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Abstract

In this paper we develop a new technique for constructing fuzzy metric spaces,
in the sense of George and Veeramani, from metric spaces and by means of
the Lukasievicz t-norm. In particular such a technique is based on the use
of metric preserving functions in the sense of J. Doboš. Besides, the new
generated fuzzy metric spaces are strong and completable, and if we add
an extra condition, they are principal. Appropriate examples of such fuzzy
metric spaces are given in order to illustrate the exposed technique.
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1. Introduction

In 1994 George and Veeramani introduced in [3] a concept of fuzzy metric
space. Since then, several authors has been studied deeply this concept both
from the mathematical point of view (see, for instance, [8, 15, 16, 18]) and
from the applied viewpoint (see, for instance, [1, 13, 14, 12]).

Regarding the mathematical point of view, in [8], V. Gregori and S.
Romaguera showed that metrizable topological spaces coincide with fuzzy
metrizable topological spaces. It follows that topologically, metric and fuzzy
metric spaces are identical. However, we can find differences between these
two concepts when we focus our attention on the intrinsic (fuzzy) metric
properties. An instance of such differences that are worth mentioning is
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provided in [9] where Gregori and Romaguera proved that there exist fuzzy
metric spaces which do not admit completion. An important class of fuzzy
metric spaces that are not in general completable are the so-called fuzzy sta-
tionary metric spaces (see Definition 2.9). This type of fuzzy metric spaces
are the closest to the classical metrics and, in fact, many properties can be
extended from metrics to stationary fuzzy metrics in a straightforward man-
ner, specially when the stationary fuzzy metric is defined by means of the
Lukasievicz t-norm L. It is due to the fact that stationary fuzzy metrics
enjoy two distinguished properties, they are principal (see Definition 2.12)
and strong (non-Archimedean) (see Definition 2.18).

In the matter of applications, a few techniques used in image filtering
and in the study of perceptual color difference have been improved when a
classical metric has been replaced by a fuzzy metric. Nonetheless, it must be
pointed out that the shortage of examples of fuzzy metrics in the literature
turns be a drawback when one wants to apply fuzzy metrics to the aforesaid
engineering problems.

The aim of this paper is twofold: On the one hand, inspired by the fact
that there are fuzzy metric spaces that are not completable, we develop a
technique for constructing fuzzy metric spaces from metric spaces and by
means of the Lukasievicz t-norm which are completable. In particular such a
technique is based on the use of metric preserving functions in the sense of J.
Doboš ([2]). Besides, the new generated fuzzy metric spaces are strong and
when we add an extra condition they are also principal. Furthermore, we
show that some well-known examples can be obtained using our technique.
On the other hand, motivated for the aforementioned lack of examples, new
examples can be constructed applying our new technique in order to overcome
the mentioned drawback.

The paper is organized as follows. Section 2 is devoted to recall the basic
notions that will be crucial throughout the paper. In Section 3, we intro-
duce the notion of uniformly continuous mapping between stationary fuzzy
metric spaces and metric spaces, and vice-versa. Thus we define when they
are equivalent. Based on such a notion, we present a technique that allows
to construct stationary fuzzy metric spaces from a metric space by means
of metric preserving functions with values in [0, 1[. Moreover, it is showed
that the new constructed stationary fuzzy metric spaces are completable
provided that the used metric preserving function is a strongly metric pre-
serving function (in the sense of Doboš). In addition, it is proved that the
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new stationary fuzzy metric spaces are complete if and only if the metric
spaces from which are generated are also complete. Section 4 is devoted to
generalize the construction presented in Section 3 to the non-stationary case.
Thus fuzzy metric spaces are generated from metric spaces by means of a
family of metric preserving functions that satisfy a distinguished condition
which will be specified later on. These fuzzy metric spaces are always strong
and, in addition, they are complete if and only if the metric spaces from
which are generated are also complete. Furthermore, they are principal and
completable whenever the set of all metric preserving functions belonging
to the family under consideration are strongly metric preserving functions.
Appropriate examples that illustrate the exposed theory are also yielded.

2. Preliminaries

In the following we will recall the notions that will be crucial in our
subsequent work. With this aim, we will divide this section in two parts.
In the first part, we will recall those notions related to metric preserving
functions. In the second one, we will fix the pertinent notions about fuzzy
metric spaces in which our work will be based on.

2.1. Metric Preserving functions

We recall, according to Doboš, the basic and pertinent notions about
metric preserving functions (for a detailed treatment we refer the reader to
[2]).

Let (X, d) be a metric space. For each f : [0,∞[→ [0,∞[ denote by df
the function df : X ×X → [0,∞[ defined as follows

df (x, y) = f(d(x, y)) for each x, y ∈ X.

In the light of the preceding construction we are able to introduce the
notion of metric preserving function.

Definition 2.1. A function f : [0,∞[→ [0,∞[ is a metric preserving if for
each metric space (X, d) the function df is a metric on X.

From now on, we will denote by M the class of all metric preserving
functions. Moreover, we will denote by O the set of all functions f : [0,∞[→
[0,∞[ with f−1(0) = {0}. It is obvious that M⊂ O.
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The next result provides a distinguished class of metric preserving func-
tions. In order to state such a result we recall the notion of subadditive
function. A function f : [0,∞[→ [0,∞[ is subadditive provided

f(a+ b) ≤ f(a) + f(b)

for each a, b ∈ [0,∞[.

Theorem 2.2. If f ∈ O and it is non-decreasing and subadditive, then
f ∈M.

Following [2], a metric space (X, d) is said to be uniformly discrete when-
ever there exists ε > 0 such that d(x, y) > ε for all x, y ∈ X with x 6= y.

The next result characterizes those metric preserving functions that are
not continuous on [0,∞[ with the usual topology of the real numbers R.

Proposition 2.3. Let f ∈M. Then f is discontinuous if and only if (X, df )
is uniformly discrete for every metric space (X, d).

A special class of metric preserving functions is the so-called strongly
metric preserving functions. Let us recall such a notion.

Definition 2.4. A function f : [0,∞[→ [0,∞[ is strongly metric preserving
if for each metric space (X, d) the function df is a metric on X topologically
equivalent to d.

From now on, we will denote by MS the class of all strongly metric
preserving functions.

The next result characterizes strongly metric preserving functions.

Theorem 2.5. Let f ∈M. Then the following assertions are equivalent:

1. f is continuous,

2. f is continuous at 0,

3. for each ε > 0 we can find x > 0 such that f(x) < ε,

4. f ∈MS.

Following [2], let us recall that two metrics d and ρ on X are called
uniformly equivalent if both identity mappings i : (X, d) → (X, ρ) and i :
(X, ρ)→ (X, d) are uniformly continuous.

In the light of Theorem 2.5 the following two results can be obtained.
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Theorem 2.6. Let f ∈ M. Suppose that (X, d) is a metric space which is
not uniformly discrete. Then the metrics df and d are uniformly equivalent
if and only if f ∈MS.

Theorem 2.7. Let f ∈ M. Suppose that (X, d) is a metric space which is
uniformly discrete. Then, the metrics df and d are uniformly equivalent.

2.2. Fuzzy metric spaces

In [3], Goerge and Veeramani introduced the following notion of fuzzy
metric space.

Definition 2.8. A fuzzy metric space is an ordered triple (X,M, ∗) such
that X is a (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set
on X ×X×]0,∞[ satisfying the following conditions, for all x, y, z ∈ X and
s, t > 0:

(GV1) M(x, y, t) > 0;

(GV2) M(x, y, t) = 1 if and only if x = y;

(GV3) M(x, y, t) = M(y, x, t);

(GV4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s);

(GV5) M(x, y, ) :]0,∞[→]0, 1] is a continuous function.

If (X,M, ∗) is a fuzzy metric space, we will say that (M, ∗) is a fuzzy
metric on X, or simply, M is a fuzzy metric on X.

According to [3], every fuzzy metric M on X generates a topology τM on
X which has as a base the family of open sets of the form {BM(x, ε, t) : x ∈
X, ε ∈]0, 1[, t > 0}, where BM(x, ε, t) = {y ∈ X : M(x, y, t) > 1 − ε} for all
x ∈ X, ε ∈]0, 1[ and t > 0.

Let (X, d) be a metric space and let Md be a fuzzy set on X ×X×]0,∞[
defined by

Md(x, y, t) =
t

t+ d(x, y)
.

Following [3], (X,Md, ·) is a fuzzy metric space, where · stands for the product
t-norm. The fuzzy metric Md is called the standard fuzzy metric induced by
d. Moreover, the topology τMd

coincides with the topology on X induced by
d.
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The following notion, which is due to Gregori and Romaguera (see [10]),
will play a central role later on.

Definition 2.9. A fuzzy metric space (X,M, ∗) is said to be stationary if
M does not depend on t, i.e., if the function Mx,y(t) = M(x, y, t) is constant
for each x, y ∈ X.

When a fuzzy metric space (X,M, ∗) is stationary we will say that M is
a stationary fuzzy metric and, in addition, we will write M(x, y) instead of
M(x, y, t) when no confusion arises.

The next result, given by George and Veeramani in [3], characterizes the
notion of convergence in fuzzy metric spaces.

Proposition 2.10. A sequence {xn} in X converges to x with respect to τM
if and only if limnM(xn, x, t) = 1, for all t > 0.

The following notion was introduced by George and Veeramani in [3] (and
previously, by H. Sherwood, in the context of PM-spaces [17]).

Definition 2.11. A sequence {xn} in a fuzzy metric space (X,M, ∗) is said
to be M-Cauchy, or simply Cauchy, if for each ε ∈]0, 1[ and each t > 0 there
is n0 ∈ N such that M(xn, xm, t) > 1 − ε for all n,m ≥ n0. Equivalently,
{xn} is Cauchy if limn,mM(xn, xm, t) = 1 for all t > 0, where limn,m denotes
the double limit as n → ∞, and m → ∞. (X,M, ∗) (or simply X) is called
complete if every Cauchy sequence in X is convergent with respect to τM .
In such a case M is also said to be complete.

The notion of principal fuzzy metric space, introduced in [4], will be useful
in our subsequent study.

Definition 2.12. A fuzzy metric space (X,M, ∗) is principal (or simply, M
is principal) if the family {BM(x, r, t) : r ∈]0, 1[} is a local base at x ∈ X,
for each x ∈ X and each t > 0.

In the study of completion of fuzzy metric space the notion of isometry
introduced by Gregori and Romaguera in [9] plays a central role.

Definition 2.13. Let (X,M, ∗1) and (Y,N, ∗2) be two fuzzy metric spaces.
A mapping f from X to Y is called an isometry if for each x, y ∈ X and
each t > 0, M(x, y, t) = N(f(x), f(y), t). Moreover if f is a bijective isome-
try, then (X,M, ∗1) and (Y,N, ∗2) (or simply X and Y ) are called isometric.
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Thus a fuzzy metric completion of (X,M, ∗) is a complete fuzzy metric space
(X∗,M∗, �) such that (X,M, ∗) is isometric to a dense subspace of X∗. Fur-
thermore, (X,M, ∗) (or simply X) is called completable if it admits a fuzzy
metric completion.

In [10] is given the following characterization about completion of a fuzzy
metric space which will be useful when we discuss the completion of those
fuzzy metric spaces induced by our new technique.

Theorem 2.14. Let (X,M, ∗) be a fuzzy metric space, and let {an} and {bn}
be two Cauchy sequences in (X,M, ∗). Then (X,M, ∗) is completable if and
only if it satisfies the following conditions:

(C1) The assignment t → limnM(an, bn, t) is a continuous function from
]0,∞[ into ]0, 1].

(C2) If limnM(an, bn, s) = 1 for some s > 0 then limnM(an, bn, t) = 1 for
all t > 0.

Remark 2.15. Obviously, a stationary fuzzy metric space (X,M, ∗) is com-
pletable if and only if limnM(an, bn) > 0 for every two Cauchy sequences
{an} and {bn}.

Taking into account the preceding notions Gregori and Romaguera proved
in [9] the following useful result.

Proposition 2.16. If a fuzzy metric space has a fuzzy metric completion
then it is unique up to isometry.

Remark 2.17. Attending to the last proposition, let us recall the construction
of the completion of a fuzzy metric space given in [10]. Suppose (X∗,M∗, �)
is a fuzzy metric completion of (X,M, ∗). Then we have that:

1. X ⊆ X∗, where X∗ is the quotient set on the set of M-Cauchy sequences
induced by the equivalence relation ∼ defined by

{xn} ∼ {yn} ⇔ lim
n
M(xn, yn, t) = 1 for all t > 0.

2. � can be assumed to be ∗.
3. M∗ is defined on X∗ by

M∗(x∗, y∗, t) = lim
n
M(xn, yn, t)

for all x∗, y∗ ∈ X∗ and for all t > 0, where {xn} ∈ x∗ and {yn} ∈ y∗.
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A distinguished class of fuzzy metric spaces, that will need to complete
our study, is the so-called strong fuzzy metric spaces. According to [7], let
us recall such a notion.

Definition 2.18. Let (X,M, ∗) be a fuzzy metric space. The fuzzy metric
space (X,M, ∗) (or simply the fuzzy metric M) is said to be strong (non-
Archimedean) if (in addition) it satisfies the following inequality

(GV4’) M(x, z, t) ≥M(x, y, t) ∗M(y, z, t),

for each x, y, z ∈ X and each t > 0.

To finish, we give two observations on the class of strong fuzzy metrics
that will be useful in our work.

Remark 2.19. In [6] the authors showed that the assignment in condition
(C1), in the statement of Theorem 2.14, is always a continuous function
whenever M is strong. So, as the authors pointed out in Theorem 4.7 of that
paper, a strong fuzzy metric space (X,M, ∗) is completable if and only if for
each pair of Cauchy sequences {an} and {bn} in X the following conditions
are fulfilled:

(c1) limnM(an, bn, s) = 1 for some s > 0 implies limnM(an, bn, t) = 1 for
all t > 0.

(c2) limnM(an, bn, t) > 0 for all t > 0.

Remark 2.20. Observe that if (X,M, ∗) is a non-stationary fuzzy metric
space, then we can define the family of fuzzy sets {Mt : t > 0} where, for
each t > 0, Mt : X×X×]0,∞[→]0, 1] is given by Mt(x, y, s) = M(x, y, t) for
all x, y ∈ X and for all s > 0. According to [6], (X,M, ∗) is strong if and
only if (X,Mt, ∗) is a stationary fuzzy metric space for each t > 0. In this
case the family {Mt : t > 0} is called the family of stationary fuzzy metrics
associated to M . Note that if (X,Mt, ∗) is a stationary fuzzy metric space,
then we can identify the value Mt(x, y, s) with the value Mt(x, y). Moreover,
τM =

∨
{τMt : t > 0} provided that (X,M, ∗) is strong (see [7]). Furthermore,

if M is strong and τM = τMt for all t > 0, then M is principal.
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3. A technique for inducing stationary fuzzy metric spaces from
metric spaces via metric preserving functions

First of all, we introduce two continuity notions that we will need in our
subsequent discussion.

Definition 3.1. Let (X,M, ∗) be a stationary fuzzy metric space and let
(Y, ρ) be a metric space. A mapping f : X → Y is said to be M -ρ uniformly
continuous if given ε > 0 we can find δ ∈]0, 1[ such that M(x, y) > 1 − δ
implies ρ(f(x), f(y)) < ε.

Definition 3.2. Let (X, d) be a metric space and let (Y,N, �) be a stationary
fuzzy metric space. We will say that the mapping f : X → Y is d-N
uniformly continuous if given ε ∈]0, 1[ there exists δ > 0 such that d(x, y) < δ
implies N(f(x), f(y)) > 1− ε.

The following examples illustrate the preceding definitions.

Example 3.3. 1. Let (X,M,L) be the stationary fuzzy metric space,
where X = [0, 1[ and

M(x, y, t) = 1− |x− y|

for each x, y ∈ X and t > 0. Also, let (Y, ρ) be the metric space where
Y = R2 and

ρ((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2

for all (x1, y1), (x2, y2) ∈ R2. Define the mapping f : X → Y by

f(x) = (4x, 3x+ 1)

for all x ∈ X. Next we will see that f is M -ρ uniformly continuous.
To this end, fix ε > 0 and consider δ < min{ε/5, 1}. Then, for each
x, y ∈ X satisfying M(x, y) > 1 − δ, we have that ρ(f(x), f(y)) < ε.
Indeed, if 1− δ < M(x, y) = 1− |x− y|, then |x− y| < δ < ε/5 and so

ρ(f(x), f(y)) = ρ((4x, 3x+ 1), (4y, 3y + 1)) =√
(4x− 4y)2 + (3x+ 1− 3y − 1)2 =√
16(x− y)2 + 9(x− y)2 = 5 · |x− y| < 5 · ε

5
= ε.

Therefore, f is M -ρ uniformly continuous.
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2. Let (X, d) be the metric space such that X = [0, 1] and d(x, y) = |x−y|
for all x, y ∈ X. Also, let (Y,N, ·) be the stationary fuzzy metric space
with Y = [1, 2] and

N(x, y) =
min{x, y}
max{x, y}

for all x, y ∈ Y . Define the mapping f : X → Y by f(x) = x + 1 for
all x ∈ X. Next we will see that f is d-N uniformly continuous.

With this aim, fix ε > 0 and consider δ < ε. Then, for each x, y ∈ X
satisfying d(x, y) < δ, we have that N(f(x), f(y)) > 1 − ε. Indeed, let
x, y ∈ [0, 1] such that d(x, y) < δ. Since max{x+ 1, y+ 1} ≥ 1 we have
that

δ > |x− y| > |x− y|
max{x+ 1, y + 1}

.

Furthermore,

N(f(x), f(y)) =
min{x+ 1, y + 1}
max{x+ 1, y + 1}

= 1− |x− y|
max{x+ 1, y + 1}

> 1−δ > 1−ε.

Obviously, note that if f is M -ρ ( d-N ) uniformly continuous then it is
continuous. With the above terminology we can prove the next proposition
which will be crucial in the development of our new technique.

Proposition 3.4. Let (X,M, ∗) be a stationary fuzzy metric space and let
(Y, ρ) be metric space. Let f : X → Y be an M-ρ uniformly continuous
mapping. If {xn} is an M-Cauchy sequence then {f(xn)} is a ρ-Cauchy
sequence.

Proof. Let ε > 0, and consider a sequence {xn} in X which is M -Cauchy.
Since f is M -ρ uniformly continuous we can find δ ∈]0, 1[ such thatM(x, y) >
1 − δ implies ρ(f(x), f(y)) < ε. Now, since {xn} is M -Cauchy we can
find n0 ∈ N such that M(xn, xm) > 1 − δ for all n,m ≥ n0, and so
ρ(f(xn), f(xm)) < ε for all n,m ≥ n0. Hence {f(xn)} is ρ-Cauchy.

Applying a similar reasoning to that given in the proof of Proposition 3.4
we can prove the next one.

Proposition 3.5. Let (X, d) be a metric space and let (Y,N, �) be a sta-
tionary fuzzy metric space. Let f : X → Y a d-N uniformly continuous
mapping. If {xn} is a d-Cauchy sequence then {f(xn)} is an N-Cauchy
sequence.
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From now on, if no confusion arises, we will omitt the metric and the
fuzzy metric when we refer to a mapping f as uniformly continuous (in the
sense of Definitions 3.1 and 3.2).

In the light of the introduced notions, the next result shows that the
composition of uniformly continuous mappings among metric spaces and sta-
tionary fuzzy metric spaces is uniformly continuous.

Proposition 3.6. Let (X,M, ∗) be a stationary fuzzy metric space, and let
(Y, ρ) and (Z, d) be two metric spaces. Suppose that f : X → Y and g :
Y → Z are two uniformly continuous mappings. Then g ◦ f is a uniformly
continuous mapping.

Proof. Let ε > 0. Since g is uniformly continuous we can find δ1 > 0 such that
ρ(a, b) < δ1 implies d(g(a), g(b)) < ε. Since f is M -ρ uniformly continuous
then, given δ1 > 0, we can find δ ∈]0, 1[ such that M(x, y) > 1 − δ implies
ρ(f(x), f(y)) < δ1. Therefore, for each x, y ∈ X such that M(x, y) > 1 − δ
it is satisfied that ρ(f(x), f(y)) < δ1 and so d(g(f(x), f(y)) < ε, hence g ◦ f
is M -d uniformly continuous.

In an analogous way we can prove the next proposition.

Proposition 3.7. Let (X,M, ∗) be a stationary fuzzy metric space, and let
(Y, ρ) and (Z, d) be two metric spaces. Suppose that f : Z → X and g :
Y → Z are two uniformly continuous mappings. Then f ◦ g is a uniformly
continuous mapping.

Taking into account Propositions 3.4 and 3.5 we extend the classical con-
cept of uniformly equivalent metric spaces (see Section 2) to our framework
as follows.

Definition 3.8. Let d and (M, ∗) be a metric and a stationary fuzzy metric
on X, respectively. Then d and (M, ∗) are called uniformly equivalent if both
identity mappings are M -d and d-M uniformly continuous, respectively.

Observe that if a metric d is uniformly equivalent to a fuzzy metric (M, ∗)
on X, then τM = τd, where τd denotes the topology induced by the metric d.
Moreover, every d-Cauchy sequence is an M -Cauchy sequence and vice-versa.

The next examples provide instances of metric and fuzzy metric spaces
that are uniformly equivalent.
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Example 3.9. Assume that (X, d) is a bounded metric space, i.e., there
exists K > 0 such that d(x, y) ≤ K for all x, y ∈ X. On account of [7], we
have that (X,M,L) is a stationary fuzzy metric space, where

M(x, y) = 1− d(x, y)

1 +K

for all x, y ∈ X. Next we show that (X, d) and (X,M,L) are uniformly
equivalent. Indeed, it is not hard to check that, given ε > 0, then d(x, y) < ε
provided that M(x, y) > 1− δ whenever δ is taken as follows:

δ =


ε

1+K
if ε < K

K
1+K

if ε ≥ K

Hence the identity mapping is M -d uniformly continuous. Moreover, given
ε ∈]0, 1[, then M(x, y) > 1− ε provided that d(x, y) < δ whenever δ is taken
as δ = (1 + K)ε. Thus the identity mapping is d-M uniformly continuous.
So (X, d) and (X,M,L) are uniformly equivalent. Of course, it follows that
τM = τd.

Example 3.10. Assume that (X,M,L) is a stationary fuzzy metric space.
According to [7], the mapping dM defined on X ×X by

dM(x, y) = 1−M(x, y)

for all x, y ∈ X is a metric on X. A straightforward computation shows
that the identity mapping is M -dM and dM -M uniformly continuous. So
(X,M,L) and (X, dM) are uniformly equivalent. Of course, it follows that
τM = τdM .

Inspired by the preceding examples we will introduce the promised tech-
nique for generating stationary fuzzy metric spaces from metric spaces by
means of metric preserving functions which, besides, preserves the spirit of
the aforementioned examples. To this end, we will denote by M1 and by
M1

S the class of metric preserving functions and strongly metric preserv-
ing functions, respectively, satisfying in both cases that f(x) < 1 for each
x ∈ [0,∞[.

Proposition 3.11. Let (X, d) be a metric space and let f ∈M1. Then:
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(i) (X,Mf ,L) is a stationary fuzzy metric space, where Mf (x, y) = 1 −
df (x, y) for all x, y ∈ X. Moreover, τMf

= τdf .

(ii) If, in addition f ∈ M1
S, then (Mf ,L) and d are uniformly equivalent

and, thus, τMf
= τd.

Proof. Let (X, d) be a metric space and consider f ∈M1.

(i) It is straightforward.

(ii) Suppose that f ∈ M1
S. Then, from Theorems 2.6 and 2.7 we obtain

that d and df are uniformly equivalent, and so the identity mapping
i1 : (X, df ) → (X, d) is uniformly continuous. Next we show that the
identity mapping i2 : (X,Mf ) → (X, df ) is uniformly continuous. To
this end, we can consider ε ∈]0, 1[, since the metric df is bounded with
df (x, y) < 1 for all x, y ∈ X. Then, Mf (x, y) > 1 − ε if and only if
1−df (x, y) > 1−ε, or equivalently, if and only if df (x, y) < ε. Therefore
i2 : (X,M) → (X, df ) is uniformly continuous. Thus, by Proposition
3.6, the identity mapping i : (X,M)→ (X, d) is uniformly continuous,
since i = i1 ◦ i2. Following similar arguments, but now with the help
of Proposition 3.7, we can show that i : (X, d) → (X,M) is uniformly
continuous. Therefore Mf and d are uniformly equivalent and, thus,
τMf

= τd.

The next example shows that the condition “f ∈M1
S” cannot be relaxed

in the assertion (ii) in the statement of Proposition 3.11.

Example 3.12. Consider f : [0,∞[→ [0,∞[ given by

f(x) =

{
0, if x = 0
x+1
x+2

, if x > 0.

Obviously, f is non-decreasing. We will see that it is also subadditive. Let
a, b ∈ [0,∞[. If one of them is 0 the subadditive condition is obvious. Suppose
that a, b ∈]0,∞[. Then,

f(a+ b) =
a+ b+ 1

a+ b+ 2
< 1 ≤ a+ 1

a+ 2
+
b+ 1

b+ 2
= f(a) + f(b).

Therefore, f is a non-decreasing and subadditive function such that f ∈ O.
By Theorem 2.2, f ∈ M. Moreover, f(x) < 1 for each x ∈ [0,∞[ and it
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is clearly not continuous at 0. Then, by Theorem 2.5, f does not belong to
MS, i.e., there exists (X, d) which is not topologically equivalent to (X, df ).
Then, by assertion (i) in the statement of Proposition 3.11, τM = τdf but τdf
is not equivalent to τd.

Since every stationary fuzzy metric space is always principal we have the
following result as a consequence of Proposition 3.11.

Corollary 3.13. Let (X, d) be a metric space and let f ∈ M1. Then the
fuzzy metric space (X,Mf ,L) is principal, where Mf (x, y) = 1− df (x, y) for
all x, y ∈ X.

Attending to Proposition 3.11, we introduce the next definition.

Definition 3.14. Let f ∈ M1 and (X, d). The stationary fuzzy metric
(Mf ,L) defined on X by Mf (x, y) = 1 − df (x, y) for all x, y ∈ X, will be
called the stationary fuzzy metric induced by f and (X, d) or, simply, induced
by f if no confusion arises.

In the following example we show that some well-known instances of sta-
tionary fuzzy metric spaces can be obtained applying the technique intro-
duced in Proposition 3.11. Observe that such a example illustrates Definition
3.14 and, in addition, complementes the examples furnished by Examples 3.9
and 3.10 about fuzzy metric spaces uniformly equivalent to metric spaces.

Example 3.15. Let (X, d) be a metric space and let K > 0. Consider the
functions f, g and h defined for all x ∈ [0,∞[ by

1. f(x) = min
{

x
1+K

, K
1+K

}
,

2. g(x) = x
K+x

,

3. h(x) = 1− exp−
x
K .

Note that the preceding functions are not decreasing, subadditive and belong
to O. So, by Theorem 2.2, they belong to M. Moreover, it is not hard to
see that they are continuous and, thus, by Theorem 2.5, we have that they
belong to MS. Since, in addition, they take values into [0, 1[ we have that,
in fact, they belong to M1

S.
The corresponding stationary fuzzy metrics (Mf ,L), (Mg,L) and (Mh,L)

induced by f, g and h and (X, d) are given, respectively, by

1. Mf (x, y) = 1− df (x, y) = max
{

1− d(x,y)
1+K

, 1
1+K

}
,
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2. Mg(x, y) = 1− dg(x, y) = K
K+d(x,y)

,

3. Mh(x, y) = 1− dh(x, y) = exp−
d(x,y)

K ,

for each x, y ∈ X.

Once the technique for generating stationary fuzzy metric spaces have
been introduced we are able to discuss their completion.

Theorem 3.16. Let (X, d) be a metric space and let f ∈M1
S. The following

assertions hold:

(i) (X,Mf ,L) is complete if and only if (X, d) is complete.

(ii) (X,Mf ,L) is completable and the completion of (X,Mf ,L) is (X∗,M∗
f ,L),

where M∗
f is the stationary fuzzy metric given by M∗

f (a∗, b∗) = 1 −
d∗f (a

∗, b∗) for each a∗, b∗ ∈ X∗ and, in addition, (X∗, d∗) is the comple-
tion of (X, d).

Proof. Let (X, d) be a metric space and let f ∈M1
S. Consider the stationary

fuzzy metric Mf induced by f and (X, d).

(i) By Proposition 3.11 d and Mf are uniformly equivalent. Hence τMf
=

τd and, by Propositions 3.4 and 3.5, a sequence in X is Mf -Cauchy if
and only if it is d-Cauchy.

(ii) First, we will show that (X,Mf ) is completable. With this aim, let {an}
and {bn} be two Mf -Cauchy sequences. By assertion (ii) in the state-
ment of Proposition 3.11 and by Proposition 3.4, they are d-Cauchy.
Consider a∗, b∗ ∈ X∗ such that {an} ∈ a∗ and {bn} ∈ b∗. By Theorem
2.5 f is continuous and so we have that

lim
n
Mf (an, bn) = lim

n
(1− df (an, bn)) = 1− lim

n
f(d(an, bn))

= 1− f(lim
n
d(an, bn)) = 1− f(d∗(a∗, b∗)).

Since f ∈M1 we have that

lim
n
Mf (an, bn) = 1− f(d∗(a∗, b∗)) > 0.

Therefore, by Remark 2.15 we have that (X,Mf ) is completable.

Next suppose that (X̃,M∗
f ,L) is the completion of (X,Mf ,L). We will

see that X̃ = X∗.
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By Proposition 3.11, d and Mf are uniformly equivalent and, thus,
{xn} is an Mf -Cauchy sequence in X if and only if {xn} is a d-Cauchy
sequence in X. On the other hand, given two d-Cauchy sequences {xn}
and {yn} in X we have that

lim
n
df (xn, yn) = lim

n
f(d(xn, yn) = f(lim

n
d(xn, yn)),

because, by Theorem 2.5, f is continuous. Hence

lim
n
Mf (xn, yn) = 1⇔ lim

n
df (xn, yn) = 0⇔ lim

n
d(xn, yn) = 0,

since f ∈ O. Thus, X̃ = X∗.

Finally, consider a∗, b∗ ∈ X∗ such that {an} ∈ a∗ and {bn} ∈ b∗.
Attending to Remark 2.17, we have that

M∗
f (a∗, b∗, t) = lim

n
Mf (an, bn, t),

for each t > 0. Since Mf (an, bn, t) = Mf (an, bn) for each t > 0 and

limnMf (an, bn) = 1− limn df (an, bn) =

1− f(limn d(an, bn)) = 1− f(d∗(a∗, b∗)) = 1− d∗f (a∗, b∗),

we conclude that

M∗
f (a∗, b∗, t) = 1− d∗f (a∗, b∗)

for all {an} ∈ a∗ and {bn} ∈ b∗ and t > 0.

Remark 3.17. Notice that the notion of uniformly discrete metric space can
be adapted to the stationary fuzzy metric context in the following easy way.
Indeed, a stationary fuzzy metric space (X,M, ∗) will be said to be uniformly
discrete provided that there exists ε ∈]0, 1[ such that M(x, y) < ε for all
x, y ∈ X such that x 6= y. Of course we have omitted the t in the expression
of M because of its stationary nature.

Taking into account the preceding notion we have the following reasoning
regarding the completion of the stationary fuzzy metric (X,Mf ,L).
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If the metric preserving function f in the statement of Theorem 3.16
is assumed to be discontinuous, then, by Proposition 2.3, the metric df is
uniformly discrete and, consequently, the stationary fuzzy metric Mf induced
by f and (X, d) is also uniformly discrete. Therefore, the unique Mf -Cauchy
sequences on X are the eventually constant sequences and so (X,Mf ,L) is
complete.

In the light of Theorem 3.16 and Remark 3.17 we can assert that for
each f ∈M1 and each metric space (X, d) the stationary fuzzy metric space
(X,Mf ,L) induced by f and (X, d) is always completable.

4. A technique for inducing non-stationary fuzzy metric spaces
from metric spaces via metric preserving functions

In Section 3, we have provided a technique which is able to induce sta-
tionary fuzzy metric spaces from classical metric spaces by means of metric
preserving functions and, in addition, we have studied the completion and
completeness of such fuzzy metric spaces. In this section we will extend the
aforementioned technique in order to construct non-stationary fuzzy metric
spaces induced by classical metric spaces and, now, by a family of metric
preserving functions. Moreover we will study the completion and complete-
ness of such fuzzy metric spaces. We begin such a study introducing the next
concept.

Definition 4.1. Consider a family F = {ft : t > 0} of real functions defined
on [0,∞[. We will say that F is decreasing if t < s implies ft(x) ≥ fs(x) for
each x ∈ [0,∞[.

Example 4.7 gives a few instances of decreasing families of functions in
the sense of Definition 4.1.

In order to introduce the announced technique let us recall a few known
facts. According to [7] we have the following:

Proposition 4.2. Let {(X,Mt,L) : t > 0} be a family of stationary fuzzy
metric spaces associated to a strong fuzzy metric space (X,M,L). Then the
following assertions hold:

(i) The real function d, defined by d(x, y) = 1−
∧
tMt(x, y) for all x, y ∈ X,

is a metric on X such that τd ⊇
∨
t τMt = τM , where

∧
tMt is the real

function defined on X ×X by
∧
tMt(x, y) = inf{Mt(x, y) : t > 0} for

all x, y ∈ X.
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(ii) The real function dt, defined by dt(x, y) = 1−Mt(x, y) for all x, y ∈ X,
is a metric on X for all t > 0. Moreover, d(x, y) =

∨
t dt(x, y) for all

x, y ∈ X, where
∨
t dt(x, y) = sup{dt(x, y) : t > 0} for all x, y ∈ X, is

a metric on X and τd ⊇ τdt for all t > 0.

Taking into account the preceding proposition we introduce the new tech-
nique in the following result.

Theorem 4.3. Let (X, d) be a metric space and let F = {ft : t > 0} be a
decreasing family of functions included in M1 such that the function fx is
continuous on ]0,∞[ for each x ∈ [0,∞[, where fx(t) = ft(x) for all t > 0.
Then the following assertions hold:

(i) (X,MF ,L) is a fuzzy metric space, where MF (x, y, t) = 1 − dft(x, y)
for each x, y ∈ X and each t > 0.

(ii) (X,MF ,L) is strong.

(iii) τMF
=
∨
{τMFt

: t > 0} =
∨
{τdft : t > 0}, where MFt(x, y) =

MF (x, y, t) for each x, y ∈ X and t > 0.

(iv) The function dF is a metric on X, where dF is defined by dF (x, y) =
1 −

∧
tMFt(x, y) for all x, y ∈ X. Besides, dF (x, y) =

∨
t dft(x, y) for

all x, y ∈ X and τdF ⊇ τMF
.

(v) If F ⊆M1
S, then (X,MF ,L) is principal and τdF ⊇ τMF

= τd.

Proof. Consider a decreasing family F = {ft : t > 0} of functions in M1

such that for each x ∈ [0,∞[ we have that fx is continuous on ]0,∞[. Define
MF (x, y, t) = 1− dft(x, y) for each x, y ∈ X and each t > 0.

(i) Next we will see that (X,MF ,L) is a fuzzy metric space.
It is obvious that M satisfies axioms (GV 1), (GV 2) and (GV 3). Fur-
thermore, the assumption that the function fx is continuous on ]0,∞[
for all x ∈ [0,∞[ ensures that (GV 5) is fulfilled. We will show that
(GV 4) is satisfied too.
First, note that for each x, y ∈ X we have that MFx,y is an increasing
function on ]0,∞[, where MFx,y(t) = MF (x, y, t) for each t > 0. Indeed,
since the family {ft : t > 0} is decreasing, given 0 < t < s then

MFx,y(s) = MF (x, y, s) = 1− dfs(x, y) ≥

1− dft(x, y) = MF (x, y, t) = MFx,y(t).
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Moreover, on the one hand, MF (x, z, t) = 1 − dft(x, z) > 0, since
ft ∈ M1. On the other hand, since for each t > 0 we have that dft is
a metric on X, then for each x, y, z ∈ X and each t > 0 we have that
MF (x, z, t) = 1 − dft(x, z) ≥ 1 − dft(x, y) − dft(y, z) = 1 − dft(x, y) +
1− dft(y, z)− 1. Therefore,

MF (x, z, t) ≥MF (x, y, t)LMF (y, z, t). (1)

Finally, given x, y, z ∈ X and t, s > 0, by these two last observations
we have

MF (x, z, t+ s) ≥MF (x, z,max{t, s}) ≥

MF (x, y,max{t, s})LMF (y, z,max{t, s}) ≥M(x, y, t)LM(y, z, s)

and so (GV 4) is fulfilled. Therefore, (X,MF ,L) is a fuzzy metric space.

(ii) The inequality (1) shows that the fuzzy metric space (X,MF ,L) is
strong, i.e., that it holds the condition (GV 4′).

(iii) Since (X,MF ,L) is strong we deduce, by Remark 2.20, that τMF
=∨

{τMFt
: t > 0}, where MFt(x, y) = MF (x, y, t) for each x, y ∈ X and

t > 0. Proposition 3.11 guarantees that τMFt
= τdt for each t > 0. It

follows that τMF
=
∨
{τMFt

: t > 0} =
∨
{τdt : t > 0}.

(iv) By assertion (i) in the statement of Proposition 4.2 we have that the
function dF is a metric on X. By assertion (ii) in the statement of
the aforesaid proposition we obtain that dF (x, y) =

∨
t dft(x, y) for all

x, y ∈ X is also a metric on X and that τdF ⊇ τMF
.

(v) Next we see that (X,MF ,L) is principal provided ft ∈ M1
S for all

t > 0. By assertion (ii) in the statement of Proposition 3.11 we have
that τMFt

= τ(dt) = τ(d) for each t > 0. Whence we have that τMF
=∨

{τdt : t > 0} = τ(d). Thus, τMF
= τMFt

for each t > 0. By Remark
2.20 we conclude that (X,MF ,L) is principal. Hence τdF ⊇ τMF

= τd.

The next example shows that the condition “fx is continuous on ]0,∞[
for each x ∈ [0,∞[” cannot be deleted in the statement of Theorem 4.3 in
order to guarantee the introduced technique induces a fuzzy metric.
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Example 4.4. Consider the family F = {ft : t > 0}, where

ft(x) =

{
x
t+x

, if 0 < t ≤ 1 and x ∈ [0,∞[,
x

2t+x
, if t > 1 and x ∈ [0,∞[.

It is easy to verify that F is a decreasing family of functions included inM1.
Besides,

fx(t) =

{
x
t+x

, if 0 < t ≤ 1
x

2t+x
, if t > 1,

for each x ∈ X, which, obviously, is not continuous at t = 1.
Let (X, d) be a metric space, if we define the fuzzy set MF on X ×

X×]0,∞[ as in assertion (i) in the statement of Theorem 4.3, i.e.,

MF (x, y, t) =


t

t+d(x,y)
, if 0 < t ≤ 1 and x, y ∈ X,

2t
2t+d(x,y)

, if t > 1 and x, y ∈ X,

it is easy to verify that MF does not satisfy axiom (GV 5) in definition of
fuzzy metric space (Definition 2.8).

The next example shows that the assumption “F ⊆ M1
S” cannot be

deleted in the statement of Theorem 4.3 in order to guarantee that the in-
duced fuzzy metric is principal.

Example 4.5. Let (X, d) be a metric space. Consider the family of functions
F = {ft : t > 0} defined on [0,∞[ by

ft(x) =


0, if x = 0;

1− t2

t+x
, if x ∈]0,∞[, t ∈]0, 1[;

x
t+x

, elsewhere.

Note that ft ∈M1 for each t ∈ [1,∞[. Now, we will see that ft ∈M1 for
each t ∈]0, 1[. To this end, note that ft ∈ O and ft(x) < 1 for each x ∈ [0,∞[
and each t ∈]0, 1[. Besides, it is easy to see that ft is non-decreasing for
t ∈]0, 1[.

Next, we will see that ft is also subadditive for each t ∈]0, 1[.

With this aim, we fix t ∈]0, 1[.
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If a = 0 or b = 0, then it is obvious that f(a + b) ≤ f(a) + f(b). Now,
suppose that a, b ∈]0,∞[. Then it is easy to verify that

t

t+ a+ b
≥ t

t+ a
· t

t+ b
.

So
t2

t+ a+ b
≥ t2

t+ a
· t2

t+ b
,

since t ∈]0, 1[. Moreover, t2

t+a
, t2

t+b
∈ [0, 1] and taking into account that x ·y ≥

xLy for each x, y ∈ [0, 1], we have that

t2

t+ a+ b
≥ t2

t+ a
L

t2

t+ b
≥ t2

t+ a
+

t2

t+ b
− 1.

Whence we deduce that

f(a+ b) = 1− t2

t+ a+ b
≤ 1− t2

t+ a
+ 1− t2

t+ b
= f(a) + f(b).

Therefore, ft is subadditve. Theorem 2.2 guarantees that ft ∈M1.

It is not hard to check that fx is continuous on ]0,∞[ for each x ∈ [0,∞[,
since f 0(t) = ft(0) = 0 for each t ∈]0,∞[ and, for each x ∈]0,∞[, we have
that

fx(t) =

 1− t2

t+x
, if t ∈]0, 1[;

x
t+x

, if t ∈ [1,∞[.

Clearly the family F satisfies all hypothesis in the statement of Theorem
4.3. Thus (X,MF ,L) is a strong fuzzy metric on X, where MF is given by

MF (x, y, t) = 1−ft(d(x, y)) =



1, if x = y;

t2

t+d(x,y)
, if x, y ∈ X with x 6= y and t ∈]0, 1[;

t
t+d(x,y)

, if x, y ∈ X with x 6= y and t ∈ [1,∞[.

According to [5], (X,MF ,L) is not a principal fuzzy metric space. Besides,
notice that ft is not continuous at 0 for any t ∈]0, 1[ and, thus, by Theorem
2.5 we have that ft /∈M1

S for any t ∈]0, 1[.
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The following notion have been inspired by Theorem 4.3.

Definition 4.6. Let (X, d) be a metric space and let F = {ft : t > 0} be a
decreasing family of functions included in M1 such that for each x ∈ [0,∞[
we have that fx is continuous on ]0,∞[, where fx(t) = ft(x) for all t > 0.
Then the fuzzy metric space (X,MF ,L), where MF (x, y, t) = 1−dft(x, y) for
each x, y ∈ X and each t > 0, will be called the fuzzy metric space induced
by the family F and the metric space (X, d). We will also say that (MF ,L)
is the fuzzy metric induced by F and (X, d).

In the following example we show that some well-known instances of
strong and principal fuzzy metric spaces can be obtained applying the tech-
nique introduced in Theorem 4.3. Such examples illustrate Definition 4.6.

Example 4.7. Let (X, d) be a metric space. Consider the three families of
functions F = {ft : t > 0}, G = {gt : t > 0} and H = {ht : t > 0} defined on
[0,∞[ by:

1. ft(x) = min{ x
1+t
, t
1+t
},

2. gt(x) = x
t+x

,

3. ht(x) = 1− exp
−x
t .

It is not hard to check that these families of functions fulfil all hypothesis,
even that they are included in M1

S, in the statement of Theorem 4.3. The
corresponding strong and principal fuzzy metric spaces induced by F,G and
H and the metric space (X, d) are given, respectively, by

1. MF (x, y, t) = max{1− d(x,y)
1+t

, 1
t+1
},

2. MG(x, y, t) = 1− d(x,y)
t+d(x,y)

= t
t+d(x,y)

,

3. MH(x, y, t) = 1− (1− exp
−d(x,y)

t ) = exp
−d(x,y)

t ,

for each x, y ∈ X and each t > 0. Observe that (MG,L) is the standard
fuzzy metric induced by the metric d.

After introducing the technique for generating non-stationary fuzzy met-
ric spaces we end the paper focussing our discussion on their completeness
and their completion.
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Proposition 4.8. Let (X, d) be a metric space and let F = {ft : t > 0} be a
decreasing family of functions included in M1

S such that fx is continuous on
]0,∞[ for each x ∈ [0,∞[, where fx(t) = ft(x) for all t > 0. Then the fuzzy
metric space (X,MF ,L) induced by F and (X, d) is complete if and only if
(X, d) is complete.

Proof. Let (M,L) be the fuzzy metric induced by F and (X, d). We first
note that a sequence {xn} in X is MF -Cauchy if and only if it is d-Cauchy.
Indeed, since MF is strong, then a sequence {xn} is MF -Cauchy if and only
if it is MFt-Cauchy for all t > 0. Moreover, d-Cauchy sequences coincide
with MFt-Cauchy sequences for each t > 0, since d and MFt are uniformly
equivalent by assertion (ii) in the statement of Proposition 3.11. Thus, MF -
Cauchy sequences coincide with d-Cauchy sequences. Furthemore, assertion
(v) in the statement of Theorem 4.3 gives that τM = τ(d).

Therefore, every MF -Cauchy sequence converges in τMF
if and only if

every d-Cauchy sequence converges in τd. Thus (X,MF ,L) is complete if
and only if (X, d) is complete.

Theorem 4.9. Let (X, d) be a metric space and let F = {ft : t > 0} be
a decreasing family of functions included in M1

S such that fx is continuous
on ]0,∞[ for each x ∈ [0,∞[, where fx(t) = ft(x) for all t > 0. Then the
fuzzy metric space (X,MF ,L) induced by F and (X, d) is completable and
(X∗,M∗

F ,L) is its completion, where M∗
F (x∗, y∗, t) = 1 − d∗ft(x

∗, y∗) for each
x∗, y∗ ∈ X∗ and each t > 0 and, in addition, (X∗, d∗) is the completion of
(X, d).

Proof. Consider the fuzzy metric space (X,MF ,L) induced by F and (X, d).
Let (X∗, d∗) be the completion of (X, d). We begin showing that (X,MF ,L)
is completable. To this end, let t > 0 and, in addition, let {an} and {bn} be
two Cauchy sequences in X, where {an} ∈ a∗ and {bn} ∈ b∗. Then taking
into account that F ⊆M1

S, we have that

lim
n
MF (an, bn, t) = lim

n
(1−dft(an, bn)) = 1−ft(lim

n
d(an, bn)) = 1−d∗ft(a

∗, b∗) > 0.

By Remark 2.19 we deduce that assertion (C1) in the statement of Theorem
2.14 is fulfilled.

Next, suppose that limnMF (an, bn, s) = 1 for two MF -Cauchy sequences
{an} and {bn} in X and for some s > 0. Then, by continuity of fs, we have
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that

1 = lim
n
MF (an, bn, s) = lim

n
(1− dfs(an, bn)) = 1− fs(lim

n
d(an, bn)).

So limnMF (an, bn, s) = 1 if and only if fs(limn d(an, bn)) = 0. Since fs ∈M1
S

we have that fs(limn d(an, bn)) = 0 if and only if limn d(an, bn) = 0.
Therefore if limnMF (an, bn, s) = 1 for some s > 0, then ft(limn d(an, bn) =

0 for each t > 0. Hence limnMF (an, bn, t) = 1 for each t > 0. Therefore,
assertion (C2) in the statement of Theorem 2.14 is fulfilled. Consequently,
Theorem 2.14 yields that (X,MF ,L) is completable.

Next, we will construct the completion of (X,MF ,L). Suppose that
(X̃,M∗

F ,L) is the completion of (X,MF ,L).
First we will see that X̃ = X∗. The set of MF -Cauchy sequences in X

coincides with the set of d-Cauchy sequences in X, as we have seen in the
proof of Proposition 4.8. Then, given two Cauchy sequences {xn} and {yn}
in X, we have that limnMF (xn, yn, t) = 1, for each t > 0, if and only if
limn dft(xn, yn) = 0, for each t > 0. So, limn d(xn, yn) = 0 if and only if
limn dft(xn, yn) = 0, for each t > 0, since ft ∈ M1

S for each t > 0. Thus,
X̃ = X∗.

Finally, given x∗, y∗ ∈ X∗ and t > 0, on account of Remark 2.17, we have
that

M∗
F (x∗, y∗, t) = lim

n
MF (xn, yn, t) = 1− lim

n
dft(xn, yn)

= 1− ft(lim
n
d(xn, yn)) = 1− ft(d∗(x∗, y∗)) = 1− d∗ft(a

∗, b∗),

where {xn} ∈ x∗ and {yn} ∈ y∗.

Acknowledgements

The authors are very grateful to the referees for their valuable suggestions.
Valent́ın Gregori acknowledges the support of the Spanish Ministry of

Economy and Competitiveness under Grant MTM2015-64373-P (MINECO/FEDER,
UE).

Oscar Valero acknowledges the support of the Spanish Ministry of Econ-
omy and Competitiveness under Grant TIN2014-56381-REDT (LODISCO).

[1] J. G. Camarena, V. Gregori, S. Morillas, A. Sapena, Fast detection and
removal of impulsive noise using peer groups and fuzzy metrics, Journal
of Visual Communication and Image Representation, 19 (2008) 20-29.

24
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