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Abstract 

In the last years the research activities on biomass valorisation (mainly residues from urban 

and agricultural activities) have been intensified. Biomass is an abundant resource for energy 

generation and its extensive utilization may make possible to fulfil the goals determined by 

the national and international regulations about renewable sources and greenhouse gas 

emissions. In this work, simulations are carried out using ASPEN PLUS for an integrated 

process to produce liquid fuels from biomass in a self-sustainable energetic regime (thermal 

and electric) and several process factors have been considered. The process initially 

combines a primary pyrolysis reactor associated to a (char + gases) gasification unit in order 

to optimize the biomass use, followed by downstream processes to enhance the quality of 

final liquid fuel. The factors studied were the composition of the biomass, the primary (or 

pyrolytic) liquid yield, the composition of the liquid fuel, as well as the amount of the 

oxidant and steam used in the primary char-gasifier reactor. The use of a simplified model 

for liquid fuel composition let us to stablish a range of operational conditions in which both 

thermal and electric balance of the process are favourable. In this sense, the maximum 

extraction of liquid fuel was found around 20-25% by working at 10 – 25% of O2 (as pure 

oxygen or air) and 15 – 45% of steam in the gasifier and fulfilling self-sustainable process 

condition, while biomass should possess C/O weight ratios ≥ 1. 
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1. INTRODUCTION 

In the last years, the interest of viable alternative technologies for fuels and chemicals 

production other than petroleum refining has raised. Nowadays, the volatile price of petro-

barrel together with the increase in the energy demand, the future oil resources depletion and 

the concern about the greenhouse gases emission due to global climate change have motivated 

the intensification in research efforts in clean and eco-friendly alternatives. New regulations 

have set the goal of utilizing transportation fuels with 10% from renewable sources by 2020 

[1]. Furthermore, the actual society is increasing the waste generation that is driving to 

governments to promote more efficient processes to reduce the amount of residues, as well as 

the reuse of the generated waste and consequently reduce greenhouse gas emissions. For this 

reason, the interest in the thermochemical processes to valorise waste products has increased 

in the last years. 

Different biomasses, derived from municipal or agrarian wastes could be used as renewable 

carbon sources which are not exploited extensively nowadays. Among others, biomass 

residues employed as raw materials could include: i) agricultural wastes (i.e. crops, energy 

crops, trees, etc.), ii) farm wastes (i.e. manure, sewage), (iii) forest and wood wastes, (iv) 

industrial residues from wood (and paper) industries, and v) municipal solid residues (i.e. 

organic without glass and metals, plastic, food processing residues, etc.). Although some of 

the later residues could be combined for further valorisation, they are treated separately in 

most of the cases, mainly due to their specific requirements (i.e. recollection and effective 

management, type of pre-treatment and further processing),  

Technologies used for biomass and wastes conversion/transformation comprise physical, 

biological, and thermo-chemical methods, the latter being divided in combustion (or 

incineration), pyrolysis and gasification. While combustion/incineration process was largely 

preferred for the treatment and elimination of municipal solid wastes (MSWs) in the past, 

gasification (new gasifiers and fluidized bed reactors) and pyrolysis (fast pyrolysis and 
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catalytic fast pyrolysis) technologies have advanced in the last years appearing as an adequate 

solution mainly for the transformation of lignocellulosic-type biomass residues. [2] [3] [4-6]  

It is widely accepted that biomass, mainly lignocellulosic-type biomass, can be processed in an 

integrated biorefinery, in a similar manner as petroleum in conventional refineries to produce 

fuels and chemicals [7] [8, 9] [10, 11]. Thermochemical conversion of biomass via 

gasification and pyrolysis technologies can break down the chemical bonds in biomass 

polymers to form intermediate gases, solids, and mainly liquids molecules that can be refined 

into a variety of valuable products (fuels and commodities) through different downstream 

processes. In principle, these conversion processes are characterized by their high flexibility, 

i.e. a relatively broad range of biomass compositions can be processed. However, these units 

are highly energy-demanding with respect to conventional petroleum-derived fuels. In 

addition, impurities present in some biomass fractions require special operation and/or unit 

design [12]. For these reasons and in order to optimize the yield of gases and liquids products, 

the studies of biomass transformation and valorisation through thermochemical routes are 

continuously growing during the last years [13-29].  

Biomass is believed to be one of the future H2 sources [30], and thermo-chemical processing 

of biomass is one of the most attractive and effective options to produce H2. In this sense, the 

combination of slow pyrolysis with steam gasification to produce H2 is mainly restricted by 

the temperatures of the process and the biomass used. The temperature of the pyrolyzer 

determines the nature of products formed whereas the gasification temperature determines the 

H2 yield (higher H2 production at high gasification temperatures). In addition, it is necessary 

to consider that the pyrolysis product composition strongly depends on the nature of the 

starting biomass [15], which will limit the final H2 productivity achieved. The H2 can also be 

produced in high temperatures gasification units using heterogeneous catalysts and further 

treatments in water gas shift reactors [30, 31]. 

Thermodynamic simulations of these processes allow evaluating the viability of this kind of 

processes and characterizing the effects of the different parameters of the plant. ASPEN PLUS 
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has been used to model different thermochemical processes and different biomass types. 

Thermodynamic simulations have addressed H2 production from biomass using different 

separation units (water-gas-shift reactors with pressure swing absorbers) [16]. A kinetic study 

of the biomass gasification revealed that increasing the residence time in the gasification unit 

enables to reach high CO and H2 yields [17]. In several ASPEN PLUS studies on pyrolysis 

process [19-21, 32, 33] and gasification process [22-25], the model is developed for one type 

of biomass or a few of biomass types. There are some studies that incorporate a solid oxide 

fuel cell (SOFC) system to directly produce electricity from biomass [26-29]. Biomass 

gasification and PEMFC system can be integrated to produce power with high efficiency. [26] 

Similar positive effects have been reported when ceramic membrane reactors were integrated 

in the process [34]. Among the different technologies for separation and purification of H2, 

membrane technologies are one of the most promising for substituting conventional separation 

units [35-39], due to the lower energy consumption of the separation [40]. 

 

All in all, the envisaged strategy for biomass valorisation in biorefineries of the future would 

involve thermochemical transformation of residual biomass to render liquid fuels in 

combination with co-production of chemicals (e.g. H2 and O2 purified gases) as plant 

commodities. In addition, CO2 capture could be directly implemented in these new plants.[41] 

This concept requires energy co-generation in the plant to attain optimal energy efficiency. 

Following this idea, the use of biomass to obtain liquid fuels using an integrated process in a 

self-sustainable plant is analysed in the present work. Different biomass compositions are 

supplied to a hybrid process of primary pyrolysis combined with (char + gases) gasification to 

produce a precursor of the liquid fuel (hereinafter primary liquid) together with optimized 

gaseous effluent containing H2. This primary liquid is then refined via a hydrotreating 

(hydrogenation / hydro-deoxygenation) downstream process using part of the H2 formed in the 

char-gasifier, which was previously separated/purified in a membrane reactor unit. The 

ultimate aims of the study are to maximize the liquid fuel obtained (with a goal of a 20 – 25% 
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of yield for the primary liquid) and the energetic viability of the integrated approach, 

considering separate balances of electric energy and thermal energy. 

 

2. METHODS 

2.1 General system description 

Figure 1 shows an outline of the process modelled. Biomass previously dehydrated is 

subjected to a pyrolysis unit to produce the liquid fractions from the biomass. The volatile and 

char fractions are gasified in order to maximize the H2 yield to be used in the upgrading of the 

primary liquid. A membrane reactor is used to reform hydrocarbon products and separate the 

H2 fraction of the rest of the gases. The primary liquid is then hydrogenated to obtain the final 

liquid fuel (hereinafter refined liquid fuel). The tail gas is revalorized with a gas turbine. 

2.1.1 Biomass composition: 

Most biomass types are made of lignocellulosic materials comprising cellulose, hemicellulose 

and lignin [31]. Due to the complexity in defining a generic biomass composition [42], most 

of the previous studies of biomass processing are focused in reaching efficient process for a 

specific biomass (mainly woods from fruit trees) [19, 43, 44]. The present study takes into 

account a broad range of biomass compositions, which represents from urban wastes until 

agrarian biomass (trees) [45-49]. (Table 1). Biomass 1 is a generic biomass while biomasses 2 

and 3 higher C contents (+5% per each biomass) and the O content decreases. Biomasses 4 

and 5 represent extreme compositions: biomass 4 has a composition with high O content and 

low C content while biomass 5 presents a high C/O ratio, mimicking lignin compositions. The 

study considers 100kg/h of biomass as feed for all the cases. 

2.1.2 Pyrolysis unit 

The primary liquid yield studied was in the range of 10 – 30 wt. % of the initial biomass [50]. 

The 90 wt. % and 10 wt. % of the remainder biomass becomes in gas and char fractions, 

respectively. The pyrolysis bio-oil (or primary liquid) is a complex mixture of several groups 
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of compounds such as, aldehydes, alcohols, ketones, sugars, furans and furan derivatives, 

syringols, guaiacols, catechols, and other aromatic compounds, etc [51]. To simplify the 

problem, pyrolysis bio-oil is considered as a single component whereas the refinement 

consists of a full hydrogenation step of this compound. For this study, four primary liquids 

were studied: methylnaphthalene, 4-hydroxybenzyl alcohol (commonly named as 

gastrodigenin), furfural and lactic acid. The pyrolyzer operates at 500ºC and 1 bar employing 

1 kg of sweep gas (CO2) per kg of wet biomass. The stream is then cooled to 175ºC, below the 

boiling point of primary liquids (e.g. 240-243ºC for the methyl-naphthalene and 250ºC for the 

4-hydroxybenzyl alcohol). 

2.1.3 Char-gasification unit 

The inlet streams in the gasifier are the char and gas fractions from pyrolysis as well as steam 

and oxidant gas streams. The gasification takes place at 700ºC and 1 bar. Conventional 

gasifiers use around 25% of the stoichiometric oxidant with respect to total oxidation. O2 and 

air were considered as oxidants. For the processing of the different biomasses, the following 

ranges of oxidation conditions were studied: 5 – 30 kg O2 per each 100 kg of biomass and 40 

– 110 kg air per each 100 kg of biomass. O2 was studied in order to reduce the heat used to 

warm up the reactor. Steam was introduced in the gasifier to shift the equilibrium of the water 

shift reaction to produce H2. Typically, the amount of steam injected is proportional to water 

content in the wet biomass. Here, the steam ratio studied is 15 – 45 kg steam per each 100 kg 

of biomass. 

2.1.4 Membrane reactor 

The H2 necessary for further downstream processing of liquids in the plant is produced and 

separated in a catalytic membrane reactor unit based on selective palladium membranes. In the 

reactor, as the H2 is extracted through the membrane, the equilibrium of the water gas shift 

(WGS) reaction can be shifted until total conversion of CO and CH4 into CO2 (Figure 3a). 

The membrane reactor operates at 525ºC and 1bar. 



7 
 

2.1.5 Hydrogenation reactor 

Aromatic and phenolic type compounds hydrogenation (and/or hydrodeoxygenation) is 

typically carried out over catalyst based on Pt, Pd, Pt-Pd supported on Al2O3 at temperatures 

200 – 450 ºC and pressures 50 – 100 bar [52-59]. The inlet streams of the reactor are the 

primary liquid and the extracted H2 and are previously pressurized, i.e. at 50 and 70 bar. The 

reaction takes place at 400ºC and is set as the temperature for the outlet products. The 

reactions for the hydrogenation are r.1, r.2, r.3 and r.4, respectively: 

 (r. 1) 

 (r. 2) 

 (r. 3) 

 (r. 4) 

Methylnaphthalene and 4-hydroxybenzyl alcohol molecules have the same stoichiometric H2 

demand. Therefore, the molar ratio between the primary liquid obtained and H2 generated in 

the gasifier must be higher than these stoichiometric values for each type of primary liquid. 

2.1.6 Treatment of the final gases 

The final gas obtained is a mixture of CO, CO2, CH4, H2 and H2O. A double-step gas turbine 

was considered to treat it. The pressure ratio of the turbine was set at 20 with a mass flow rate 

for the air of the turbine of 25% of the excess of the stoichiometric air.  

The final gas at the outlet of the last turbine is still at high temperature. The heat of this stream 

can be utilized to keep the temperature in the first biomass reactors (pyrolyzer and gasifier 

units). 

2.2 Parameter variations 
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A parametric study was made to evaluate the effect of several factors in the overall process 

and choose the optimal value for each parameter with the aim to maximize the yield of refined 

liquid fuel fulfilling the energy self-sustainability condition. A discretized description of the 

parametric study is displayed in Table 2. 

In order to evaluate the effect of employing different composition of biomass (in their 

conventional values, i.e. biomass 1 – 3), different extraction of primary liquid from the 

pyrolyzer, and different amounts of steam and oxidant in the gasifier, an initial parametric 

study was done. In this initial parametric study, methyl-naphthalene was considered as 

primary liquid and the pressure of the refining unit was set at 50 bar. 

With the results of the initial parametric study, the advanced studies evaluate the overall 

process when the pressure of the refining unit is increased (i), extreme biomass compositions 

were used (ii) and the composition of the primary liquid is changed (iii). 

2.2.1 Hydrogen extraction for the refining 

Hydrogen demand for the refining depends on the primary liquid yield in order to complete its 

upgrading, considering the reactions r.1 – r.4. For this study, the stoichiometric point for each 

reaction relates to the amount of hydrogen required for complete liquid hydrogenation (100% 

conversion). The molar ratio between the hydrogen and primary liquid of the respective inlets 

to the refining unit was evaluated and compared with the stoichiometric point. 

2.2.2 Searching of the working operation conditions with energy-balanced process 

This study aims to determine the maximum amount of refined liquid fuel that can be obtained 

in self-sustainable process. Considering the initial parametric study, the primary liquid yield is 

decreased until reaching the working operation conditions that enable the energy-balanced 

process (both heat and electrical) for each biomass, the complete upgrading of the liquid fuel 

as a function of the kind of oxidant considered. 

2.3 Aspen modelling 
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The study was developed in stationary conditions employing software ASPEN PLUS V8.0. 

The diagram of the overall process in the Aspen is shown in the Figure S1 and Table S1 

(Supporting Information). 

The following assumptions were considered for the simulation: 

• The overall process is in steady state and each reactor is operated in isothermal 

conditions (except the gas turbine which works in adiabatic conditions). 

• Volatile compounds formation from biomass takes place instantaneously and the main 

volatile products consist of H2, CH4, CO, CO2 and H2O. 

• All the gases are uniformly distributed within the reactor. 

• The fluid dynamic equations in the reactors are not taken into account. 

• The char gasification reactions reach chemical equilibrium. 

• Reactions of sulphur and nitrogen type compounds are not taken into consideration. 

The pyrolyzer was modelled using an equivalent serial combination comprising two 

stoichiometric reactors and a Gibbs reactor (Figure 2). The first stoichiometric reactor (P-1) 

converts dehydrated biomass in the primary liquid (e.g. methylnaphthalene or gastrodigenin). 

The second stoichiometric reactor (P-2) converts 90% of the remaining biomass in gas. The 

10% balance represents the char fraction. Finally, a Gibbs reactor is introduced in series to 

balance the gases produced (P-3). The char fraction and the primary liquid are considered as 

inert components in the last reactor. The stream is then cooled to 175ºC, below the boiling 

point of primary liquids (e.g. 240-243ºC for the methyl-naphthalene and 250ºC for the 4-

hydroxybenzyl alcohol). 

The gasifier was modelled considering a stoichiometric reactor and a Gibbs reactor in series. 

The stoichiometric reactor gasifies the char fraction while the Gibbs reactor balances all the 

gases at 700ºC. 

The membrane reactor was modelled using single units in series: (1) a first stoichiometric 

reactor (RMEMB1), to shift WGS equilibrium and maximize H2 yield; (2) an ideal separator 
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(RMEMB2), to extract the H2 from the reaction chamber; (3) a Gibbs reactor (RMEMB3), to 

balance the final gases in the reactor chamber at the temperature of the reactor; and (4) a 

vacuum pump (VACUUM) modelled with a multistep gas compressor with the vacuum 

pressure (100 mbar) in the first step and with the gas pressure in the second step (Figure 3b). 

The refining unit is modelled using a stoichiometric reactor comprising reactions r.1 - r.4. The 

modelled hydrogenation island entails therefore a system of pumps for the liquid stream and 

compressors for H2 stream (Figure 4a). 

The turbine was modelled with a compressed-air inlet. The compressor of the turbine is 

connected with the high-pressure turbine while the low-pressure turbine produces the electrical 

energy. In the model, the pressurized streams (air and gas) are the inlets of an adiabatic reactor 

and, finally, the combustion gas obtained is introduced in the turbine units. Figure 5 presents 

the overall model of this sub-process. The final heat exchange of the tail gases is modelled 

including a last heat exchanger and the final temperature of the exhaust gases is 300ºC. 

3. MODELLING RESULTS 

3.1 Influence of the primary liquid yield in the pyrolyzer. 

The production of the primary liquid in the pyrolysis unit is a critical factor because it 

determines the amount of carbon (as CO, CO2 or CH4) and H2 in downstream gases. In fact, 

the mass flow and particular composition of the gasification products limits the H2 yield in the 

membrane reactor, which is later used in the liquid hydro-treatment. As a consequence, a 

proper balance between the primary liquid yield in the pyrolysis unit and the H2 yield in the 

membrane reactor should be reached. Considering the complete upgrading of the liquid, the 

primary liquid yield determines the yield of the final refined fuel following a linear 

relationship (Figure 4b). 

Figure 6 presents the results of the molar ratio between the H2 obtained in the membrane 

reactor as a function of the primary liquid from pyrolysis. These simulations results include 

the parametric study presented in Table 2, i.e., variation of biomass composition, primary 
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liquid yield, the oxidant and the steam ratios. Note that by considering the stoichiometry of 

hydrogenation step (reaction r.1), H2/primary liquid molar ratios higher than 5 are needed to 

achieve the full conversion of primary liquids. The modelling results summarized in Figure 6 

show that higher refined liquid yields are produced with decreasing H2/liquid ratios up to the 

stoichiometric limit. As mentioned, the yield of primary liquid restricts the subsequent H2 

production, i.e. the higher the liquid yield the lower the yield of H2/CO/CH4 in the gasifier. 

The treatment of biomass with high C/O ratios (less oxidized) produces a higher H2 yield. 

Finally, regardless of the energy balances and taking into account the molar balance between 

H2 and primary liquid, a maximum of 25 kg of primary liquid per each 100kg of biomass can 

be attained for the biomasses 2 and 3 while, for biomass 1, the maximum yield is lower, i.e. 20 

kg of primary liquid per each 100kg of biomass. 

3.2 Energy balance 

The main aim of the study is to demonstrate that the plant can work in a self-sustainable 

regime. For this purpose, the heat and electrical balance of the plant were analysed. The heat 

balances include the heat from heat exchanger (at outlet of gasifier and tail gas) and pyrolysis 

and gasification units whereas the electrical power comprises the demand/generation from 

vacuum, liquid pump, compression units and turbines. In the calculations of both balances, 

negative values represent cases with energy surplus (preferable for a self-sustainable process) 

whereas positive values represent cases where more energy consumption/demand of the 

overall process exceeds the generation.  

Figure 7 shows the heat balance in MJ per each 100 kg of biomass treated for three different 

biomass compositions (biomass 1, 2 and 3, s. Table 1). The pyrolyzer is an endothermic unit 

due to the heat needed to warm up and to convert the biomass. The total heat balance in the 

gasifier unit depends on the amount of air (or oxygen) as it determines the extent of full 

oxidation reactions in the unit. Increasing the primary liquid yield in the pyrolyzer leads to 

lower yields of non-oxidized compounds in the gas streams (CH4, CO and H2) and, therefore, 

less heat is generated in the pyrolyzer though oxidation reactions. As the C/O ratio of the 
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biomass is higher, the overall process is less endothermic since the starting biomass is less 

oxidized. In addition, the difference between the use of air and oxygen can be observed in the 

heat balances shown in Figure 7a and Figure 7b, respectively. As expected, when the plant 

works with oxygen as oxidant in the gasifier unit, the thermal balance is more exothermic than 

when the oxidant is air. 

Figure 8 shows the electrical balance of the system in terms of the electrical power in kWh per 

100 kg of biomass as a function of the yield of primary liquid in the pyrolysis. The electrical 

balance includes the energy generated in the turbine and the power demand of compressors 

and pumps. In the gas turbine (see Fig. 5) cycle (Brayton cycle), energy is generated thanks to 

the expansion reached though increment of temperature due to the internal adiabatic 

combustion. Therefore, the best scenarios for the electrical balance are those in which high 

amounts of oxidizable compounds (H2, CH4, CO, etc.) are available at the inlet of the turbine. 

For that reason, when the primary pyrolysis liquid yield is lower or when starting biomasses 

present higher C/O ratios (biomasses 2 and 3, Table 1), the electrical balance is more 

favourable. Although the electrical balances are similar irrespective to the type of oxidant used 

in the gasifier, the use of oxygen leads to slightly better results. 

3.3 Working operation conditions for energy-balanced process 

Figure 9 describes the search space taken into account to identify the working operation 

conditions for energy-balanced process for the biomass 2. The 2D mappings show the 

outcome parameters (ratio of H2/primary liquid, electrical and heat balance) as a function of 

two input variables, i.e. the amount of oxygen and steam used, both expressed in kg per 100 

kg of biomass. These mappings are prepared for two different yields of primary liquid, i.e., 20 

and 25%, arranged in Figure 9a-c and Figure 9d-f, respectively. In order to reach a self-

sustainable regime in the plant, the following three conditions must be satisfied 

simultaneously (indicated as green areas in Figure 9): (1) the molar ratio of H2/primary liquid 

should be higher than 5 to achieve the full hydrogenation (refining) of the primary liquid 

(reaction r.1); and (2-3) the energy balance (thermal and electric) should reach negative 
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values, which indicate energy surplus while positive values represent energy deficit. As can be 

seen in Fig. 9a, for a primary liquid yield of 25% there is an extended range of zones fulfilling 

the requirement of the H2/primary liquid ratio > 5 but these preferred zones are narrower in 

the case of both electrical power and heat (negative) balances (Figs. 9b-c, respectively). In 

fact, there is not overlapping of the optimal zones (red zones) for the three factors for primary 

liquid yield of 25%. However, by decreasing the primary liquid yield to 20% (Fig. 9d-f), these 

zones with negative energy balance are enlarged, which is principally caused by the lower 

oxygen/biomass ratio. The lower demanded liquid yield allows a broader global optimal zone 

to be defined, where the three conditions are simultaneous fulfilled. Combining the three 

optimal zones for each condition (H2/liquid ratio, heat and electrical balance) makes it 

possible to identify the global operation window for a self-sustainable regime (Figure 10). 

Considering three different biomass compositions (1, 2 and 3) and two types of oxidants 

(oxygen and air), Table 3 presents the maximal primary liquid yields achieved for each 

biomass and oxidant where all the objectives are simultaneously satisfied. In a similar way as 

in Figure 10, Figure 11 presents the conditions where the three goals are satisfied at the 

specific primary liquid yield determined in the Table 3 for each biomass and oxidant. As can 

be seen, the primary liquid yield rises with increasing C/O ratio in the starting biomass in a 

self-sustainable process. Indeed, higher C/O ratios implies that the initial material is less 

oxidized and, consequently, more energy is available to fulfil thermal and/or electric energy 

balances. On the other hand, using oxygen as oxidant allows reaching higher liquid yields in 

self-sustainable regime due to more favourable thermal balance. 

3.3.1 Overall system analysis 

Table 4 shows heat and electrical power balances in detail for the overall process calculated 

taking into account the biomass 2 with a primary liquid yield of 20%, 80 kg air in the gasifier 

per each 100kg biomass and 30 kg steam in the gasifier per each 100kg biomass. Both the heat 

(-47.27 MJ/100kg biomass) and the electrical power (-13.52 kWh/100kg biomass) balances 

offer the required negative values. Thermal balance data show that the overall process needs to 
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use the thermal energy of the tail gases at the turbine outlet to warm up the pyrolyzer and 

gasifier units. The electric demand is satisfied by the gas turbine. These results are similar to 

the results reported in previous works [22]. 

The composition and molar flows of all the different streams of the process calculated for the 

same conditions described above are listed in Table S2 (Supporting Information). The outlet of 

the pyrolysis unit is a partially-oxidized gas where the CO and CH4 are the principal energy-

bearing gases. The outlet stream of the gasifier shows that CH4 has been oxidized in the 

gasifier increasing the CO, CO2 and H2 amounts. The membrane reactor outlet stream shows 

that steam is efficiently utilized in the water shift reaction to obtain high purity H2. The outlet 

stream of the hydrogenation unit shows a high excess of H2 in this unit. Finally, the tail gases 

of the turbine consist of the steam, CO2 and depleted air with traces of CO. 

This study is aimed to identify the operation windows that enable to reach energy-balanced 

regime at the highest liquid yield. However, this operation regime may require complex heat 

exchange systems to close the energy balances. However, setting lower yields enables to 

enlarge the operation windows fulfilling energy-balanced operation and this can be favourable 

from the point of view of both plant operability and flexibility. 

3.4 Advanced study 

After analysing the effects of the different factors in the primary liquid yield and the 

corresponding energy balances, further analysis were made. The other extreme biomass 

compositions were comparatively studied to observe differences in the behaviour of the plant. 

Finally, the effect of changing the primary liquid composition allows obtaining a more 

realistic estimation about the plant operation using real primary liquid or bio-oil (mixture of 

different compounds whose composition depends on the pyrolysis conditions, as explained in 

methods). All these aspects will be treated and discussed in the following sections. 

3.4.1 Study of the hydrogenation reactor 
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The hydrogenation step is one of the key points in the overall process allowing transforming 

the primary liquid obtained from pyrolyzer into the desired high-quality liquid fuel. For this 

step, H2 at high pressure must be provided to the hydrogenation reactor. Figure S4 

(Supporting Information) shows the effect of changing the pressure of the hydrogenation unit 

from 50 bar to 70 bar on heat and electrical balances calculated for different biomass with a 

primary liquid yield of 20% in the pyrolyzer, 30kg of steam per each 100kg of biomass and 

80kg of air per 100kg of biomass (these conditions enable to maximize the liquid yield at 

energy-balanced regime). The energy balance breakdown is provided in Table S3 (Supporting 

Information) and shows the effect of the H2 pressure on the overall process energetics. As can 

be seen, H2 pressure does not affect the heat power calculated for the hydrogenation reactor 

but the electrical demand of liquid pump and H2 compressor increases. Finally, the overall 

process is able to produce enough energy to satisfy this increase in power demand at higher 

hydrogenation pressures. In summary, if the primary liquid comprises a relatively high number 

of oxygenated compounds, which are more difficult to hydrogenate (or hydro-deoxigenate), 

higher hydrogenation pressures are necessary while the overall process is self-regulated and 

can provide enough energy to accomplish the self-sustainable regime. 

3.4.2 Effect of the biomass composition 

The effect of using extreme compositions of biomass on the heat and electrical balances was 

analysed to provide a broader vision of the potential feedstock and related plant energetics. 

Table 1 shows the compositions for the biomasses 4 and 5. The conditions and results of the 

overall process for the additional biomasses 4 and 5 are summarized in Table 5. Biomass 4 

presents low C/O ratio (C/Obiomass 4= 0.854), i.e. the initial material has a highly oxidized 

fraction and, consequently, the expected outcome in terms of thermal and electrical energies is 

lower with respect those observed for biomass 1 to 3. On the other hand, the use of a biomass 

with extremely high C/O ratio (C/Obiomass 5= 2.398) allows attaining higher primary liquid 

yields keeping the energy self-sustainable regime. 
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For both extreme biomass compositions (4 and 5), Table S4 and S5 describe the composition 

of all the different streams of the process and the operation conditions of the process units. For 

both cases, the outlet of the pyrolysis unit is composed of partly-oxidized gas with fuel gases 

comprising principally CO and CH4. The outlet stream of the gasifier evidences that CH4 is 

converted into CO, CO2 and H2 amounts. The composition of the membrane reactor outlet-

stream suggests that the in situ H2 recovery enables to drive efficiently the water shift reaction 

to obtain H2 for the biomass 4 (Table S4) but not for the biomass 5 (Table S5), where the 

membrane reactor stream shows a high amount of CO and no presence of steam. This last 

effect is because the steam introduced in the gasifier is not enough to drive the equilibrium of 

the water gas shift reaction to full conversion towards CO2, however, there is enough H2 to 

refine all the primary liquid. Therefore, it is not necessary to introduce more steam since this 

would worsen the energy balance. Further, the outlet stream of the hydrogenation unit shows 

high excess of H2 in this unit, even if more H2 could be potentially produced by further 

shifting the remaining CO to H2 + CO2 to rise H2 yield. Finally, the tail gas is a mixture of the 

steam, CO2, the depleted air and CO traces. 

3.4.3 Analysis of the effect of the composition of the primary liquid  

The composition of the primary liquid produced from pyrolyzer strongly influences the overall 

process and the final amount of upgraded liquid fuel produced. In first place, considering the 

stoichiometry of the reactions (r1 – r4), the weight relation between the primary liquid 

compounds and the refined liquid compounds are 103.55%, 78.65%, 75.11% and 48.96% for 

the methyl naphthalene, gastrodigenin, furfural and lactic acid as primary liquid compounds. 

For the partially oxidized compounds (gastrodigenin, furfural and lactic acid), there is a 

decrease in the liquid yield (since primary liquid until refined liquid) because the release of 

water during the reaction while for the methylnaphthalene there is an increase in the liquid 

yield because all the hydrogen is incorporated in the refined compound. Figure 12 and Table 

S6  present simulation results (energy balances) considering (1) different model compounds 

(i.e. methyl-naphthalene, 4-hydroxybenzyl alcohol, furfural and lactic acid) as primary 
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pyrolysis products of for the biomass 2; and (2) selected operation conditions: primary liquid 

yield of 20%, 80 kg air / 100kg biomass and 30 kg steam / 100kg biomass.  

The analysis of both heat and electrical energy terms reveals that (i) the lactic acid presents the 

best balance results; (ii) 4-hydroxybenzyl alcohol or gastrodigenin and furfural present similar 

intermediate values; and (iii) the methylnaphthalene is the less favourable case. The nature of 

the molecule (molecular weight1, unsaturation and oxygen content) determines the H2 demand 

in the hydrogenation step and the final liquid yield. 

The heat simulation results2 from Figure 12a show that increasing the molecular weight (MW) 

of the primary liquid leads to lesser yields of non-oxidized gas compounds (fuel gas) and this 

leads to worse energetic results. Regarding the final heat exchanger, lower yields of fuel gas 

decreases the temperature of the outlet of the turbine and, therefore, decreases the heat flow 

useful for transfer to pyrolysis and char gasification units. Figure 12b shows the electric power 

results3 and the trend of the results evidences that a slight decrease in the energy demands for 

vacuum and gas compression is observed as the molecular weight of the primary liquid 

increases. Increasing the molecular weight of the primary liquid induces a drop in the energy 

supplied by the turbine since a lower flow rate of non-oxidized gas compounds is available for 

the combustion.  

Table S7 shows the values for the high heating value (HHV) for the couples: primary liquid 

compound and refined compound. The results show that, as the molecular weight of the liquid 

decreases, the HHV of the primary liquid decreases while HHV of the refined fuel increases. 

The final yield of the refined fuel declines with decreasing molecular weights (Figure 4b) 

although the energy content increases. 

                                                            
1 90.09g/mol for the lactic acid, 96.09g/mol for the furfural, 124.15g/mol for the gastrodigenin, 
142.21g/mol for the methyl-naphthalene 
2 Note that the pyrolysis and char gasifier are energy demanding processes while the exchanger after the 
gasifier and the final heat exchanger are recovering heat 
3 Vacuum, compression of H2 and compression of gases are energy-demanding processes while the 
turbine produces net electric power 
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In general, the composition of the primary liquid (or pyrolytic bio-oil) is a consequence of the 

conditions in the pyrolysis and this step significantly affects the overall process design. An 

increase in the pyrolysis temperature above 550 – 600ºC decreases the primary liquid yield 

that can be obtained. On one hand, processes with less endothermic pyrolysis step (lower 

pyrolysis temperatures) produce heavier liquids and lower gaseous streams with lower CO, 

CO2 and H2 yields. Thus, lower H2 yield gives rise to a reduction in the refined liquid fuel 

yield. Therefore, due to the lower fuel gas yield, the turbine power is lower and both electrical 

and thermal energy balances become less favourable. On the other hand, the process with a 

highly-endothermic pyrolysis step (higher pyrolysis temperature) produces lighter primary 

liquids and higher CO, CO2 and H2 yields. As a consequence, higher amounts of primary 

liquid can be refined because there is more available H2 and also fuel gas at the inlet of the 

turbine and, therefore the electrical and thermal energy balances are more favourable. In 

summary, a trade-off between the amounts of primary liquids and gas streams produced during 

pyrolysis step will define the overall process design and the corresponding heat and electrical 

energy balances. The performance of pyrolysis unit has a large impact in the overall process 

energetics and mass balances and ultimately determines the primary liquid yield and 

composition. As a consequence, the pyrolyzer is the most critical unit to accomplish the 

energy-balanced regime while maximizing the biomass transformation into liquid fuels. 

4. CONCLUSIONS 

This study analysis the integrated biomass transformation into both energy and chemicals and 

uses the overall process energy (thermal and power) to supply the energy demands of the 

different units in the plant. Specifically, the production of liquid fuels from biomass in a self-

sustainable process was analysed in this work. The system was designed to process different 

types of biomass. Biomass with high C/O ratios (≥1.2) allows reaching higher primary liquid 

(or pyrolytic bio-oil) yields via an energetically self-sustainable process, with liquid yields 

after pyrolysis around 20 – 25% working at 10 – 25% of O2 (as pure oxygen or air) and 15 – 

45% of steam in the gasifier.  
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The yield of the primary liquid produced in the pyrolysis step determines the heat and 

electrical energy balances of the process. Thus, when higher liquid yields (≥20%) are 

obtained, the process must also provide adequate amount of fuel gas (H2, CO, CH4, and other 

hydrocarbons) to produce heat and electrical energy in downstream processes. The tail gases 

(N2, H2O, CO, CO2, etc.) at the turbine outlet has to bear enough heat to balance the pyrolysis 

and gasifier units, consequently, high oxidizable fractions (fuel gas) are needed at the turbine 

inlet to reach self-sustainable regime, i.e., favourable thermal and electric balances. Therefore, 

it is necessary to reach an optimal balance between the primary liquid yield and the energy 

balances. 

The study of different biomass compositions reveals that biomass 2 and 3 with C/O ratios of 

1.2 and 1.5, respectively, give the most favourable liquid fuel yields and both thermal and 

electrical energy balance are favourable. After pyrolysis, those biomass types (2 and 3) 

generate liquid and gases in adequate proportions that match the H2 consumption during 

hydrogenation step. Nevertheless, biomasses 1 and 4 with relatively lower amount of C in 

their compositions are suitable for treatment in this integrated approach offering acceptable 

liquid fuel yields (c.a. 20%) at favourable energy balances. 

In addition, the operational conditions (mainly temperature) of the pyrolysis unit determine the 

primary liquid and gas compositions. Higher pyrolysis temperatures produce lighter bio-oils 

and higher gas yields, and, as a consequence of these lighter primary liquids (bio-oils) more 

favourable thermal and electrical energy balances are reached. In fact, it would be not 

necessary to work at very high pyrolytic liquid yields to attain good energy balances, on the 

contrary, a trade-off between the yields of liquids and gases fractions is crucial to reach a self-

sustainable overall process. This study has identified windows of operation conditions in the 

transformation of different biomass types into refined liquids that enable to reach an energetic 

self-sustainable plant regime, that implies reaching a balance among (i) the yield of refined 

liquid, (ii) the energy produced in the process (both heat and electrical) and (iii) the hydrogen 

yield to be used in the refining of the primary liquid. 
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In the perspective of bio-economy concept, this self-sufficient operation is crucial to enable 

the design and development of decentralized waste treatment factories for the transformation 

of a large variety of biomass residues in both urban and rural areas. This approach 

encompasses several advantages, such as i) facilitating plant logistics, ii) enlargement of 

biomass feedstocks utilization, iii) developing alternative fuels from non-conventional raw 

materials, and remarkably, iv) minimizing GHG emissions due to avoidances of transport and 

additional heat and power generation from fossil sources. 
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Figure Captions 

 

Figure 1: View of the diagram of the process. 

Figure 2: Description of the model of the pyrolysis and gasifier units. (grey zones: units to 

simulate the pyrolysis process; blue zones: units to simulate the gasification process) 

Figure 3: Membrane reactor. (a) Displacement of the water shift reaction to favour H2 

formation; (b) Model of the membrane reactor in ASPEN PLUS. 

Figure 4: (a) Compressor and pump units and hydrogenation reactor; (b) Refined liquid fuel 

obtained according the primary liquid yield of the pyrolyzer. 

Figure 5: Treatment of the final gases. Compressors and gas turbine. 

Figure 6: Effect of the primary liquid yield in the molar ratio H2 – primary liquid. The range 

for each data point represents the different results at different steam and oxidant type 

introduced in the gasifier process. Upper: maximum value; symbol: average; lower: minimum 

value. 

Figure 7: Effect of the primary liquid yield in the heat balance of the process. Right: system 

with oxygen as oxidant; left: system with air as oxidant. Upper: maximum value; diamond 

symbol: average; lower: minimum value 

Figure 8: Effect of the primary liquid yield in the electrical balance of the process. Right: 

system with oxygen as oxidant; left: system with air as oxidant 

Figure 9: Description of the search space for the biomass 2 with oxygen as oxidant: 

Simulation results of H2/primary liquid ratio, electrical power and heat balance for a primary 

liquid yield of (a-c) 25% and (e-f) 20%. 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃: primary liquid yield 

Figure 10: Global optimal zone for biomass 2 with oxygen as oxidant with a primary liquid 

yield of 20%. 

Figure 11: Global optimal zones: (a – c) using oxygen as oxidant; (d – f) using air as oxidant. 

(a and d) biomass 1; (b and e) biomass 2; (c and f) biomass 3. 

Figure 12: Energy results for different compositions of the primary liquid. (a) heat results; (b) 

electrical results. 
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Table 1: Description of the different types of biomass studied. 

Table 2: Description of the parameters studied. 

Table 3: Optimal primary liquid yield in the pyrolyzer for each biomass. 

Table 4: Energy analysis for the biomass 2 with a primary liquid yield of 20%, 80 kg air in the 

gasifier per each 100kg biomass and 30 kg steam in the gasifier per each 100kg biomass.  

Table 5: Effect of use extreme composition of biomass. 



 

 

 

 
 

Figure 1: View of the diagram of the process 

  



 

 

 

 

 

Figure 2: Description of the model of the pyrolysis and gasifier units. (grey zones: units to simulate the 
pyrolysis process; blue zones: units to simulate the gasification process). 
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Figure 3: Membrane reactor. (a) Displacement of the water shift reaction to favor H2 formation; (b) Model 
of the membrane reactor in ASPEN PLUS. 
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Figure 4: (a) Compressor and pump units and hydrogenation reactor; (b) Refined liquid fuel obtained 
according the primary liquid yield of the pyrolyzer. 
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Figure 5: Treatment of the final gases. Compressors and gas turbine. 
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Figure 6: Effect of the primary liquid yield in the molar ratio H2 – primary liquid. The range for each data 
point represents the different results at different steam (15 – 45 kg steam/kg biomass) and oxidant type 

(pure O2: 2.5 – 30 kg/kg biomass; air: 40 – 110 kg/kg biomass) introduced in the gasifier process. Upper: 
maximum value; symbol: average; lower: minimum value. 
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Figure 7: Effect of the primary liquid yield in the heat balance of the process. Right: system with oxygen as 
oxidant; left: system with air as oxidant. The range for each data point represents the different results at 

different steam (15 – 45 kg steam/kg biomass) and oxidant type (pure O2: 2.5 – 30 kg/kg biomass; air: 40 
– 110 kg/kg biomass) introduced in the gasifier process. Upper: maximum value; diamond symbol: 

average; lower: minimum value 
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Figure 8: Effect of the primary liquid yield in the electrical balance of the process. The range for each data 
point represents the different results at different steam (15 – 45 kg steam/kg biomass) and oxidant type 
(pure O2: 2.5 – 30 kg/kg biomass; air: 40 – 110 kg/kg biomass) introduced in the gasifier process. Right: 

system with oxygen as oxidant; left: system with air as oxidant 

  



 

 

 

 

 

Figure 9: Description of the search space for the biomass 2 with oxygen as oxidant: Simulation results of 
H2/primary liquid ratio, electrical power and heat balance for a primary liquid yield of (a-c) 25% and (e-f) 

20%. 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑃𝑃𝑃𝑃: primary liquid yield 
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Figure 10: Global optimal zone for biomass 2 with oxygen as oxidant with a primary liquid yield of 20%. 
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Figure 11: Global optimal zones: (a – c) using oxygen as oxidant; (d – f) using air as oxidant. (a and d) 
biomass 1; (b and e) biomass 2; (c and f) biomass 3. 
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Figure 12: Energy results for different compositions of the primary liquid. (a) heat results; (b) electrical 
results. 
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Tables 

 

Table 1: Description of the different types of biomass studied. 

 

 % in weight 
 Biomass 1 Biomass 2 Biomass 3 Biomass 4 Biomass 5 
Proximate 
analysis 

     

Fixed Carbon 29.89 29.89 29.89 50.00 50.00 
Volatile matters 52.11 52.11 52.11 39.00 39.90 
Moisture carbon 15.00 15.00 15.00 8.00 1.10 
Ash 3.00 3.00 3.00 3.00 9.00 
Ultimate analysis (C/O=0.937) (C/O=1.205) (C/O=1.499) (C/O=0.854) (C/O=2.398) 
H 6.07 6.07 6.07 6.56 5.88 
N 0.15 0.15 0.15 0.00 0.10 
C 46.25 51.25 56.25 43.05 66.35 
O 47.53 42.53 37.53 50.39 27.67 
  



Table 2: Description of the parameters studied. 

 

Parameter Units Values 

Type of primary liquid modelled - 

Methyl-naphthalene 

4-hydroxybenzyl alcohol 

Furfural 

Lactic acid 

Primary liquid yield in the pyrolyzer kg primary liquid/100kg biomass (%) 10 – 30 

Oxidant used - Oxygen – Air 

Ratio of oxygen kg O2 /kg biomass 0 – 30 

Ratio of air kg air/kg biomass 40 – 110 

Ratio of steam kg steam/100kg biomass 15 – 45 

  



Table 3: Optimal primary liquid yield in the pyrolyzer for each biomass. 

 

Primary liquid yield (%) Biomass 1 Biomass 2 Biomass 3 

Oxygen 15 20 25 

Air 15 20 20 

  



Table 4: Energy analysis for the biomass 2 with a primary liquid yield of 20%, 80 kg air in the gasifier per each 100kg 
biomass and 30 kg steam in the gasifier per each 100kg biomass. 

  Value 

HEAT ANALYSIS 
PYROLYSIS (MJ/100kg biomass) 158.17 
GASIFIER (MJ/100kg biomass) 30.12 
Heat exchanger outlet gasifier (MJ/100kg biomass) -67.03 
Heat exchanger final gas (MJ/100kg biomass) -168.53 
HEAT BALANCE (MJ/100kg biomass) -47.27 

ELECTRICAL ENERGY BALANCE 
VACUUM (kWh/100kg biomass) 2.25 
COMPRESSION H2 (kWh/100kg biomass) 11.79 
COMPRESSION GASES (kWh/100kg biomass) 34.42 
TURBINE (kWh/100kg biomass) -61.99 
PUMP (kWh/100kg biomass) 0.03 
LIQUID TURBINE (kWh/100kg biomass) -0.02 
ELECTRICAL ENERGY BALANCE (kWh/100kg biomass) -13.53 

  



Table 5: Effect of use extreme composition of biomass. 

 

  Biomass 4 Biomass 5 
Primary liquid yield 15% 25% 
Air used in the gasifier (kg air/100kg biomass) 60 85 
Steam used in the gasifier (kg steam/100kg biomass) 30 30 

HEAT ANALYSIS 
PYROLYSIS (MJ/100kg biomass) 141.48 327.19 
GASIFIER (MJ/100kg biomass) 114.00 60.76 
Heat exchanger outlet gasifier (MJ/100kg biomass) -68.08 -70.43 
Heat exchanger final gas (MJ/100kg biomass) -234.10 -452.76 

HEAT BALANCE (MJ/100kg biomass) -46.70 -135.23 
ELECTRICAL POWER ANNALYSIS 

VACUUM (KWh/100kg biomass) 2.65 3.20 
COMPRESSION H2 (KWh/100kg biomass) 13.91 16.77 
COMPRESSION GASES (KWh/100kg biomass) 35.84 39.45 
TURBINE (KWh/100kg biomass) -75.71 -125.41 
PUMP (KWh/100kg biomass) 0.02 0.04 
LIQUID TURBINE (KWh/100kg biomass) -0.02 0.04 
ELECTRICAL ENERGY BALANCE (KWh/100kg biomass) -23.31 -65.92 

 



 

 

 

Figure S1: View of the ASPEN diagram of the process (See unit description in Table S1) 

 

  

Figure 1: View of the ASPEN diagram of the process.
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Figure S2: Global optimal zone  for biomass 2 with oxygen as oxidant with a primary liquid yield of 20%. 
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Figure S3: Global optimal zones . (a – c) using oxygen as oxidant; (d – f) using air as oxidant. (a and d) 
biomass 1; (b and e) biomass 2; (c and f) biomass 3. 
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Figure S4: Effect of the pressure in the refining process for different biomass compositions. 
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Table S1: Description of the ASPEN units of the process 

 

Id Aspen id Unit Id Aspen id Unit Id Aspen id Unit Id Aspen id Unit 

1 E-150 Heat exchanger 11 G-1 Stoichiometric reactor 21 COMP-H2 Compressor multistage 31 COMP-GAS Compressor 

2 FLASH-1 Evaporator 12 G-2 Gibbs reactor 22 E-50 Heat exchanger 32 COMP-AIR Compressor 

3 P-1 Stoichiometric reactor 13 CYCLON-2 Cyclone 23 PUMP Pump 33 TURBINE Gibbs reactor 

4 P-2 Stoichiometric reactor 14 E-550 Heat exchanger 24 E-FUEL Heat exchanger 34 T-HP Turbine 

5 P-3 Gibbs reactor 15 MEMB-1 Stoichiometric reactor 25 REACTOR Stoichiometric reactor 35 T-LP Turbine 

6 CYCLON-1 Cyclone 16 MEMB-2 Separator 26 E-175 Heat exchanger 36 E-FIN Heat exchanger 

7 E-200 Heat exchanger 17 MEMB-3 Gibbs reactor 27 SEP-2 Separator 37 E-FUEL Heat exchanger 

8 SEP Separator 18 E-H2 Heat exchanger 28 VALVE Valve 38 PUMP-FUEL Pump 

9 M-1 Mixer 19 E2-50 Heat exchanger 29 E3-50 Heat exchanger 39 M-3 Mixer 

10 E2-200 Heat exchanger 20 VACUUM Compressor multistage 30 M-2 Mixer 40 M-4 Mixer 

         
41 M-5 Mixer 

 

  



 

Table S2: Composition of each stream of the process for the biomass 2 with a primary liquid yield of 20%, 
80 kg air in the gasifier per each 100kg biomass and 30 kg steam in the gasifier per each 100kg biomass. 
PYRO: outlet stream of the pyrolysis unit; GASIFIER: outlet stream of the gasifier unit; MEMB: outlet 
stream of the membrane reactor, retenate; HYDRO: outlet stream of the hydrogenation unit; IN-TUR: inlet 
stream of the turbine; TAIL GAS: outlet stream of the system 

 
PYRO GASIFIER MEMB HYDRO IN-TUR TAIL GAS 

Temperature ºC 500 700 500 400 526 300 
Pressure bar 1 1.5 1.5 50 20 1 
Vapor Frac 1 1 1 1 1 1 
Total Flow kmol/hr 3.24 8.70 8.70 1.74 8.00 11.53 
Total Flow kg/hr 119.50 221.86 221.86 24.66 220.44 345.44 
Total Flow l/min 3471.49 7819.47 6212.43 32.54 442.84 9153.71 
Enthalpy kcal/mol -51.18 -33.88 -36.65 0.47 -39.88 -36.57 
Mass Flow  kg/hr       

H2O 2.7652 36.5685 20.0493 0.0000 20.0184 49.0378 

C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
H2 0.5019 2.8023 4.6508 3.2323 3.2473 0.0001 
O2 0.0000 0.0000 0.0000 0.0000 0.0000 3.2807 

CO2 73.4237 95.3902 135.7452 0.0000 135.6947 135.8646 
CO 14.7268 25.6843 0.0000 0.0000 0.1123 0.0042 
N2 0.0000 61.3666 61.3666 0.0000 61.3666 157.2520 
CH4 8.0686 0.0459 0.0459 0.0000 0.0000 0.0000 
1-MET-01 20.0113 0.0000 0.0000 0.0000 0.0000 0.0000 
C11H2-01 0.0000 0.0000 0.0000 21.4297 0.0000 0.0000 
Non-conventional       

CHAR 12.3753      

1-MET-01: 1-methylnaphthalene 
C11H2-01: 1-Methyldecalin 
  



Table S3: Effect of the hydrogenation pressure. Biomass 2 with a primary liquid yield of 20%, 80 kg air in 
the gasifier per each 100kg biomass and 30 kg steam in the gasifier per each 100kg biomass 

 
  BIOMASS 1 BIOMASS 2 BIOMASS 3 BIOMASS 4 
  50 bar 70 bar 50 bar 70 bar 50 bar 70 bar 50 bar 70 bar 

Electrical power     

Pump kWh/100kg 
biomass 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.05 

Compressor kWh/100kg 
biomass 7.05 7.73 11.79 12.93 16.41 18.00 7.69 8.43 

Total kWh/100kg 
biomass 2.85 3.53 -13.53 -12.38 -32.52 -30.92 0.95 1.68 

Heat power     

Heat reaction MJ/100kg 
biomass -43.54 -43.54 -43.54 -43.54 -43.54 -43.54 -43.54 -43.54 

Process          

Hydrogen excess kg/100kg 
biomass 1.36 1.36 3.24 3.24 2.55 2.55 1.62 1.62 

 

  



Table S4: Composition of the streams for the biomass 4 with a primary liquid yield of 15%, 60 kg air in the 
gasifier per each 100kg biomass and 30 kg steam in the gasifier per each 100kg biomass. PYRO: outlet 
stream of the pyrolysis unit; GASIFIER: outlet stream of the gasifier unit; MEMB: outlet stream of the 
membrane reactor, retenate; HYDRO: outlet stream of the hydrogenation unit; IN-TUR: inlet stream of the 
turbine; FINAL GAS: outlet stream of the system 

 
PYRO GASIFIER MEMB HYDRO IN-TUR FINAL GAS 

Temperature C 500 700 500 400 528.4 300 
Pressure bar 1 1.5 1.5 50 20 1 
Vapor Frac 1 1 1 1 1 1 
Mole Flow kmol/hr 3.71 8.83 8.83 2.30 8.31 14.13 
Mass Flow kg/hr 124.18 213.95 213.95 20.50 212.89 412.89 
Volume Flow l/min 3974.69 7933.32 6302.88 42.97 461.34 11223.6 

Enthalpy kcal/mol -52.68 -35.21 -38.06 1.40 -40.35 -33.16 
Mass Flow kg/hr 

     

H2O 7.4810 41.3440 23.3160 0.0000 23.2510 63.0380 
C 0.0000 trace 0.0000 0.0000 

 
trace 

H2 0.8670 3.4720 5.4890 4.4240 4.4520 < 0,001 
O2 trace trace 0.0000 0.0000 trace 11.1490 
CO2 81.9370 94.9980 139.0390 0.0000 138.9740 139.2490 
CO 10.5000 28.0300 0.0000 0.0000 0.1840 0.0090 
N2 0.0000 46.0250 46.0250 0.0000 46.0250 199.4420 
CH4 8.3750 0.0820 0.0820 0.0000 trace trace 
1-MET-01 15.0210 0.0000 0.0000 0.0000 0.0000 0.0000 
C11H2-01 0.0000 0.0000 0.0000 16.0860 0.0000 0.0000 
No conventional 

     

CHAR 14.7920 
     

1-MET-01: methylnaphtalene 
C11H2-01: 1-Methyldecalin  



Table S5: Composition of the streams for the biomass 5 with a primary liquid yield of 25%, 85 kg air in the 

gasifier per each 100kg biomass and 30 kg steam in the gasifier per each 100kg biomass. PYRO: outlet 

stream of the pyrolysis unit; GASIFIER: outlet stream of the gasifier unit; MEMB: outlet stream of the 

membrane reactor, retenate; HYDRO: outlet stream of the hydrogenation unit; IN-TUR: inlet stream of the 

turbine; FINAL GAS: outlet stream of the system. 
 

PYRO GASIFIER MEMB HYDRO IN-TUR FINAL GAS 
Temperature C 500 700 500 400 561 300 
Pressure bar 1 1.5 1.5 50 20 1 
Vapor Frac 1 1 1 1 1 1 
Total Flow kmol/hr 3.79 9.78 9.78 2.58 8.95 24.28 
Total Flow kg/hr 126.84 229.81 229.81 31.62 228.03 728.03 
Total Flow l/min 4058.52 8793.49 6986.27 48.16 517.35 19288.78 
Enthalpy kcal/mol -27.85 -22.86 -25.45 0.81 -27.42 -20.01 
Mass Flow  kg/hr       

H2O 0.0455 17.3923 0.0000 0.0000 0.2163 45.4691 
C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
H2 0.0957 4.6757 6.6219 4.8499 4.9247 0.0005 
O2 0.0000 0.0000 0.0000 0.0000 0.0000 50.3752 
CO2 27.3416 72.8100 115.2979 0.0000 113.6891 183.3935 
CO 63.6099 68.7760 41.7342 0.0000 43.4459 0.0513 
N2 0.0000 65.2021 65.2021 0.0000 65.2021 448.7436 
CH4 10.7514 0.9491 0.9491 0.0000 0.5552 0.0000 
1-MET-01 24.9983 0.0000 0.0000 0.0000 0.0000 0.0000 
C11H2-01 0.0000 0.0000 0.0000 26.7702 0.0000 0.0000 
No conventional       

CHAR 12.9620      

1-MET-01: 1-methylnaphthalene 
C11H2-01: 1-Methyldecalin 
  



Table S6: Effect of the primary liquid composition. Biomass 2 with a primary liquid yield of 20%, 80 kg air in 
the gasifier per each 100kg biomass and 30 kg steam in the gasifier per each 100kg biomass. PL1: 
methylnaphthalene as primary liquid; PL2: hydroxybenzyl alcohol as primary liquid; PL3: furfural as primary 
liquid; PL4: lactic acid as primary liquid 
 

 Units PL1 PL2 PL3 PL4 

HEAT ANALYSIS 

PYROLISIS MJ/100kg biomass 158.17 243.64 224.61 253.69 

GASIFIER MJ/100kg biomass 30.12 72.09 100.28 79.69 

Heat exchanger outlet gasifier MJ/100kg biomass -67.03 -68.16 -69.47 -68.72 

Heat exchanger final gas MJ/100kg biomass -168.53 -305.00 -311.28 -422.45 

HEAT BALANCE MJ/100kg biomass -47.27 -57.42 -55.86 -157.79 

ELECTRICAL ENERGY BALANCE 

VACUUM kWh/100kg biomass 2.25 3.36 3.56 3.27 

COMPRESSION H2 kWh/100kg biomass 11.79 17.63 18.69 17.14 

COMPRESSION GASES kWh/100kg biomass 34.42 37.84 37.75 39.80 
TURBINE kWh/100kg biomass -61.99 -89.34 -91.27 -119.92 
PUMP kWh/100kg biomass 0.03 0.03 0.03 0.03 
LIQUID TURBINE kWh/100kg biomass -0.02 -0.02 -0.03 -0.02 
ELECTRICAL ENERGY BALANCE kWh/100kg biomass -13.53 -30.51 -31.27 -59.70 

 
  



Table S7: High heating values (HHV) for the primary liquid and for the refined liquid compounds. 

Primary liquid compound HHV (MJ/kg) Refined liquid compound HHV (MJ/kg) 
Methyl-naphthalene 40.733 Methyl-decalin 42.521 

Gastrodigenin 28.218 Methyl-cyclohexane 46.253 
Furfural 24.050 Pentane 48.302 

Lactic acid 14.640 Propane* 51.016 
* this refined compound are not liquid, however, the study considered this compound to characterize the 
effect to decrease the MW of the primary liquid in the overall process 


