in this paper. Results are presented for a sample

water network where leakage losses reduce importantly with the application of the leakage

minimization algorithm described in the paper.

From a business and industrial point of view, parallel processing can help water companies

increase their productivity by reducing the time to analyse networks. A further benefit is the

reduction of water leakage through the optimisation of network operating conditions.

Acknowledgments.

The authors wish to acknowledge the financial support provided by the ESPRIT programme

of the European Commission (HIPERWATER, ESPRIT project 24003), by the CICYT

TIC96-1062-C03-01 project, and also by research staff training grants from the Spanish

Government and the Autonomous Government of the Comunidad Valenciana, in Spain.

APPENDIX. References.

BUI, T., and JONES, C. (1993). “A Heuristic for Reducing Fill in Sparse Matrix Factorisation”, 6th SIAM Conf.

Parallel Processing for Scientific Computing, 711-718.

DONGARRA, J., SNIR, M., OTTO, S., HUSS-LEDERMAN, S., and WALKER, D. (1996). MPI: The Complete

Reference, The MIT Press Cambridge.

GOODWIN, S. J., (1980). "The Results of the Experimental Program on Leakage and Leakage Control". Tech.

Rep. TR 145, Water Research Centre.

HAMAM, Y.M. and BRAMELLER, A. (1971). “Hybrid Method for the solution of Piping Networks” Proc. IEE,

Vol. 118, N. 11, pp. 1607-1612.

HEATH, M. T., NG, E. G.-Y., and PEYTON, B. W. (1991). “Parallel Algorithms for Sparse Linear Systems”,

SIAM Review, 33: 420-460.

HENDRICKSON B., and LELAND R. (1993). “A Multilevel Algorithm for Partitioning Graphs”. Technical Report

SAND93-1301, Sandia National Laboratories.

KUMAR, V., GRAMA, A., GUPTA, A., and KARYPIS, G. (1994). Introduction to Parallel Computing: Design and

Analysis of Algorithms. Benjamin/Cummings, Redwood City, CA.

21

LAWRENCE, C. T., ZHOU, J. L., and TITS, A. L. (1997). “User's Guide for CFSQP Version 2.5: A C Code for

Solving (Large Scale) Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates

Satisfying All Inequality Constraints”, Technical Report TR-94-16r1, Institute for Systems Research,

University of Maryland.

LIU, J. W. H. (1992). “The Multifrontal Method for Sparse Matrix Solution: Theory and Practice”, SIAM

Review, vol. 34, no.1.

MARTÍNEZ, F., CONEJOS, P., and VERCHER, J. (1999). “Development of an Integrated Model for Water

Distribution Systems Considering Both Distributed Leakage and Pressure-Dependent Demands”. 26th Ann.

Water Resources Planning and Management Conf., ASCE, Arizona.

PALMA J., DONGARRA J., and HERNÁNDEZ. V. (Eds.) (1998). Vector and Parallel Processing - VECPAR’98.

Third Int. Conference, Porto. Lecture Notes in Computer Science. Vol 1573. Springer, Berlin.

PANIER, E.R., TITS, A.L. (1993). "On Combining Feasibility, Descent and Superlinear Convergence in Inequality

Constrained Optimization", Math. Programming 59, pp. 261-276.

ROSSMAN, L. A. (1993a). EPANET User’s Manual, US Environmental Protection Agency.

ROSSMAN, L. A., BOULOS, P. F., and ALTMAN, T. (1993b). “Discrete Volume-Element Method for Network

Water-Quality Models”, J. of Water Resources Planning and Management, ASCE, 119(5), 505-517.

SALGADO, R., TODINI, E., and O’CONNELL P. E. (1987). “Comparison of the Gradient Method with some

Traditional Methods for the Analysis of Water Supply Distribution Networks”. Proc. Int. Conf. Computer

Applications for Water Supply Distribution, Leicester Polytechnic, UK.

SALGADO, R. (1992). “Comparison between Linear Solvers for Sparse Systems in Steady State Pipe Network

Analysis with the Gradient Method”. Numerical Methods in Engineering and Applied Sciences, CIMNE,

297-306.

TODINI, E. (1979). “Un Metodo del Gradiente per la Verifica delle Reti Idrauliche”, Bolletino degli Ingegneri

della Toscana, No. 11, 11-14.

TODINI, E., and PILATI, S. (1987). “A Gradient Method for the Solution of Looped Pipe Networks”, Proc. Int.

Conf. Computer Applications for Water Supply Distribution, Leicester Polytechnic, UK.

Table 1: Water Networks Used for Hydraulic and Water Quality Simulation.

 # pipes # nodes # tanks

Test 1 4,901 2,501 1

Test 2 19,801 10,001 1

Test 3 34,516 32,404 4

Table 2: Water Networks Used for Leakage Minimization.

 # pipes # nodes # tanks # PRVs

Test 4 1,345 1,241 1 3

Test 5 126 66 4 2

Table 3: Leakage Rates of Different Water Networks (Test 4 and 5) Obtained with/without

Minimization.

 Without minimization With minimization

Test 4 12% 4.71%

Test 5 12% 8.82%

Cost

Performance

Figure 1: Cost versus performance curve.

Loop A

Loop B

Initialization

Process

T. Current < T. Simul.

Update

Demands

Compute

Coefficients

Update Flows

Update Heads

(Linear System

Solver)

Write Results

Convergence

Read Network

End

Yes

Yes

No

No

Adjust Tanks,

Compute Next

Time Step

Update status

of valves and

pumps

Figure 2: Flow chart for hydraulic simulation.

Figure 3: Elimination tree of a sparse symmetric matrix.

Figure 4: Non-zero structure of a coefficient matrix.

0

20

40

60

80

100

120

Test 1 Test 2 Test 3

EPANET-1p

HW-1p

HW-2p

HW-4p

Figure 5: Hydraulic simulation time (in seconds).

Partitioning Phase

Coarsening Phase Uncoarsening Phase

Figure 6: Multilevel partitioning algorithms.

0

10

20

30

40

50

60

70

80

Test 1 Test 2 Test 3

EPANET-1p

HW-1p

HW-2p

HW-3p

HW-4p

Figure 7: Water quality simulation time (in seconds).

Hyd. simulation Quality simulation

File

Computation time

     

Figure 8: Hydraulic and water quality simulations in EPANET.

Hyd. simulation

Quality simulation

Computation time

  

  

Communication

Figure 9: Overlapped hydraulic and water quality simulations in HIPERWATER.

0

20

40

60

80

100

120

140

Test 1 Test 2 Test 3

EPANET-1p

HW-2p

HW-3p

HW-4p

Figure 10: Execution times (in seconds) for overlapped simulations.

Figure 11: Initial leakage distribution (liters/sec) in test 4, at 0:00 hours.

Figure 12: Final leakage distribution (liters/sec) in test 4 (at 0:00 hours).

0.00

100.00

200.00

300.00

400.00

500.00

Test 4

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Test 5

HW-1p

HW-2p

HW-3p

HW-4p

HW-5p

Figure 13: Leakage minimization time (in seconds).

