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Abstract

In this note we show that the fixed point theorems given for Menger spaces
by J. Jachymski [Theorem 1, J. Jachymski, On probabilistic ϕ-contractions
on Menger spaces, Nonlinear Analysis 73 (2010) 2199-2203] and J.X. Fang
[Theorem 3.1, J.X. Fang, On ϕ-contractions in probabilistic and fuzzy metric
spaces, Fuzzy Sets and systems 267 (2015) 86-99] are equivalent.
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1. Introduction

The problem of obtaining fixed point theorems for probabilistic ϕ-contractions
(see Definition 2.1) in Menger spaces has been studied by different authors
(see [1] and the references therein). In the former approaches to this topic
the authors used conditions too much restrictive on the gauge function ϕ.
Later, Jachymski in [4, Theorem 1] obtained a fixed point theorem for Menger
spaces, defined for a continuous t-norm of Hadžić type, weakening the con-
ditions on ϕ which improved the applicability of these type of theorems.
Recently, Fang [2, Theorem 3.1] has obtained a fixed point theorem that
generalizes the Jachymski’s theorem (in the context of Menger spaces) in
two senses. In fact, Fang does not demand the condition of continuity for
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juamiapr@upvnet.upv.es (Juan-José Miñana), smorillas@mat.upv.es (Samuel
Morillas)

1Valent́ın Gregori acknowledges the support of Ministry of Economy and Competitive-
ness of Spain under Grant MTM2015-64373-P.

Preprint submitted to Fuzzy Sets and Systems July 13, 2016



the t-norm in his theorem, and, on the other hand, he demands a weaker con-
dition on the gauge function ϕ. In this note, we prove that in the framework
of Menger spaces a self-mapping T of X is a probabilistic ϕw-contraction
in the sense of Fang if and only if it is a probabilistic ψ-contraction in the
sense of Jachymski (Corollary 2.7). Consequently, the mentioned theorems
are equivalent.

2. Results

Definition 2.1. Let (X,F, ∗) be a Menger space. A mapping T : X → X is
called a probabilistic ϕ-contraction, for ϕ, if it satisfies

FTx,Ty(ϕ(t)) ≥ Fx,y(t) for all x, y ∈ X and t > 0,

where ϕ : [0,∞[→ [0,∞[ is a gauge function satisfying certain conditions.

We will consider here three classes of gauge functions:

(i) Ψ will denote the class of gauge functions ψ satisfying:

0 < ψ(t) < t and lim
n→∞

ψn(t) = 0 for all t > 0.

(ii) Φ will denote the class of gauge functions ϕ satisfying:

lim
n→∞

ϕn(t) = 0 for all t > 0.

(iii) Φw will denote the class of gauge functions ϕw satisfying:

for each t > 0 there exists r ≥ t such that lim
n→∞

ϕn
w(r) = 0.

Obviously, Ψ ⊂ Φ ⊂ Φw and it is easy to verify that these inclusions are
strict.

Recall that a t-norm ∗ is called of H-type (Hadž́ıc [3]) if the family of

functions {
m∏
∗t : n ∈ N} is equicontinuous at t = 1, where

m∏
∗t = t ∗ · · · ∗ t

m-times.

Remark 2.2. In [4, Theorem 1], J. Jachymski demands that ∗ be a contin-
uous t-norm of H-type. Nevertheless, the author does not use the continuity
of ∗ in the proof of this theorem, but the continuity of ∗ at (1, 1). Now, the
continuity of ∗ at (1, 1) is fulfilled due to the equicontinuity of the family of

functions {
m∏
∗t : n ∈ N} at t = 1, since ∗ is a t-norm of H-type.
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So, the Jachymski’s theorem can be written, really, as follows.

Theorem 2.3 (Jachymski [4]). Let (X,F, ∗) be a complete Menger space,
where ∗ is a t-norm of H-type. If T : X → X is a probabilistic ψ-contraction,
for ψ ∈ Ψ, then T has a unique fixed point x0 ∈ X, and the sequence {T n(x)}
converges to x0 for all x ∈ X.

On the other hand the Fang’s theorem is the next one.

Theorem 2.4 (Fang [2]). Let (X,F, ∗) be a complete Menger space, where
∗ is a t-norm of H-type. If T : X → X is a probabilistic ϕw-contraction, for
ϕw ∈ Φw, then T has a unique fixed point x0 ∈ X, and the sequence {T n(x)}
converges to x0 for all x ∈ X.

Fang asserts in [2] that Theorem 2.4 is more general than Theorem 2.3. In
the next, we will see that this assertion is not true showing that both theorems
are equivalent. For it we will show that in the framework of Menger spaces
the class of probabilistic ϕw-contractions, for some ϕw ∈ Φw, coincides with
the class of probabilistic ψ-contractions, for some ψ ∈ Ψ (Corollary 2.7).

We start with the next theorem.

Theorem 2.5. Let (X,F, ∗) be a Menger space and let T : X → X be a
mapping. Then, T is a probabilistic ϕw-contraction, for some ϕw ∈ Φw, if
and only if T is a probabilistic ϕ-contraction, for some ϕ ∈ Φ.

Proof Suppose that T : X → X is a probabilistic ϕw-contraction, for
some ϕw ∈ Φw. Then,

FTx,Ty(ϕw(t)) ≥ Fx,y(t) for each x, y ∈ X and t > 0.

Denote A := {t > 0 : limn→∞ ϕn
w(t) 6= 0}.

For each t ∈ A we consider the set Bt = {r > t : limn→∞ ϕn
w(r) = 0},

which is a non-empty set since ϕw ∈ Φw. Then, by the Axiom of Choice, we
can take an element rt ∈ Bt, for each t ∈ A. Obviously, rt /∈ A, for each
t ∈ A.

Now, we will construct a gauge function ϕ ∈ Φ, such that T is a proba-
bilistic ϕ-contraction, for ϕ, as follows.

Define

ϕ(t) =

{
ϕw(t), if t /∈ A,
ϕw(rt), if t ∈ A.

Obviously, ϕ is well-defined.
We will prove that limn ϕ

n(t) = 0 for all t > 0 in three steps.
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(I) First we prove that if t /∈ A then ϕi
w(t) /∈ A for all i ∈ N. Indeed, let

t /∈ A and i ∈ N. Then, limn ϕ
n
w(ϕi

w(t)) = limn ϕ
n+i
w (t) = 0, and so

ϕi
w(t) /∈ A.

Now, we distinguish two cases:

(II) Suppose that t /∈ A.
We will prove, by induction on n, that ϕn(t) = ϕn

w(t) for all n ∈ N.
Indeed, ϕ(t) = ϕw(t) since t /∈ A. Suppose the assertion true for n. By
induction hypothesis and by (I) we have that

ϕn+1(t) = ϕ(ϕn(t)) = ϕ(ϕn
w(t)) = ϕw(ϕn

w(t)) = ϕn+1
w (t).

Therefore, limn ϕ
n(t) = limn ϕ

n
w(t) = 0.

(III) Suppose that t ∈ A.
We will prove, by induction on n, that ϕn(t) = ϕn

w(rt) for all n ∈ N.
The assertion is true for n = 1 by definition of ϕ. Suppose the assertion
true for n. By induction hypothesis and by (I) we have that

ϕn+1(t) = ϕ(ϕn(t)) = ϕ(ϕn
w(rt)) = ϕw(ϕn

w(t)) = ϕn+1
w (t).

Therefore, limn ϕ
n(t) = limn ϕ

n
w(rt) = 0.

Thus, limn→∞ ϕn(t) = 0 for each t > 0, and then ϕ ∈ Φ.
Finally, we will see that T is a probabilistic ϕ-contraction for this ϕ ∈ Φ.
Let x, y ∈ X and t > 0. We distinguish two cases:

1. If t /∈ A, then FTx,Ty(ϕ(t)) = FTx,Ty(ϕw(t)) ≥ Fx,y(t).

2. If t ∈ A, then FTx,Ty(ϕ(t)) = FTx,Ty(ϕw(rt)) ≥ Fx,y(rt) ≥ Fx,y(t), since
rt > t and Fx,y is non-decreasing.

Therefore, T is a probabilistic ϕ-contraction, for ϕ ∈ Φ.
The converse is obvious since Φ ⊂ Φw.

�
To complete our purpose, we will show that the class of probabilis-

tic ϕ-contractions, for ϕ ∈ Φ, coincides with the class of probabilistic ψ-
contractions, for ψ ∈ Ψ, in the next theorem.

Theorem 2.6. Let (X,F, ∗) be a Menger space and let T : X → X be a
mapping. Then, T is a probabilistic ϕ-contraction, for some ϕ ∈ Φ, if and
only if T is a probabilistic ψ-contraction, for some ψ ∈ Ψ.
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Proof Let (X,F, ∗) be a Menger space and suppose that T : X → X is
a probabilistic ϕ-contraction, for some ϕ ∈ Φ. Then,

FTx,Ty(ϕ(t)) ≥ Fx,y(t) for each x, y ∈ X and t > 0.

We claim that for all t > 0 we can find r > t such that 0 < ϕ(r) < t.
Indeed, suppose there exists t0 > 0 such that ϕ(r) ≥ t0 for each r ≥ t0.
Then, for a fixed r0 ≥ t0 we have that ϕ(r0) ≥ t0 and so ϕ2(r0) ≥ t0.
Proceeding inductively on n we obtain ϕn(r0) ≥ t0 for each n ∈ N and so,
limn→∞ ϕn(r0) ≥ t0, a contradiction. Besides, ϕ(r) > 0. Indeed, if ϕ(r) = 0
we have that 0 = FTx,Tx(ϕ(r)) ≥ Fx,x(r) = 1, since T is a probabilistic
ϕ-contraction, a contradiction. Therefore, 0 < ϕ(r) < t.

Now, for each t > 0 we consider the set Rt = {r ≥ t : 0 < ϕ(r) < t},
which is a non-empty set, as we have just seen.

For each t > 0, we define

ψ(t) =
t+ inf{ϕ(r) : r ∈ Rt}

2
.

The function ψ is well-defined, since for each r ∈ Rt we have that ϕ(r) > 0
and clearly ψ(t) > 0, for each t > 0.

Next, we will see that ψ ∈ Ψ in six steps.

(I) First, note that for each t > 0 we have that 0 < ψ(t) < t. Indeed, by
definition, for each t > 0 we have that

0 <
t

2
≤ ψ(t) <

t+ t

2
= t.

(II) The function ψ is non-decreasing. Indeed, if we suppose that for some
0 < s < t we have that ψ(s) > ψ(t), then inf{ϕ(r) : r ∈ Rs} >
inf{ϕ(r) : r ∈ Rt}. Therefore, we can find rt ∈ Rt such that 0 <
ϕ(rt) < inf{ϕ(r) : r ∈ Rs}. Taking into account that inf{ϕ(r) : r ∈
Rs} < s, then rt ∈ Rs, since rt ≥ t > s and 0 < ϕ(rt) < s, and hence
ϕ(rt) > inf{ϕ(r) : r ∈ Rs}, a contradiction.

(III) The sequence {ψn(t)}n is strictly decreasing for each t > 0. It is obvi-
ous, since for each t > 0 we have that 0 < ψ(t) < t. Consequently:

(IV) {ψn(t)}n converges to the infimum of the sequence in [0,∞[ with respect
to the usual topology of R.

(V) It is fulfilled that limn ψ
n(s) ≤ limn ψ

n(t) whenever 0 < s < t. This
assertion is obvious since both limits exist and ψ is non-decreasing.
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(VI) We will see that limn ψ
n(t) = 0 for each t > 0.

Suppose that limn ψ
n(t0) = a > 0 for some t0 > 0. We assert that

limn ψ
n(s) ≥ a for each s > a. Indeed, if s > a then we can find ns ∈ N

such that ψi(t0) ∈]a, s[ for all i ≥ ns. In particular a < ψns(t0) < s.
Then, by (V ) we have that a = limn ψ

n(ψns(t0)) ≤ limn ψ
n(s).

We claim that there exists t > a such that ψ(t) < a. Indeed, given a > 0
we can find, as we have seen above, ra > a such that 0 < ϕ(ra) < a.
Now, note that for each t ∈]a, ra[ we have that ra ∈ Rt, since ra ≥ t and
0 < ϕ(ra) < a < t. Take δ > 0 such that δ < min{a − ϕ(ra), ra − a}.
Then, for each t ∈]a, a+ δ[ we have

ψ(t) ≤ t+ ϕ(ra)

2
<
a+ δ + a− δ

2
= a.

Choose t > a such that ψ(t) < a. Then, limn ψ
n(t) ≥ a, since t > a.

On the other hand, {ψn(t)}n is a strictly decreasing sequence with
ψ(t) < a, a contradiction.
Therefore, limn ψ

n(t) = 0 for each t > 0, and so ψ ∈ Ψ.

Finally we will see that T is a probabilistic ψ-contraction for ψ ∈ Ψ.
First, note that for all t > 0 we can find rt ∈ Rt such that 0 < ϕ(rt) <

ψ(t). Contrary, suppose that there exists t0 > 0 such that for all r ∈ Rt0 we
have that ϕ(r) > ψ(t0). Then,

inf{ϕ(r) : r ∈ Rt0} ≥ ψ(t0) =
t0 + inf{ϕ(r) : r ∈ Rt0}

2

and so inf{ϕ(r) : r ∈ Rt0} ≥ t0. Now, by definition t0 > inf{ϕ(r) : r ∈ Rt0},
a contradiction.

Let x, y ∈ X and t > 0. By the last paragraph we can take rt ∈ Rt such
that 0 < ϕ(rt) < ψ(t). Then,

FTx,Ty(ψ(t)) ≥ FTx,Ty(ϕ(rt)) ≥ Fx,y(rt) ≥ Fx,y(t).

Therefore, T is a probabilistic ψ-contraction, for ψ ∈ Ψ.
The converse is obvious since Ψ ⊂ Φ.

�
As a consequence of these two last theorems we obtain the next corollary.

Corollary 2.7. Let (X,F, ∗) be a Menger space and let T : X → X be a
mapping. They are equivalent:
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(i) T is a probabilistic ψ-contraction, for some ψ ∈ Ψ.

(ii) T is a probabilistic ϕw-contraction, for some ϕw ∈ Φw.

Consequently, Theorem 2.3 and Theorem 2.4 are equivalent.

Remark 2.8. The reader could find in this note a way of addressing the
recent open question posed by Mihet in [6, Open question 1].
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