

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

https://doi.org/10.1145/3128584

http://hdl.handle.net/10251/101894

Association for Computing Machinery

0

Distributed and Multi-Agent Planning: A Survey

ALEJANDRO TORREÑO, Universitat Politècnica de València
EVA ONAINDIA, Universitat Politècnica de València
ANTONÍN KOMENDA, Czech Technical University in Prague
MICHAL ŠTOLBA, Czech Technical University in Prague

Distributed and multi-agent planning (MAP) is a relatively recent research field that combines technolo-
gies, algorithms and techniques developed by the AI planning and Multi-Agent Systems communities. While
planning has been generally treated as a single-agent task, MAP generalizes this concept by considering sev-
eral intelligent agents that plan concurrently in order to develop a course of action that satisfies the goals of
the group.

This paper reviews the most relevant approaches to MAP, including the solvers that took part in the 2015
Competition of Distributed and Multi-Agent Planning, and classifies them according to the key features of
the solvers, distribution and coordination.

CCS Concepts: rComputing methodologies → Multi-agent planning; Cooperation and coordina-
tion; Planning for deterministic actions; Heuristic function construction; Multi-agent systems; rSecurity
and privacy→ Privacy-preserving protocols;

Additional Key Words and Phrases: Distribution, planning and coordination strategies, multi-agent heuris-
tic functions, privacy preservation

ACM Reference Format:
Alejandro Torreño, Eva Onaindia, Antonı́n Komenda, Michal Štolba, 2016. Distributed and multi-agent
planning: a survey. ACM Comput. Surv. 0, 0, Article 0 (2016), 35 pages.
DOI: 0000001.0000001

1. INTRODUCTION
In general terms, the field of distributed and multi-agent planning (MAP) deals with
the synthesis of plans in a multi-agent system. MAP is characterized by the distributed
nature of the planning task, i.e. an environment in which planning activity is dis-
tributed across multiple agents, processes, or sites [desJardins et al. 1999], which re-
quires computational or information distribution or a combination of both.

MAP has been extensively studied in non-deterministic settings, where outcomes
are uncertain and observability of the world is limited. In this setting, MAP typically
involves agents performing planning, executing their actions and receiving a local ob-
servation of the result of the actions. In decentralized control of multiple agents under
uncertainty and partial observability, formal models are inspired on the use of Markov
Decision Processes (MDPs) for MAP [Seuken and Zilberstein 2008].

This work is supported by the Spanish MINECO under project TIN2014-55637-C2-2-R, the Prometeo project
II/2013/019 funded by the Valencian Government, and the 4-year FPI-UPV research scholarship granted to
the first author by the Universitat Politècnica de València. Additionally, this research is partially supported
by the Czech Science Foundation under grant 15-20433Y.
Author’s addresses: A. Torreño and E. Onaindia, Universitat Politècnica de València, Camino de Vera, s/n,
Valencia, 46022, Spain; A. Komenda and M. Štolba, Czech Technical University in Prague, Zikova 1903/4,
166 36, Prague, Czech Republic.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2016 ACM. 0360-0300/2016/-ART0 $15.00
DOI: 0000001.0000001

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:2 A. Torreño et al.

This article surveys the existing approaches in the literature on deterministic MAP
and, more particularly, in a non self-interest context. Unlike self-interested tasks,
the approaches presented here are determined by the altruistic nature of the agents:
agents do not seek their own benefit and private goals do not exist. Under this formal-
ism, a MAP task defines a common goal and a set of agents to achieve such a goal.
Agents will likely collaborate while accomplishing their individual goals or will work
together to solve a goal that no agent is able to solve by itself [de Weerdt and Clement
2009].

The inherently distributed nature of a MAP task, the common goal of the task and
the particular setting in which the planning activity takes place, determine the type
of task. Thus, we distinguish between cooperative tasks, where two or more agents are
needed to achieve a subgoal, and collaborative tasks, in which every subgoal can be
individually solved by a single agent. Cooperative and collaborative tasks give rise to
different coordination and distribution features.

A MAP task involves several challenges regarding information distribution, coordi-
nation, heuristic search or privacy preservation. The various MAP solving approaches
present in the state of art can be classified according to the techniques applied to attain
these challenges. In general, a MAP task solving can be interpreted as a single plan-
ning agent synthesizing a course of action for multiple executors or as a distributed
activity with multiple planning agents. Moreover, the coordination of the agents’ ac-
tivities can be applied at different stages of the planning process, often defining the
resolution scheme of the solver and affecting its efficiency when solving cooperative or
collaborative tasks.

Over the last years, venues such as the Distributed and Multi-Agent Planning work-
shop1 and the 2015 Competition of Distributed and Multi-Agent Planning2 (CoDMAP)
have gathered together researchers of the planning and multi-agent systems commu-
nities, making MAP a popular and rapidly developing research field. The purpose of
this survey is to put in context the wide and sparse state of the art in MAP, identi-
fying the main characteristics that define MAP tasks and solvers and establishing a
taxonomy of the main works of the literature.

This survey is structured in four sections. Section 2 discusses the main features of
a MAP task and its modelling. Section 3 analyzes the main aspects of MAP solvers,
including distribution, coordination, heuristic search and privacy: Section 4 discusses
and classifies the most relevant MAP solvers in the literature. Finally, section 5 sum-
marizes the ongoing trends and research directions in MAP. Appendix A discloses
the results of the 2015 CoDMAP, an important milestone for the MAP field, since it
presents the first direct comparison of MAP solvers using a common task modelling.

2. MULTI-AGENT PLANNING TASK
We define a MAP task as a planning problem accomplished by several non self-interest
agents that work jointly towards a common goal. By common goal we mean that all of
the agents want the goal to be reached at the end of the task execution.

This section presents the formalization of the components of a MAP task. Next, we
discuss the main aspects that characterize a MAP problem by introducing two types
of MAP tasks. Finally, we present how a MAP task is modelled by using a multi-agent
version of the well-known Planning Domain Description Language (PDDL) [Ghallab
et al. 1998].

1http://icaps16.icaps-conference.org/dmap.html
2http://agents.fel.cvut.cz/codmap

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:3

2.1. Formalization of a MAP Task
We will use the MA-STRIPS formalism [Brafman and Domshlak 2008] as a basis for
the formalization of a MAP task. MA-STRIPS is a minimal multi-agent extension of
the classical STRIPS language [Fikes and Nilsson 1971], and it is currently the most
basic and widely adopted MAP formalism.

In MA-STRIPS, a MAP task is represented through a finite number of situations
or states. In our formalization, we use a finite set of state variables, denoted by V, to
describe states. A state variable v ∈ V has an associated finite domain of values, Dv.
Assigning a variable v ∈ V a value in its domain, d ∈ Dv, results in a fluent, which we
will denote as a duple of the form 〈v = d〉. A state S is a complete assignment to the
variables in V. The values of a state variable are mutually exclusive; consequently, if
a state S includes a fluent 〈v = d〉, it does not contain any fluent of the form 〈v = d′〉,
∀d′ ∈ Dv, d′ 6= d.

States change via the execution of planning actions. An action in MA-STRIPS is
defined as follows:

Definition 2.1. A planning action is a tuple α = 〈pre(α), eff(α), cost(α)〉, where
pre(α) and eff(α) are partial assignments to the variables of V that describe the pre-
conditions and effects of the action α, respectively, and cost(α) denotes the cost of α.

An action α can be executed in a state S if and only if all its preconditions hold in
S; that is, ∀p ∈ pre(α), p ∈ S. The execution of α in S generates a state S′ such that
eff(α) ⊆ S′: given a fluent 〈v = d〉 ∈ S and an action α with an effect 〈v = d′〉, the
application of α results in a state S′ = S ∪ 〈v = d′〉 \ 〈v = d〉.

Definition 2.2. A MAP task is defined as a 5-tuple T = 〈AG,V, {A}ni=1, I,G〉 with
the following components:

—AG is a finite set of n planning entities or agents.
— V is a finite set of state variables.
—Ai represents the planning actions executable by an agent i ∈ AG.
— I is a complete assignment to V that denotes the initial state of T .
— G is a partial assignment to V that denotes the common goal of T .

A solution plan for a MAP task T is a partially-ordered plan Π = {∆, CL,OR},
where ∆ = {αi1, α

j
2, . . .} ⊆ A is the set of actions of the plan, which can be contributed

by several agents in AG. CL and OR are two sets of causal links and partial orderings,
respectively, which establish dependencies among the actions in ∆. The application of
the actions of Π in the initial state I leads to a state SG that satisfies the task goals,
G ⊆ SG. A solution is cost-optimal if it has minimal total cost over all the possible
solutions.

The information of a MAP task is distributed among the planning agents. Each agent
i ∈ AG has a local view or local task of T , T i, which is formally defined as follows:

Definition 2.3. The local view of a task T by an agent i ∈ AG is defined as T i =
〈Vi,Ai, Ii,G〉, which includes the following elements:

— Vi denotes the state variables that agent i knows.
—Ai ⊆ A is the set of planning actions executable by i.
— Ii is the set of fluents that are initially known to agent i.
— G denotes the common goal of the task T . An agent i knows all the items of G, and

it will contribute to their achievement either directly (achieving a goal g ∈ G) or
indirectly (achieving subgoals whose effects help other agents achieve g).

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:4 A. Torreño et al.

ga1
l1

l2 p
sf

l3

l4

ft

t2

ga2t1 ga1
l1

l2 p1
sf

l3

l4

ft

t2

ga2t1

p2

p3

Fig. 1. Cooperative (left) and collaborative (right) MAP task examples

Note that we do not state Gi because G is not necessarily assigned to some particular
agents (see next section for more details). Additionally, T i determines the values of the
domain Dv of a variable v ∈ V known to agent i, denoted as Div ⊆ Dv.

2.2. Characterization of a MAP Task
In order to practically illustrate the features of a MAP task, let us introduce two dif-
ferent application examples based on a logistics domain [Torreño et al. 2014b].

Example 2.4. (task T1) Consider the transportation task in Figure 1 (left), which
includes three different agents. There are two transport agencies, ta1 and ta2, each of
them having a truck, t1 and t2, respectively. The two agencies work in two different
geographical areas, ga1 and ga2, respectively. The third agent is a factory, ft, located
in the area ga2.

To manufacture products, factory ft requires a package of raw materials, p, which
is collected from area ga1. In this task, agents are specialized: ta1 and ta2 have the
same planning capabilities, but they act in different geographical areas; i.e., they are
spatially distributed agents. Moreover, the factory agent ft is functionally different
from ta1 and ta2.

The goal of task T1 is for ft to manufacture a final product fp. In order to solve T1,
ta1 will send its truck t1 to load the package of raw materials p, initially located in
l2, and then t1 will transport p to a storage facility, sf , that is located at the intersec-
tion of both geographical areas. Then, ta2 will complete the delivery by using its truck
t2 to transport p from sf to ft, which will in turn manufacture the final product fp.
Therefore, this task involves three specialized agents that are spatially and function-
ally distributed and must cooperate to accomplish the common goal of having a final
product fp.

Example 2.5. (task T2) The task in Figure 1 (right), is based on the same net-
work of cities and includes the same three agents of task T1; that is, the two transport
agencies ta1 and ta2 and the factory ft.

Task T2 features three different packages, p1, p2 and p3. The task goals are as fol-
lows: packages p1 and p2 must be delivered to the storage facility sf by the transport
agencies. In turn, the factory ft must produce a final product fp from the package of
raw materials p3 already located in ft.

Unlike Example 2.4, cooperation among agents is not required to solve task T2, since
agents ta1 and ta2 can individually transport the packages p1 and p2, respectively, to
the storage facility sf . Moreover, package p3 is initially reachable by ft, and thereby
the factory agent ft can manufacture the final product fp by itself.

The MAP tasks T1 and T2 outline two examples that present distinct characteristics
and interactions among the agents. A MAP task can be classified as either cooperative
or collaborative depending on the level of cooperation needed for its resolution. Given
a MAP task T :

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:5

— T is a cooperative task if G includes at least a cooperative goal. A goal g ∈ G is said
to be cooperative if, given the task Tg = 〈AG,V,A, I, g〉 that has g as a single goal,
and for any agent i ∈ AG, there is no solution plan Πg = {∆, CL,OR} in which
∀α ∈ ∆, α ∈ Ai. That is, a cooperative goal is an objective that cannot be achieved
by a single agent because its resolution implies the cooperation of two or more spe-
cialized agents. Thus, cooperation among agents is a requirement in order to attain
a cooperative task.
In task T1 (see Example 2.4), agent ft is not able to manufacture the final product fp
unless agent ta2 delivers the package of raw materials p to ft; additionally, agent ta2
requires ta1 to deliver first p in sf . All in all, cooperation among the three participat-
ing agents is necessary to solve task T1.

— T is a collaborative task if, for every Tg = 〈AG,V,A, I, g〉 that has a single goal g ∈ G,
there exists at least one solution plan Πg = {∆, CL,OR} where all the actions α ∈ ∆
are contributed by a single agent i ∈ AG; i.e., ∀α ∈ ∆, α ∈ Ai.
The above definition states that there must be at least one solution plan for task
T in which every g ∈ G is achieved by a single agent in isolation. Obviously, other
solutions where two or more agents collaborate in the achievement of a goal g may
also exist, as an indication that Tg is likely to be solved better with collaboration.
Task T2 (see Example 2.5) includes three different goals that are solvable by a single
agent: agents ta1 and ta2 can individually deliver packages p1 and p2 to sf , whereas
the factory ft does not require any assistance to manufacture the final product fp
from p3, since p3 is already in ft in the initial situation. Thus, agents are not required
to cooperate because each of them can autonomously solve their goals. However, the
joint realization of the agents’ plans may reveal situations in which agents leverage
the effects achieved by others or collaborate to avoid conflicts in the synchronization
of their plans.

Table I. Task view T i for each agent i in example tasks T1 and T2
Task T1 (Example 2.4) T2 (Example 2.5)
Agent ta1 ta2 ft ta1 ta2 ft

Vi
pos(t1) pos(t2) pending(fp) pos(t1) pos(t2) pending(fp)

at(p) at(p1), at(p2), at(p3)
manufactured(fp) manufactured(fp)

Ai drive, load, unload manufacture drive, load, unload manufacture

Ii
pos(t1) = l1 pos(t2) = l4 pending(fp) = true pos(t1) = l1 pos(t2) = l4 pending(fp) = true
at(p) = l2 at(p1) = l2 at(p2) = l4

manufactured(fp) = false
at(p3) = ft at(p3) = ft

manufactured(fp) = false

G manufactured(fp) = true
at(p1) = sf
at(p2) = sf

manufactured(fp) = true

Tasks T1 and T2 emphasize most of the key elements of a MAP task. The spatial
and/or functional distribution of planning agents gives rise to specialized agents that
have different capabilities and knowledge of the task. Information of the MAP tasks is
distributed among the specialized agents as summarized in Table I.

The state variables of these two tasks are distributed among the planning agents, as
described in Table I. pos(t1) is a variable of agent ta1, such that Dpos(t1) = {l1, l2, sf},
which models the position of truck t1. ta2 has the variable pos(t2), where Dpos(t2) =
{sf, l3, l4, ft}, describing the location of truck t2. Finally, the variable pending(fp),

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:6 A. Torreño et al.

Dpending(fp) = {true, false}, belongs to agent ft and denotes whether the manufac-
turing of the final product fp, the goal of task T1 and one of the three goals of task T2,
is pending or not.

Variables related to the location of the products, at(p) in task T1 and at(p1), at(p2)
and at(p3) in T2, as well as manufactured(fp), Dmanufactured(fp) = {true, false},
which describes whether the final product fp is already manufactured or not, are
known to the three agents ta1, ta2 and ft. Since agents ignore the configuration
of the working area of the other agents, the domain of the variable at(p) in T1,
Dat(p) = {l1, l2, t1, sf, l3, l4, t2, ft}, is distributed among the agents as follows: Dta1at(p) =

{l1, l2, t1, sf}, Dta2at(p) = {sf, l3, l4, t2, ft} and Dftat(p) = {ft}. The domain of variables
at(p1), at(p2) and at(p3) is also distributed among agents in task T2.

The planning agents in tasks T1 and T2 are specialized, and thereby, they can ap-
ply different actions (see Table I): the capabilities of the transport agencies ta1 and
ta2 involve loading and unloading packages, as well as driving the trucks between lo-
cations, while the factory ft is limited to manufacturing final products. Additionally,
transport agents are spatially distributed: agent ta1 only drives its truck t1 within the
geographical area ga1, while ta2 is limited to area ga2.

The distribution of the task information in MAP stresses the issue of privacy, which
is one of the basic aspects that must be considered in multi-agent applications [Serrano
et al. 2013]. Since the three parties involved in tasks T1 and T2 are specialized in
different functional sectors of the task, most of the information managed by factory ft
is not relevant for the transport agencies and vice-versa. The same happens with the
transport agencies ta1 and ta2, which are geographically distributed.

Moreover, agents may not be willing to disclose sensitive information of their in-
ternal procedures with the others. For instance, ta1 and ta2 are cooperating in these
particular delivery tasks, but they might be potential competitors since they work in
the same business sector. For these reasons, agents do not unveil each other the inter-
nal configuration of their working areas, which is described through the state variables
pos(t1), pos(t2) and at(p) in task T1. While pos(t1) and pos(t2) are private to agents ta1
and ta2, respectively, the domain of at(p), Dat(p), is distributed among the three partic-
ipants to enforce privacy. This can be observed in Table I, where Ift does not include
either the location of the trucks or the packages in any of the two tasks. We must note
that agent ft does know about the existence of the packages and the trucks but it ig-
nores their initial location because the geographical areas of ta1 and ta2 are unknown
to ft.

All in all, agents in MAP want to minimize the information they share with each
other, either for strategic reasons or simply because their knowledge is not relevant
for other participating agents to solve the MAP task.

2.3. Modelling of a MAP Task
Modelling a MAP task involves defining several elements that are not present in
single-agent planning tasks. Widely-adopted single-agent planning specification lan-
guages, such as STRIPS [Fikes and Nilsson 1971] or the Planning Domain Definition
Language (PDDL) [Ghallab et al. 1998], lack the required machinery to specify a MAP
task.

One way of modelling a MAP task is via an unfactored specification, where the plan-
ner receives a single and complete description of MAP task T . However, some ap-
proaches to MAP require local factored descriptions of one planning task instance per
agent, meaning that each agent i ∈ AG receives as input a description of T i, its local
view of the task. Additionally, the modelling of a MAP task may include information

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:7

regarding agents’ privacy; that is, the information that the agent can and cannot share
with other planning agents.

In the literature, MA-STRIPS [Brafman and Domshlak 2008] is identified as one of
the earliest and most widely adopted MAP languages. MA-STRIPS was designed as
a minimalistic multi-agent extension to STRIPS [Fikes and Nilsson 1971] to define
various planning agents along with the actions executable by each agent.

Authors of MAP-POP and FMAP [Torreño et al. 2014a; 2015] introduce a MAP defi-
nition language that models the world states through state variables instead of pred-
icates. The FMAP language is built upon the most recent revision of PDDL, PDDL3.1
[Kovacs 2011], and allows for factored task descriptions. The domain description has
the structure of a regular PDDL3.1 domain, and the problem description is extended
with an additional :shared-data construct, which describes the information of an
agent that is shareable with the others.

The recent MA-PDDL3, developed in the context of the 2015 CoDMAP, stands out as
the first attempt to create a de facto standard specification language for MAP tasks.
Similarly to the language used by MAP-POP and FMAP, MA-PDDL extends PDDL3.1
to a multi-agent context, and allows for the definition of factored (:factored-privacy
requirement) and unfactored (:unfactored-privacy requirement) task representa-
tions.

In order to model the transportation tasks T1 and T2 (see Examples 2.4 and 2.5, and
Figure 1 in Section 2.2) with MA-PDDL, we will use the factored specification, by which
the planning task T i of an agent i is encoded with two independent files containing the
description of its domain (Vi, Ai) and its problem (Ii, G). For the sake of simplicity, we
only display fragments of the task views of agents ta1 and ft, since ta1 and ta2 are
functionally equivalent. It is worth noting that all the actions in tasks T1 and T2 have
unitary costs; i.e., ∀α ∈ A, cost(α) = 1.

First, we show the encoding of the domain block for agency and factory agents, that
appears in both T1 and T2. Then, we describe the problem block encoding for task T2.

The domain description of agents of type transport agency, like ta1 and ta2, is defined
in Listing 1.

(define (domain agency)
(: requirements :factored -privacy :typing :equality :fluents)
(:types area location package agency - object

truck place - location)
(: predicates

(manufactured ?p - product)
)
(: functions

(at ?p - package) - location
(: private

(link ?p1 - place) - place (owner ?a - agency) - truck
(in -area ?p - place) - area (pos ?t - truck ?l) - location

)
)
(: action drive

:parameters (?a - agency ?t - truck ?p1 - place ?p2 - place)
:precondition (and (= (in-area ?p1) ?a) (= (in-area ?p2) ?a)

(= (owner ?a) ?t) (= (pos ?t) ?p1) (= (link ?p1) ?p2))
:effect (assign (pos ?t) ?p2)

)
[...]
)

3Please refer to http://agents.fel.cvut.cz/codmap/MA-PDDL-BNF-20150221.pdf for a complete BNF defini-
tion of the syntax of MA-PDDL.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:8 A. Torreño et al.

Listing 1. Excerpt of the domain file for agency agents in tasks T1 and T2

The domain encoding of transport agencies ta1 and ta2 starts with the definition of
the type hierarchy, which includes the agency type to define the transport agents. The
domain description includes only one predicate, manufactured, which is used to know
whether the task goal of manufacturing a product is fulfilled or not. Despite the fact
that only the factory agent ft has the ability to manufacture products, all the agents
know the predicate manufactured so that the transport agencies can be informed when
the task goal is achieved.

Within the function names, the function at models the position of the packages and
is included in the T i of the three agents. The rest of functions in Listing 1 are private
to ta1 and ta2, which prevents the agencies from disclosing internal information, such
as the places that compose the agent’s working area (in-area function), the connec-
tions among these places (link function), the agency’s trucks (owner function) and the
trucks locations (pos function).

Since agents in tasks T1 and T2 are specialized, they have different planning opera-
tors. Agents ta1 and ta2 have three operators: load, unload and drive. Listing 1 shows
the encoding of the drive operator, to drive a truck between two different places. The
movements of the trucks of a transport agency are limited to their working area, ei-
ther ga1 or ga2, through the in-area preconditions. An agency can only drive a truck
if it is the owner of such resource.

Listing 2 showcases the domain file for factory agents, such as agent ft in tasks
T1 and T2. The type hierarchy includes the type factory. This is a subtype of place
because a factory is also interpreted as a place reachable by a truck.

(define (domain factory)
(: requirements :factored -privacy :typing :equality :fluents)
(:types location package product - object

truck place - location
factory - place)

(: predicates
(manufactured ?p - product)
(: private

(pending ?p - product)
)

)
(: functions

(: private
(at ?p - package) - location

)
)
(: action manufacture

:parameters (?f - factory ?p - package ?fp - product)
:precondition (and (= (at ?p) ?f) (pending ?fp))
:effect (and (not (pending ?fp)) (manufactured ?fp))

)
)

Listing 2. Domain file for factory agents in tasks T1 and T2

The predicates of the factory agent ft include both the manufactured predicate (this
predicate is defined in the domain files of the three agents), and the private pending
predicate to keep track of the factory’s pending orders. The at function is used to notify
ft about the arrival of new packages. This function is defined as private in this domain
because the factory does not need to inform the rest of agents about the position of
the packages that are delivered to ft. Finally, the factory ft has only one operator to
manufacture pending products. This operator requires a package of raw materials to
be delivered to the factory for the action to be executed.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:9

Regarding the problem description, in a factored specification we create three prob-
lem files, one per agent, each including Ii, the initial state of each agent i ∈ AG, and
the task goals G. Listings 3 and 4 depict the problem description of task T2 for agents
ta1 and ft, respectively.

(define (problem ta1)
(: domain agency)
(: objects

ta1 ta2 - agency ft - factory
ga1 - area t1 - truck
p1 p2 p3 - package l1 l2 sf - place

)
(:init

(= (pos t1) l1)(= (owner t1) ta1)(= (at p2) l4)(= (at p3) ft)
(= (link l1) l2)(= (link l2) l1)(= (link l1) sf)
(= (link sf) l1)(= (link l2) sf)(= (link sf) l2)
(= (in -area l1) ga1)(= (in-area l2) ga1)(= (in-area sf) ga1)

)
(:goal

(and (manufactured fp)(= (at p1) sf)(= (at p2) sf))
)

)

Listing 3. Problem file of agent ta1 in task T2

The problem block of ta1, displayed on Listing 3, defines the objects known to such
agent. More precisely, this transport agency knows its truck t1, along with the places
within its working area, ga1, and the packages p1, p2 and p3.

Agent ta1 knows the initial state of its working area ga1 (see :init section of Listing
3); i.e., the position of of its truck t1 and the packages p2 and p3, which are initially
located in ga1. The location of package p1 is unknown to ta1 because p1 is initially
placed in area ga2. Additionally, ta1 is aware of the links between the places within
ga1: l1, l2 and sf.

The :goal section is common to the three participating agents and includes the
three common goals of task T2, namely a goal indicating that the product fp must
be manufactured, and two goals that describe the desired final location of packages p1
and packages p2; that is, the storage facility sf.

(define (problem ft)
(: domain factory)
(: objects

ta1 ta2 - agency ft - factory
p1 p2 p3 - package fp - product

)
(:init

(= (at p3) ft)(pending fp)
)
(:goal

(and (manufactured fp)(= (at p1) sf)(= (at p2) sf))
)

)

Listing 4. Problem file of agent ft in task T2

Finally, Listing 4 features the problem description for the factory agent ft. First,
the objects known to ft, that is, the packages p1, p2 and p3 and the product fp. The
initial state of agent ft defines the initial location of package p3 and the current status
of the final product fp (pending to be manufactured). As stated above, the problem file
of agent ft includes the same goal definition as for agents ta1 and ta2.

This modelling example shows the flexibility of MA-PDDL for encoding the specific
requirements of a MAP task, such as the agents’ distributed information via factored
input and the private aspects of the task, including predicates, functions and operators.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:10 A. Torreño et al.

Thus, the unfactored and local factored input provided by MA-PDDL along with the
rest of functionalities, make this language be fairly expressive so as to allow different
ways of specifying a MAP task.

3. PRINCIPAL ASPECTS OF A MAP SOLVER
MAP tasks involve various additional challenges than the more compact single-agent
planning task formulation, such as information distribution, specialized agents, co-
ordination or privacy. The different MAP solving techniques in the literature can be
classified according to the mechanisms applied to address these challenges. Here, we
highlight the four most relevant aspects according to which MAP solvers can be cate-
gorized:

— Distribution of a MAP solver: In general, MAP is conceptually concerned with
planning for several execution agents by means of a single planning entity, or plan-
ning by multiple agents. In general, approaches that consider a single planning en-
tity leverage the distributed structure of a MAP task to improve the efficiency of the
solving process carried out by the planner. In contrast, planning by multiple agents
involves several entities that jointly solve the MAP task, which implies the design
of robust communication protocols, privacy-preserving planning algorithms, and dis-
tributed heuristic functions.
From a development perspective, MAP solvers use either a centralized or monolithic
implementation that solves the MAP task in a self-contained fashion, or distribute
the planning activity among several software agents, focusing on the coordination
and synchronization of several decentralized entities [Štolba et al. 2016b].

— Coordination strategies and resolution schemes: A MAP task can be viewed
as the problem of coordinating agents in a shared environment where information is
distributed [Torreño et al. 2014b]. Coordination is applied at different points of the
MAP solving process, resulting in a wide variety of resolution schemes.
We will categorize as unthreaded planning and coordination those solvers that ap-
ply planning and coordination as two separate and clearly identified stages. Other
frameworks, however, continuously combine planning and coordination by interleav-
ing both stages. In this scheme, agents jointly build solution plans in a coordinated
fashion.

— Heuristic search: Most approaches to MAP use some kind of heuristic search. In
a distributed MAP context, heuristic functions are generally applied by each agent
locally, which diminishes the accuracy of the estimates due to the limited view that
agents have over the MAP task. One of the current challenges of MAP focuses on the
development of global heuristics that match the accuracy of single-agent heuristic
functions.

— Privacy preservation: Privacy is one of the main motivations to adopt a MAP ap-
proach. Privacy means coordinating agents without making sensitive information
publicly available. Whereas this aspect was initially neglected in MAP [van der Krogt
2009], the most recent approaches tackle this issue through the development of ro-
bust privacy-preserving algorithms.

The following subsections provide an in-depth analysis of these aspects, which char-
acterize and determine the performance of the existing MAP solvers when solving MAP
tasks of a given typology.

3.1. Distribution of a MAP solver
The most basic criterion to classify the MAP solvers in the literature is the distribution
of the planning process, which can be viewed from two different perspectives. From a

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:11

conceptual viewpoint, solvers are classified according to the number of planning agents
they use (|AG|). From a development perspective, solvers divide into centralized and
distributed.

Table II. Conceptual problem solving schemes according to the number of planning and execu-
tion agents

Planning agents |AG|
1 n

Execution agents
1

Single-agent planning Factored planning
FD [Helmert 2006] ADP [Crosby et al. 2013]

n
Planning for multiple agents Planning by multiple agents
TFPOP [Kvarnström 2011] FMAP [Torreño et al. 2015]

3.1.1. Conceptual Problem Solving. A MAP task T includes the definition of a set of plan-
ning agents AG, as formalized in Definition 2.2. In a MAP context, it is typically as-
sumed that each planning agent in AG has a corresponding executor that performs its
assigned actions in the solution plan Π. However, many solvers in the literature alter
this balance by modifying the cardinality of |AG|.

Table II summarizes the different problem solving schemes according to the relation
between the number of planning agents and execution agents. Single-agent planning
is the simplest mapping: in this scheme, a task is solved by a single planning agent,
i.e., |AG| = 1, and the obtained solution plan will be later executed by a single executor.
In this case, there exists a one-to-one correspondence between planning and execution
agents.

As shown in Table II, MAP solvers like ADP [Crosby et al. 2013], Distoplan [Fabre
et al. 2010] and A# [Jezequel and Fabre 2012], follow a factored planning scheme. This
technique decomposes a single-agent task into a set components or factors (agents)
separately, giving rise to a MAP task with |AG| > 1. Then, factored methods to com-
pute local plans are applied, and finally, the local plans are pieced together into a valid
global plan [Brafman and Domshlak 2006]. Factored planning exploits locality by com-
puting solutions locally and propagating limited information between components.

The second row of Table II outlines the classification of MAP approaches aimed at
building a plan that will be executed by several agents. Thus, some solvers in the lit-
erature conceive MAP as planning for a set of execution agents; i.e., a single planner
(|AG| = 1) calculating a plan for multiple executors. Other approaches regard MAP
as planning by multiple agents (|AG| > 1), generally assuming a one-to-one mapping
between planners and executors. This distinction gives rise to a broad range of ap-
proaches to MAP.

Planning for multiple agents. Several works in the literature apply a single-planner
approach to MAP, defining only one planning entity that synthesizes a global plan for
a set of execution agents. Under this one-to-many correspondence scheme, the single
planning agent has complete knowledge of the MAP task T .

Under this approach, a common way of distributing the actions among the executors
is through the introduction of constraints. The single planning agent defined in TFPOP
[Kvarnström 2011] applies a custom forward POP search that maintains a sequence
of actions per executor within the partial-order plan. This allows each execution agent
to perform its actions sequentially while executing in parallel with the rest of agents.

The main limitation of this MAP scheme is its lack of privacy, since the single plan-
ning entity must have complete knowledge of the MAP task T . This is rather unreal-
istic if the agents involved in the task have sensitive private information that they are

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:12 A. Torreño et al.

P1

Pn

...

memory

Machine1

input () output ()

Ag 1

M1

input ()

mem

external
comm

.

.

.

Mn

input ()

mem

Ag n

output ()
internal
comm

Fig. 2. Centralized (monolithic) vs. distributed (agent-based) implementation

not willing to disclose [Sapena et al. 2008]. For instance, transport agencies in Exam-
ples 2.4 and 2.5 wish to conceal the information regarding their internal processes and
business strategies; therefore, a single-planner approach is not an acceptable solution
in this particular task.

Planning by multiple agents. A wide range of methods in the literature conceive
MAP as a task simultaneously performed by a group of independent planning entities
in which the planning capabilities are likely to be distributed among agents; that is,
each agent i ∈ AG has an associated task view T i.

In this approach, the focus is on the coordination of the activities of the various plan-
ning agents. Unlike single-planner approaches, the planning decentralization inherent
to this scheme makes it possible to effectively preserve the agents’ privacy.

Most MAP solvers that follow this scheme maintain a one-to-one correspondence
between planners and executors. However, there exist some exceptions in the litera-
ture such as MARC [Sreedharan et al. 2015]. This solver rearranges the n planning
agents in AG into m transformer agents (m < n), thus resulting in a new set AGMARC

such that |AGMARC | < |AG|. Therefore, MARC breaks the one-to-one correspondence
between planning and execution agents in this planning-by-multiple-agents scheme.

3.1.2. Development Perspective. From a development perspective, MAP solvers can be
classified as either centralized or distributed. Centralized MAP solvers draw upon a
monolithic implementation that synthesizes a global solution plan for the MAP task
by means of a self-contained execution. On the contrary, distributed MAP methods are
implemented as multi-agent systems in which the execution is distributed among a set
of actual software agents, thus putting the focus on the development of robust decen-
tralized algorithms in order to coordinate and synchronize the concurrent activities of
the agents.

Centralized MAP. A centralized MAP solver is one that either defines a single plan-
ning agent or partitions the task among a set of agents AG while keeping a self-
contained execution. As illustrated on Figure 2 (left), the main characteristic of cen-
tralized MAP methods is that they solve tasks in a monolithic fashion, executing all
the planning agents in a single host. The solver receives the description of the MAP
task T and executes its internal planner processes {P1, . . . , Pn} that result from parti-
tioning the task in a single machine (only P1 for single-planner solvers), producing a
solution plan Π.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:13

The motivation for choosing a centralized MAP scheme is twofold: 1) the planning
process is not based on distributed algorithms, so external communications over the
network are not needed to coordinate the planning processes of the agents; and 2)
centralized MAP systems can easily reuse robust and efficient single-agent planning
technology.

In centralized MAP, we can distinguish solvers that make use of a single planning
agent or centralized planner, and solvers that internally partition the MAP task among
multiple planning agents or planner processes, without implementing actual software
agents:

— One planning agent: The development of MAP solvers that fall into the conceptual
category of planning for multiple executors (see Table II) is based on a single planning
agent that works under complete knowledge of the MAP task. TFPOP [Kvarnström
2011], for instance, uses a centralized planner and introduces constraints in the so-
lution plans to properly distribute the actions among the execution agents.

— Multiple planning agents: In this approach, the solver partitions the task into
multiple planner processes but these processes are not actually implemented as soft-
ware agents. This approach is followed by ADP [Crosby et al. 2013], which applies
an agentization procedure in order to obtain a decoupled MAP task from a classical
STRIPS-style planning problem. Then, the MAP task is solved in a centralized fash-
ion, determining in each iteration the set of subgoals achievable by one agent from
the current state.
Many of the MAP solvers that conceptually fall under the category of planning by
multiple agents (see Table II), such as MARC [Sreedharan et al. 2015] or MAPR [Bor-
rajo 2013], are implemented by partitioning the task into multiple planning agents.
MARC rearranges agents in AG by grouping them into transformer agents in order
to decouple the MAP task as much as possible and then the task is solved in a cen-
tralized fashion. MAPR establishes a sequential execution order among the planning
agents and uses a centralized planner that progressively and incrementally builds a
solution plan according to the pre-established sequence of agents. All in all, MAPR
partitions the task among several planning processes while maintaining a single ex-
ecution thread during the problem resolution.

Distributed MAP. Many of the approaches that conceptually conceive MAP as a pro-
cess carried out by multiple planning agents (see Table II), are developed on a dis-
tributed fashion; that is, they implement a group of independent software agents that
plan together. By software agent, we refer to a system that 1) makes decisions without
any external intervention (autonomy), 2) responds to changes in the environment (re-
activity), 3) exhibits goal-directed behaviour by taking the initiative (pro-activeness),
and 4) interacts and collaborates with other agents via some communication language
in order to achieve its objectives (social ability) [Wooldridge 1997].

In this context, the task information and the planning capabilities are distributed
among agents, such that each agent i ∈ AG has a different view on the task, T i. More-
over, unlike centralized solvers, distributed approaches to MAP can be concurrently
run in several machines (see Figure 2 (right)). More precisely, given a task T where
|AG| = n, an agent-based solver can be run in up to n machines {M1, . . . ,Mn}; that is,
each planning agent i ∈ AG is independently executed on a machine Mi and receives
its view of the task, T i, as an input.

The focus of the distributed or agent-based approach lies in the coordination of the
activities of the different software planning agents in a context in which information
is distributed. Since the software agents that compose a distributed MAP solver may
be run in different hosts (see Figure 2), having a proper communication infrastructure
and message passing protocols is vital for the synchronization of the agents’ activities.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:14 A. Torreño et al.

Distributed approaches like MAD-A* [Nissim and Brafman 2012] and FMAP [Torreño
et al. 2014b] interpret distributed MAP as a multi-agent heuristic search in which
agents jointly explore a search tree. In MAD-A*, agents build individual state-based
search trees and coordinate their activities by exchanging the states that have relevant
information for other agents. Agents in FMAP maintain a synchronized copy of a multi-
agent plan-based search tree. At each iteration of the FMAP algorithm, the successor
plans individually generated by the agents are exchanged in a privacy-preserving man-
ner.

PSM [Tožička et al. 2015b] is based on planning state machines (PSM); i.e., finite au-
tomatons that provide a compact representation of a set of plans. Agents concurrently
generate plans, which are then stored into PSMs, until a joint solution plan is found.

All in all, distributed or agent-based MAP solvers design and implement robust dis-
tributed algorithm with a special attention on the usage of communication infrastruc-
tures in order to allow agent to efficiently cooperate towards the construction of solu-
tion.

Distributed approaches to MAP face several challenges, such as the definition of
global heuristic functions. Due to the inherently decentralized design of distributed
approaches and so the need of privacy-preserving mechanisms, single-agent heuristics
are not directly applicable. Consequently, in most distributed MAP approaches agents
apply a local evaluation of their plans. In other cases, solvers attempt to come up with
global heuristics that take into account the information of the entire task T but this
requires an extensive use of communications among agents (see section 3.3).

3.2. Coordination Strategies and Resolution Schemes
The two principal activities carried out by a MAP solver are planning and coordination.
Planning is an inherently individual process and coordination is a collective process.
Single-planner MAP solvers, like the ones that conceptually apply planning for mul-
tiple agents, leverage the distributed nature of a MAP task and solve the tasks of the
execution agents in a unified manner. However, in approaches that use several plan-
ning agents, the planning activity is locally attained by each participating agent.

Coordination is defined as a multi-agent decision-making process that allows agents
to harmonize their planning activities. Therefore, coordination is only required by
MAP solvers that conceptually draw upon multiple planning agents (see right col-
umn of Table II). Coordination of agents involves activities such as distributing the
MAP task goals among the participants, jointly selecting the next node to expand on
a search tree, or combining the agents’ local solutions by removing inconsistencies
among them. Ultimately, the objective is to synthesize a sound global solution for the
MAP task.

The typology of a MAP task often determines the coordination requirements that
are necessary for solving the task, where cooperative tasks, for instance, usually de-
mand a stronger coordination effort than collaborative tasks (see section 2.2). Thus,
the capability and efficiency of a solver for solving certain MAP tasks is determined
by the planning and coordination strategy that governs the solver behaviour. In the
literature, we can identify two principal planning and coordination strategies that are
followed by the majority of solvers:

— Unthreaded planning and coordination: Some solvers define planning and coor-
dination as unthreaded or sequential activities. In this strategy, each agent i plans
for solving its local planning task, T i, and coordination takes place before or/and after
planning. The unthreaded strategy may involve introducing constraints before plan-
ning to guarantee that the agents’ local plans are combined into a robust global solu-

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:15

Coordination
(pre-planning constraints)

i j n

... Local
planning

�
i

�
j

�
n

�

...

i j n

... Local
planning

�
i

�
j

�
n

�

...

Coordination
(plan merging)

Solution
plan

i j n

Local planning

...
�

i
�

j
�

Solution
plan

Solution
plan

(a) Pre-planning coordination (b) Post-planning coordination

(c) Iterative response planning
Coordination

(pre-planning constraints)

Fig. 3. Resolution schemes in unthreaded planning and coordination

tion, or combining the agents’ local solution plans into a global plan in post-planning
time (see Figures 3 (a) and 3 (b)).
An unthreaded solver can also follow an iterative response scheme, in which the vari-
ous agents perform planning sequentially. An agent i coordinates with the next agent
in the sequence, j, by communicating its local solution plan Πi to j. In turn, agent
j uses Πi to generate an extended solution plan, Πj , which is then communicated to
the following agent and so on (see Figure 3 (c)).

— Interleaved planning and coordination: Many approaches to MAP combine or
interleave planning and coordination, such that coordination is alternated with plan-
ning episodes (see Figure 4). In the interleaved strategy, agents carry out a synchro-
nized group planning activity by continuously coordinating with each other during
planning.

The following subsections provide a formal analysis of the resolution schemes used
in these two approaches to planning and coordination.

3.2.1. Unthreaded Planning and Coordination. MAP solvers that apply an unthreaded
planning and coordination strategy conceive both activities as separate black boxes.
Under this strategy, each agent i ∈ AG synthesizes a solution plan to its local task T i
and coordination is applied either before or after planning in order to guarantee the
combination of the local plans into a robust global solution that attains the task goals.

Pre-planning coordination. In the pre-planning coordination scheme, the solver de-
fines the constraints that ensure that the agents’ local solutions can be combined into
a consistent solution plan for T (see Figure 3 (a)).

ADP [Crosby et al. 2013] follows this scheme by applying an agentization procedure
that distributes a STRIPS planning task into several planning agents (see Table II).

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:16 A. Torreño et al.

More precisely, ADP is a fully automated process that inspects the multi-agent nature
of the planning task and calculates an agent decomposition that results in a set of
n decoupled local tasks. ADP applies a centralized, sequential, total-order planning
algorithm that takes advantage of this multi-agent decomposition and yields a solution
for the original STRIPS task. Since the task is broken down into several decoupled
and individual sub-problems, the solution plans to these sub-problems are consistent
to each other and post-planning coordination is not required. Therefore, ADP uses a
divide-and-conquer approach to MAP, where the local sub-tasks are not only smaller
and easier to solve than the original single-agent task but also they are independent
to each other, thus ensuring that the local sub-plans can be seamlessly combined into
a global solution for the MAP task T .

All in all, the purpose of pre-planning coordination is the establishment of robust
constraints to generate independent or decoupled local sub-tasks. This way, it can be
guaranteed that the local plans generated by the agents are seamlessly combined into
a sound global solution that attains the MAP task, thus avoiding the use of plan merg-
ing techniques at post-planning time.

Post-planning coordination. Other MAP solvers based on unthreaded planning and
coordination put the coordination emphasis after planning. In this case, the objective
is to merge the solutions to the agents’ local tasks {T 1, . . . , T n} into a global plan that
attains the goals G of the task T by removing the inconsistencies among these local
solutions (see Figure 3 (b)).

For example, PMR (Plan Merger by Reuse) [Luis and Borrajo 2014] allows planning
agents to build plans that solve their local subtasks, and then, it concatenates the
agents’ local plans, {Π1, . . . ,Πn}, into a global solution plan Π. Given that the concate-
nation of plans does not always result in a sound plan, PMR executes the LPG-ADAPT
planner [Fox et al. 2006], taking as an input the possibly invalid plan, to synthesize a
valid global solution.

Other approaches based on post-planning coordination address MAP through the in-
tersection of finite automata that represent the local plans of the agents. This strategy
was firstly introduced by Distoplan [Fabre et al. 2010], a factored-planning approach
that uses a message passing algorithm to communicate the edges of the graph that
connects the components of the MAP task. PSM [Tožička et al. 2015b] draws upon a
set of finite automata, called Planning State Machines (PSM), where each automaton
represents the set of local solution plans of a given agent. In an iteration of the PSM
procedure, each agent i ∈ AG generates a solution plan for its local task T i and in-
corporates it to its associated PSM. Then, agents calculate and exchange the pubic
projection of their PSMs, until a global solution for the task T is found.

Iterative response planning. A third resolution scheme that falls within the un-
threaded planning and coordination strategy consists in executing planning agents
sequentially, so that coordination is applied after each agent completes its planning
activity. In the iterative response planning scheme, firstly introduced by DPGM [Pellier
2010], an agent receives the previous agent’s local solution and a set of constraints for
coordination purposes, and responds by building up a solution for its local subtask on
top of the received plan. This way, the solution plan is incrementally synthesized (see
Figure 3 (c)).

Multi-Agent Planning by Reuse (MAPR) [Borrajo 2013] is an iterative response
solver based on goal allocation. MAPR distributes the task goals G among the partici-
pating agents before planning, such that an agent i is assigned a subset of goals Gi ⊂ G.
A goal in G is assigned to only one planning agent, i.e.,

⋂
i∈AG Gi = ∅. As a result, the

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:17

i j n

Group planning

Coordination

...�0

�1 �2

�0 �0

�3 �3 �4 �5 �5 �6 �7

Fig. 4. Multi-agent search in interleaved planning and coordination

local view of the task received by an agent i ∈ AG is of the form T i = 〈Vi,Ai, Ii,Gi〉.
Additionally, agents are sequentially arranged, thus defining the order in which the
iterative response scheme must be carried out.

Unlike most unthreaded solvers, which apply a local state-based search to incre-
mentally synthesize the solution plans, DPGM [Pellier 2010] uses a hybrid resolution
scheme that extracts plans from distributed planning graphs through a CSP solver.
The first agent in the sequence proposes a plan as well as a set of coordination con-
straints, and the following agent obtains a plan that complies with the constraints
defined by the first agents. DPGM backtracks to the previous agent in case that a so-
lution cannot be found.

To sum up, planning and coordination are conceived as two separately and clearly
identified stages in unthreaded solvers. In some cases, constraints are applied at pre-
planning time to ensure that the local solution plans are consistent. These constraints
involve distributing or balancing the MAP task, allocating goals to the agents or estab-
lishing the execution order of the planning activities. Coordination can also occur at
post-planning time in the form of a plan merging process that removes inconsistencies
among the agents’ local plans, thus obtaining a global solution plan for the MAP task
T .

In iterative response approaches, coordination occurs both before and after planning.
In pre-planning time, the solver introduces a set of constraints, either in the form
of coordination constraints [Pellier 2010] or goal assignments [Borrajo 2013]. Once
an agent i completes its planning activity, it coordinates with the next agent in the
sequence, j, by communicating its local solution Πi, which is the input of agent j.

Unthreaded planning and coordination is an efficient strategy that effectively mini-
mizes the communication needs during planning, since agents do not interact to each
other while planning. Moreover, the unthreaded strategy is especially efficient at solv-
ing collaborative tasks that do not require a high coordination effort.

However, this strategy presents several limitations when solving cooperative tasks.
In an unthreaded solver, agents are unable to discover and address the cooperation
demands of other agents because the underlying resolution scheme relies upon au-
tonomous agents that are capable of solving their assigned tasks by themselves. The
needs of cooperation that arise when solving cooperative goals are hard to discover in
pre-planning time, and the plan merging techniques are designed only to fix inconsis-
tencies among local plans, rather than repairing the plans to satisfy the inter-agent
coordination needs. A higher coordination effort is thus required to efficiently solve
cooperative goals.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:18 A. Torreño et al.

3.2.2. Interleaved Planning and Coordination. A large number of MAP techniques inter-
leave the activities of planning and coordination. This strategy is characterized by the
application of group planning; i.e., rather than synthesizing a local solution individ-
ually, agents explore the search space jointly in order to synthesize a solution plan.
Under this strategy, agents continuously coordinate with each other to communicate
their findings, thus effectively intertwining planning and coordination.

Most interleaved MAP solvers, such as the MAFS [Nissim and Brafman 2012] and
FMAP [Torreño et al. 2014b] families, commonly rely on a coordinated multi-agent
search resolution scheme, in which nodes of the search space are contributed by sev-
eral agents (see Figure 4). This resolution scheme involves the selection of a node for
expansion, an individual expansion of the node by each agent (planning) and an ex-
change of the resulting successor nodes among the agents. Agents explore the search
space until a solution is found, alternating phases of planning and coordination.

Different forms of coordination are applicable in an interleaved planning and co-
ordination strategy. In FMAP [Torreño et al. 2014b], agents perform a plan-based
group search. Agents maintain a common open list of plans, whose quality is assessed
through the global heuristic function hDTG (see section 3.4). First, agents select the
most promising open node according to the heuristic criterion and each agent i ex-
pands the selected node using its actions Ai. Next, agents evaluate and exchange all
the successor plans they have generated. If an agent i shares a plan with an agent j,
it occludes the information of the plan that is included in T i but not in T j . As a re-
sult, each agent holds an equivalent copy of the search tree that preserves its privacy
constraints from the rest of participating agents.

In MAFS [Nissim and Brafman 2012], each agent i ∈ AG maintains a separate search
space and an independent open list of states. The search process is carried out simulta-
neously by the planning agents in AG. An agent i selects the next state in its open list
to expand, S, according to the application of a local heuristic estimate, and generates
a set of successors over S using its own actions only, Ai. Out of all the successor nodes,
agents only share the states that are relevant to other agents. A state S generated by
an agent i is relevant to another agent j if j has at least one action whose precondi-
tions are in S, and the action which generated S is in Aj . The search process carries
on until a state Sg, where G ⊆ Sg, is found.

The interleaved planning and coordination strategy is very suitable for solving com-
plex tasks that involve cooperative goals and a high coordination effort. By using this
strategy, agents learn the cooperation requirements of other participants during the
construction of the plan and can immediately address them. Hence, this strategy al-
lows agents to efficiently address cooperative goals.

The main drawback of the interleaved strategy is the high cost of communications
in a distributed MAP setting because alternating planning and coordination usually
entails exchanging a high number of messages in order to continuously coordinate the
agents’ activities.

3.3. Heuristic Search
Most MAP solvers in the literature resort to heuristic search during the resolution
of the task. In general, the single planning entity (|AG| = 1) of solvers that plan for
multiple executors (see Table II) has a complete knowledge of the MAP task T , so
these approaches apply heuristic evaluation using the global information of the task,
equivalently to single-agent planners.

However, in solvers that feature multiple planning agents, i.e., |AG| > 1, a given
agent i has usually a limited view of the task, T i, and no agent has access to the global
information of the task, T . Consequently, heuristic evaluation is applied differently in
this case.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:19

In this setting, one can distinguish between heuristics applied locally or globally.
In the former, each agent i ∈ AG applies the heuristic evaluation from its local per-
spective, that is, from T i. The advantage of this approach is its simplicity, since no
interaction with other agents is required to perform the evaluation. However, the ac-
curacy of the estimates is compromised by the limited view of the agent; in general,
local heuristics are less accurate than heuristics which take into consideration the
complete information of the MAP task T .

In contrast, a global heuristic is defined as the distributed application of a heuristic
function by several entities with limited information of the MAP task in a privacy-
preserving context [Torreño et al. 2015]. The development of distributed heuristics
constitutes one of the current challenges in decentralized MAP, because multi-agent
scenarios present additional features that make heuristic evaluation an arduous task
[Nissim and Brafman 2012]:

— As previously mentioned, solvers that draw upon multiple planning agents do not
feature an entity that has a complete knowledge of the map task T . Additionally,
solvers based on a distributed implementation require robust communication proto-
cols among the agents in order to calculate estimates for the overall task.

— For the MAP approaches that preserve agent’s privacy, the communication protocol
must guarantee that estimates are computed without disclosing sensitive private
information.

The local or global application of a heuristic search may be determined by the char-
acteristics of the resolution scheme of the MAP solver. Particularly, agents of solvers
based on unthreaded planning and coordination synthesize local solutions individu-
ally, which forces the use of local heuristic functions. For instance, MAPR [Borrajo
2013] applies an iterative response planning scheme that performs goal allocation to
the participants and solves the agents’ subtasks sequentially. Thereby, the heuristic
functions used by MAPR, hFF [Hoffmann and Nebel 2001] and hLand [Richter and
Westphal 2010], are locally computed.

Local heuristic search has also been strengthen by some interleaved MAP solvers.
Agents in MAFS and MAD-A* [Nissim and Brafman 2014] generate and evaluate search
states locally. An agent i shares a state S only if it is relevant to other planning entities,
along with i’s local heuristic estimate of the state S. When an agent j receives S from
agent i, j performs its local evaluation of S. Then, depending on the characteristics of
the applied heuristic functions, agent j assigns a heuristic value to S, which can be the
received estimate, its own evaluation estimate or a combination of both. In [Nissim
and Brafman 2012], authors test MAD-A* with two different optimal heuristics, LM-
Cut [Helmert and Domshlak 2009] and merge-and-shrink [Helmert et al. 2007], both
locally applied by each agent. Despite only local heuristics are used, MAD-A* is proven
to be cost-optimal when using hFF and hLand.

Unlike unthreaded solvers, the interleaved planning and coordination strategy
makes it possible to accommodate global heuristic functions. In this case, agents per-
form group planning and synthesize together a solution for the MAP task, thus en-
abling the use of global heuristics.

GPPP [Maliah et al. 2014] introduces a distributed version of a privacy-preserving
landmarks extraction algorithm for MAP. The heuristic estimate of a state is obtained
as the sum of the local estimates of each agent. GPPP outperforms MAFS thanks to
the accurate estimates provided by this landmark-based heuristic.

FMAP [Torreño et al. 2014b] uses a global state-based heuristic function, hDTG, to
evaluate partial-order plans. hDTG draws upon the information of the Domain Tran-
sition Graphs [Helmert 2004] associated to the state variables of the MAP task. hDTG

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:20 A. Torreño et al.

computes a relaxed plan between the frontier state [Benton et al. 2012] of a plan and
the task goals G. The relaxed plan is calculated by finding in the DTG of each variable
the shortest path between the value of the variable in the frontier state and the value
of the state variable in the goal state.

MH-FMAP [Torreño et al. 2015], the latest version of FMAP, introduces a multi-
heuristic search strategy for MAP inspired by the heuristic alternation mechanism
of Fast Downward (FD) [Helmert 2006]. Agents in MH-FMAP select the next plan to
expand alternatively from two different search queues: the first one sorts the plans by
means of hDTG, while the second one keeps track of the preferred successors [Torreño
et al. 2015], which are evaluated with another global heuristic, hLand. This heuristic
function counts the number of landmarks that are not satisfied in a plan.

The work in [Štolba and Komenda 2013] adapts the well-known hFF heuristic func-
tion to a multi-agent context by means of distributed Relaxed Planning Graphs (dis-
RPGs) [Zhang et al. 2007]. The multi-agent version of hFF is reported to yield the same
quality than the single-agent hFF [Hoffmann and Nebel 2001]. However, we must note
that the large number of agent communications needed for building and exploring the
dis-RPG, render the calculation of the multi-agent version of hFF a very costly proce-
dure.

Authors in [Štolba and Komenda 2014] present a distributed implementation of sev-
eral relaxed heuristics (a relaxed version of hFF , hadd and hmax). Instead of a dis-RPG,
authors devise a more compact structure, the exploration queue, that significantly re-
duces the number of messages exchanged among agents. This multi-agent version of
the hFF heuristic, however, is not as accurate as the single-agent function.

Finally, the work in [Štolba et al. 2015] introduces a multi-agent global version of
the admissible heuristic function LM-Cut that is proven to obtain estimates of the
same quality than the single-agent LM-Cut function. Granting this property increases
the computational cost of the heuristic, but the additional accuracy of the multi-agent
LM-Cut function compensates this disadvantage.

In conclusion, heuristic search in MAP, and most notably, the development of global
heuristic functions in a distributed context, constitutes one of the main challenges of
the MAP research community. The aforementioned works prove the potential of the
development and combination of global heuristics towards scaling up the performance
of MAP solvers.

3.4. Privacy
The preservation of agents’ sensitive information, or privacy, is one of the basic aspects
that must be enforced in MAP. The importance of privacy is illustrated in Examples 2.4
and 2.5 of section 2.2, which include two different agents, ta1 and ta2, that represent
two transport agencies. Whereas both agents collaborate in these particular tasks,
it is unlikely that they are willing to reveal sensitive information of their internal
procedures to a potential competitor. These two examples clearly emphasize the role of
privacy in distributed MAP.

Privacy in MAP has been fairly neglected and under-represented in the literature.
Moreover, formal treatment of privacy is even more scarce. Early MAP approaches ne-
glected privacy issues and focused instead on information distribution, effective com-
putation or task decomposition, among other aspects.

One of the first attempts to come up with a formal privacy model in MAP can be
found in [van der Krogt 2007], where authors quantify privacy in terms of the Shan-
non’s information theory [Shannon 1948]. More precisely, authors establish a notion
of uncertainty with respect to plans and provide a measure of privacy loss in terms
of the data uncovered by the agents along the planning process. Unfortunately, this

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:21

measure is not general enough to capture details such as heuristic computation. Nev-
ertheless, quantification of privacy is an important step in MAP, as it is in distributed
CSP [Faltings et al. 2008]. A more recent work, also based on Shannon’s information
theory [Štolba et al. 2016c], quantifies privacy leakage for MA-STRIPS according to
the reduction of the number of possible transition systems caused by the revealed in-
formation. The main sources of privacy leakage are identified, but not experimentally
evaluated.

The MA-STRIPS solver [Brafman and Domshlak 2008] established the basic pri-
vacy guidelines in the literature, which have been followed by many MAP solvers ever
since. MA-STRIPS infers the private information directly from the task structure and
classifies propositions as either public or internal, where a proposition is internal to
an agent i ∈ AG if the proposition is only achieved or deleted by i. According to this
notion, actions are partitioned into internal and public, and an internal action only
contains internal preconditions and effects.

The privacy properties of a MAP solver can be studied from different standpoints:

— Modelling of private information: Many approaches to MAP, including MA-
STRIPS, apply a form of induced privacy; that is, the solver directly infers private
information from the task structure. Recent solvers, such as FMAP [Torreño et al.
2014b], adopt a more general approach by imposing privacy as a part of the task
description.

— Information sharing: MA-STRIPS defines public information as known to all the
participating agents, while internal or private information is known to a single agent
only. This definition is too restrictive for contexts that require information to be
shared among a subset of agents. More recent approaches introduce the notion of
subset privacy, by which public information is accessible to either all the participants
or just a subset of agents [Torreño et al. 2012; Bonisoli et al. 2014].

— Privacy practical guarantees: Recent studies discuss and formally analyze the
privacy practical properties of a MAP solver. The work in [Brafman 2015] defines two
levels of privacy guarantees: a weak privacy level allows an agent to infer or deduce
private information that is not explicitly transmitted by other agents; and a strong
privacy level guarantees that no agent is able to deduce private data from others. The
work in [Shani et al. 2016] introduces a third privacy level, object cardinality privacy,
in which an agent cannot deduce the number of objects of a certain type managed by
another agent.

The next subsections analyze the privacy models followed by the MAP solvers in the
literature according to the three aforementioned criteria.

3.4.1. Modelling of Private Information. Modelling of private information is highly related
to the language used to describe the MAP task as some specification languages enable
a explicit modelling of privacy and others do not.

Early approaches to MAP, such as MA-STRIPS [Brafman and Domshlak 2008], man-
age a notion of induced privacy. Since the MA-STRIPS language does not explicitly
model private information, MA-STRIPS infers the agents’ private data from the struc-
ture of the MAP task. Given an agent i ∈ AG and a piece of information pi ∈ T i, pi is
identified as private if ∀j∈AG|j 6=ipi 6∈ T j ; that is, the data contained in pi are known to
i and ignored by the rest of participants of the MAP task T .

One of the most well-known refinements of the MA-STRIPS model extends the no-
tion of induced privacy to a more general imposed privacy scheme, in which the private
or shareable information is explicitly stated in the task description. The imposed pri-
vacy scheme is first introduced in FMAP [Torreño et al. 2014b], which incorporates a

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:22 A. Torreño et al.

:shared-data construct to define the agent’s shareable information in the description
language (see section 2.3).

MA-PDDL [Kovacs 2012], the language used in the CoDMAP competition [Štolba
et al. 2016b], has been adopted by many state-of-the-art solvers (see Appendix A). MA-
PDDL also follows the trend of imposed privacy and allows the designer to define the
private elements of an agent’s task through the :private identifier.

In general, both induced and imposed privacy schemes are commonly applied by
current MAP solvers. The induced privacy scheme enables to automatically identify
the natural private elements of a MAP task. The imposed privacy scheme, however,
offers the task designer more control and flexibility to define privacy, which is a helpful
tool in contexts where agents want to occlude sensitive data that would be shared
otherwise.

3.4.2. Information Sharing. Privacy preservation models present several differences re-
garding how many agents can share a particular piece of information. In general, there
are two information sharing models, namely the MA-STRIPS scheme and the subset
privacy model.

MA-STRIPS. The MA-STRIPS privacy model [Brafman and Domshlak 2008] can be
considered as the simplest model of information sharing, defining as public the data
that are shared among all the participating agents in AG. In this privacy model, a
piece of information is known to either all the participants in AG or to a single agent.

In MA-STRIPS, a proposition or fluent 〈v = d〉 is defined as internal or private to an
agent i ∈ AG if 〈v = d〉 is only used and affected by the actions of Ai. However, if the
fluent 〈v = d〉 is also in the preconditions and/or effects of some action α ∈ Aj , where
j ∈ AG and j 6= i, then the fluent 〈v = d〉 is publicly accessible to all the agents in AG.

Given an action α ∈ Ai, if the fluents that appear in the preconditions and effects
of α are private to i, then α is said to be public and is known to all the participants in
the task. If α includes both public and internal preconditions and effects, agents share
instead αp, the public projection of α, an abstraction that contains only the public part
of α.

The simplistic assumptions of MA-STRIPS, by which a public proposition or action is
shared among all the participating agents, may not be allowed in applications where
some information needs to be shared only by some planning agents inAG. For instance,
let us assume that agent ta2 in Examples 2.4 and 2.5 wants to communicate the factory
agent ft that its truck t2 is currently placed in ft, i.e. pos(t2) = ft, but it wants to
occlude this fact from agent ta1. In this case, the information sharing policy used by
MA-STRIPS would not be expressive enough to model this situation.

Subset privacy. This model, introduced in [Torreño et al. 2014a; Bonisoli et al. 2014],
generalizes the MA-STRIPS scheme by establishing pairwise privacy. This model de-
fines a piece of information as either private to a single agent, publicly accessible to
all the agents in AG or known to a subset of agents {i, . . . ,m} ⊂ AG. This approach
is useful in applications where agents wish to conceal some information from certain
agents.

For instance, agent ta2 in Examples 2.4 and 2.5 notifies the factory agent ft when-
ever it reaches the fact pos(t2) = ft. This fluent indicates that the truck t2 is placed at
the factory ft, a location that is known to both ta2 and ft. However, the MA-STRIPS
model is not a suitable approach if ta2 does not want to inform agents that work on the
same business area, such as ta1, of its transportation routes and resources. The more
appropriate subset privacy approach allows ta2 to effectively hide sensitive informa-
tion from agent ta1 while sharing it with the factory ft.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:23

To sum up, the subset privacy model is a more flexible information sharing model
compared to the more conservative and limited approach followed by MA-STRIPS, al-
lowing to represent more complex and realistic situations concerning information shar-
ing.

3.4.3. Privacy Practical Guarantees. Recent studies in the literature, devoted to formally
discuss the privacy practical guidelines of MAP solvers, conclude that the privacy
schemes of some solvers may allow agents to infer private information of other agents
through the transmitted data. According to these studies [Nissim and Brafman 2014;
Shani et al. 2016], it is possible to establish a four-level taxonomy to classify the actual
practical privacy level of MAP solvers. The four levels of the taxonomy, from the least
to the most secure one, are: no privacy, weak privacy, object cardinality privacy and
strong privacy.

No privacy. Many early approaches to MAP neglected privacy issues and applied a
no privacy scheme. Among such solvers is the first MA-STRIPS-based planner, Plan-
ning First [Nissim et al. 2010] and the agent-decomposition planner ADP [Crosby
et al. 2013]. Moreover, approaches other than MA-STRIPS-based planners, such as µ-
SATPLAN [Dimopoulos et al. 2012], A# [Jezequel and Fabre 2012], DPGM [Pellier 2010]
or GPGP [Decker and Lesser 1992], do not consider either privacy as a relevant issue.

Weak privacy. A MAP system is said to be weakly privacy-preserving if agents do
not explicitly communicate their private information to other agents at execution time
[Brafman 2015]. A weak privacy level is accomplished by either obfuscating (encrypt-
ing) or occluding the private information before transmitting it, so that agents only
reveal the public projection of their actions. In a weak privacy setting, agents may
infer private variables, values, and action preconditions and effects of other agents
through the information exchanged during the MAP resolution process.

Obfuscating or encrypting the private elements of the planning task is a common
mechanism to implement weak privacy. In MAPR [Borrajo 2013], PMR [Luis and Bor-
rajo 2014] and CMAP [Borrajo and Fernández 2015], when an agent transmits a plan,
it obfuscates or encrypts the private propositions in the preconditions, effects, initial
state and goals in order to preserve its sensitive information to the receivers. Propo-
sition names are encrypted, but the number and unique identity of preconditions and
effects of the actions are retained, so agents are able to reconstruct the complete iso-
morphic image of their tasks. Obfuscation is an appropriate technique when agents
wish to conceal the meaning of predicates and actions (for instance, agents in Exam-
ples 2.4 and 2.5 may want to preserve private information such as the links among the
locations in their working areas or the position of a truck whenever it is placed at a
private location).

In MAFS [Nissim and Brafman 2014], MADLA [Štolba and Komenda 2015], MAPlan
[Fišer et al. 2015] and GPPP [Maliah et al. 2014], agents exchange the relevant states
to each other in order during search (see section 3.2.2). These approaches follow an
obfuscation mechanism as agents encrypt the values of their private variables when
sharing a state with other participants. The obfuscation technique used by the afore-
mentioned approaches allows agents to infer some private information, and therefore,
these solvers grant only weak privacy.

In PSM [Tožička et al. 2014], agents share only public projections of the Planning
State Machines (PSMs), which encode a set of plans that attain the public part of the
MAP task. However, given a PSM Γ1 with two states {a, x} and {a, y}, where a rep-
resents public facts and x and y are sets of private facts, the public projection of Γ1

does not replace {a, x} and {a, y} by a single public state {a} because otherwise, the
topology of this public projection would be altered and the resulting PSM would mis-

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:24 A. Torreño et al.

takenly accept public projections of plans that are not actually accepted by Γ1 [Tožička
et al. 2015b]. To address this limitation, authors use an encryption mechanism that
replaces x and y by integer marks, so that the PSM public projection includes two
different states {a}′0 and {a}′1.

Other weak privacy-preserving solvers in the literature occlude the agents’ private
information, instead of sharing obfuscated data. In the FMAP [Torreño et al. 2014b]
family of solvers, which also includes MAP-POP [Torreño et al. 2012; 2014a] and MH-
FMAP [Torreño et al. 2015], agents only exchange the public projection of the actions of
the partial-order plans they have generated, occluding the private part of their plans.
Given a fluent 〈v = d〉, an agent i shares the fluent with an agent j if v ∈ Vj and
d ∈ Djv, or occludes it if v 6∈ Vj . In case that v ∈ Vj but d 6∈ Djv, agent i shares instead
〈v =⊥〉, where ⊥ represents the undefined value [Torreño et al. 2014b]. This occlusion
mechanism is also used in the global heuristic function hDTG applied in both FMAP
and MH-FMAP.

MH-FMAP combines hDTG and the landmark-based heuristic hLand. The implemen-
tation of hLand uses an encryption technique to maintain privacy during the joint con-
struction of the landmarks graph [Torreño et al. 2015]. Therefore, MH-FMAP can be re-
garded as a hybrid approach that combines both occlusion and obfuscation techniques.

In general, most global heuristic functions in MAP aim for weak privacy by obfuscat-
ing or occluding private information [Torreño et al. 2014a; 2015; Štolba and Komenda
2013; 2014; Štolba et al. 2015; Maliah et al. 2014; 2015]. Recent works suggest the use
of additive heuristics, which are computed by adding together the projected estimates
of the agents, thus avoiding the costly communication needed by privacy-preserving
global heuristic estimates [Štolba et al. 2016a].

Object cardinality privacy. Recently, the DPP planner [Shani et al. 2016] introduces
a new level of privacy named object cardinality privacy.

A MAP algorithm preserves object cardinality privacy if, given an agent i and a type
t, the cardinality of i’s private objects of type t cannot be inferred by other agents
from the information they receive [Shani et al. 2016]. In other words, this level of
privacy strongly preserves the number of objects of a given type t of an agent i, thus
representing a middle ground between the weak and strong privacy settings.

Hiding the cardinality of private objects is motivated by real-world scenarios. Con-
sider, for example, the logistics task in Examples 2.4 and 2.5. One can assume that
the transport agencies that take part in the MAP task, ta1 and ta2, know that pack-
ages are delivered using trucks. However, it is likely that each agent would like to
hide sensitive information related to their capabilities, such as the number of trucks
or transportation routes.

Strong privacy. One limitation of the weak privacy level is that it allows agents to
infer private information from the public data they receive. Let us consider again the
Example 2.4 of section 2.2; as detailed in Table I, transport agency ta1 does not disclose
the existence or the location of its truck t1 to agent ta2; i.e., the pos(t1) variable is
private to agent ta1. Moreover, ta1 only informs ta2 about the position of the package
p whenever it is placed at the public location sf ; that is, at(p) = sf . Assuming that
one state contains pos(t1) = sf and at(p) = sf , and that t1 loads the package p, the
descendent state will comprise at(p) = t1 and this fluent will not be transmitted to
ta2, as it happens in MAFS [Nissim and Brafman 2014]. Agent ta2 will thus notice
that the package p disappears from sf in the descendent state and, consequently, it
might deduce that agent ta1 has a resource that enables it to change the location of
the package p.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:25

Secure-MAFS [Brafman 2015], an upgraded version of MAFS [Nissim and Brafman
2014], is the first and only MAP solver in the literature that provides strong privacy
guarantees. In Secure-MAFS, two states that only differ in their private elements are
not communicated to other agents in order to prevent them from deducing information
through the non-private or public part of the state (e.g., it would be possible to infer
private information such that the state of an agent has not changed by observing that
the non-private information of two consecutive states has not changed). Secure-MAFS
is proved to guarantee strong privacy for a sub-class of tasks based on the well-known
logistics domain.

A MAP algorithm strongly preserves privacy if none of the agents are able to infer
a private element of an agent’s task from the public information it receives during
planning. In other words, in a strong privacy-preserving solver, private information
cannot be deduced from the information gained.

In order to guarantee strong privacy it is necessary to consider several additional
factors such as the nature of the communication channel used by the participants
(synchronous, asynchronous, lossy) or the computational power of the agents.

In this section, we have seen that weak privacy is easy to achieve through obfusca-
tion or encryption of the private information, but provides little security. On the other
hand, whereas strong privacy significantly improves security, it has not been imple-
mented yet by any MAP solver (Secure-MAFS is simply a theoretical proposal) and its
complexity has not been studied yet in the literature. Additionally, object cardinality
privacy accounts for a middle ground between the weak and strong privacy levels. In
general, the vast majority of the state-of-the-art MAP methods can be classified under
the no privacy and weak privacy levels: the earlier approaches to MAP do not consider
privacy at all, while most of the recent proposals, which claim to be privacy preserving,
implement a form of weak privacy, resorting in most cases to obfuscation to occlude the
private information in the public projection of the actions and states.

4. DISTRIBUTED AND MULTI-AGENT PLANNING SYSTEMS TAXONOMY
The existing works in MAP cover a wide range of different resolution schemes. As
discussed in section 3, one can identify several aspects that determine the features
of a MAP solvers, such as problem-solving distribution, coordination, heuristic search
or privacy preservation. This section presents an in-depth taxonomy that reviews the
most significant approaches to MAP in the literature (see Table 3.4.3), analyzing their
main features and comparing their similarities and differences. The MAP solvers in-
cluded in the taxonomy are arranged according to the coordination strategy they im-
plement, an aspect that ultimately determines the resolution scheme followed by an
approach. Section 4.1 discusses the MAP solvers that implement an unthreaded ap-
proach to planning and coordination, while section 4.2 reviews the interleaved ap-
proaches to MAP.

4.1. Unthreaded Planning and Coordination MAP Solvers
MAP solvers that follow an unthreaded planning and coordination strategy under-
stand both activities as separate black boxes, where each activity takes place at once
either before or after the other. As listed in Table 3.4.3, unthreaded solvers typically
use a particular algorithm for coordination (in most cases, a combinatorial optimiza-
tion or satisfiability problem solver) and another one for local planning (generally, a
state-of-the-art single-agent planner).

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:26 A. Torreño et al.

Table
III.S

um
m

ary
ofthe

state-of-the-artM
A

P
solvers

and
their

features.For
unthreaded

solvers,the
resolution

strategies
are

listed
in

form
ofpairs

”coordination
strategy”&

”localplanning
technique”.

M
A

P
Solver

C
oord.

D
ist.

R
esolution

strategy
H

euristic
P

rivacy
P

lanning
First[B

rafm
an

and
D

om
shlak

2008]
U

T
C

Post-planning
coordination

via
D

isC
SP

&
heuristic

forw
ard

search
(FF)

–
N

D
P

G
M

[Pellier
2010]

U
T

C
Iterative

response
planning

&
G

raphP
lan

+
C

SP
plan

extraction
–

N
µ

-S
ATP

LA
N

[D
im

opoulos
et

al.2012]
U

T
C

P
re-planning

goalallocation
→

iterative
response

planning
&

SA
T

–
N

M
A

P
R

[B
orrajo

2013]
U

T
C

P
re-planning

goalallocation
→

iterative
response

planning
→

L
W

solution
plan

parallelization
&

heuristic
forw

ard
search

(LA
M

A
)

P
M

R
[L

uis
and

B
orrajo

2014]
U

T
C

P
re-planning

goalallocation
→

P
lan

m
erging

→
plan

repair
→

L
W

solution
plan

parallelization
&

heuristic
forw

ard
search

(LA
M

A
)

C
M

A
P

[B
orrajo

and
Fernández

2015]
U

T
C

P
re-planning

goalallocation
→

task
m

apping
into

single-agent
task

→
G

W
solution

plan
parallelization

&
heuristic

forw
ard

search
(LA

M
A

)

M
A

P
-LA

P
K

T
[M

uise
et

al.2015]
U

T
C

Task
m

apping
into

single-agent
task

&
G

W
heuristic

forw
ard

search
(LA

P
K

T)

M
A

R
C

[Sreedharan
et

al.2015]
U

T
C

Task
m

apping
into

transform
er

agent
task

&
planning

via
G

W
FD

or
IB

A
C

O
P
→

solution
plan

translation
into

originalM
A

P
task

A
D

P
[C

rosby
et

al.2013]
U

T
C

A
utom

ated
task

agentization
&

heuristic
forw

ard
search

(FD
)

L
N

D
istoplan

[Fabre
et

al.2010]
U

T
C

M
essage

passing
algorithm

&
F

inite
A

utom
ata

–
N

A
#

[Jezequeland
Fabre

2012]
U

T
C

A
synchronous

com
m

unication
m

echanism
&

A
*

heuristic
forw

ard
search

G
N

P
S

M
[Tožička

et
al.2015b]

U
T

D
Intersection

ofF
inite

A
utom

ata
&

G
W

heuristic
forw

ard
search

(LA
M

A
)→

F
inite

A
utom

ata

D
P

P
[Shaniet

al.2016]
U

T
C

Synthesis
ofhigh-levelplan

over
D

P
projection

(FD
)&

L
O

C
heuristic

forw
ard

search
(FF)

TFP
O

P
[K

varnström
2011]

U
T

C
Forw

ard-chaining
partial-order

planning
&

–
N

synthesis
ofagent-specific

thread
ofactions

M
A

P
-P

O
P

[Torreño
et

al.2014a]
IL

D
M

ulti-agent
A

*
heuristic

search
via

backw
ard

P
O

P
G

W
FM

A
P

[Torreño
et

al.2014b]
IL

D
M

ulti-agent
A

*
heuristic

search
via

forw
ard

P
O

P
G

W
M

H
-FM

A
P

[Torreño
et

al.2015]
IL

D
M

ulti-agent
A

*
m

ulti-heuristic
search

via
forw

ard
P

O
P

G
W

M
A

D
LA

[Štolba
and

K
om

enda
2014]

IL
C

M
ulti-agent

m
ulti-heuristic

state-based
search

G
/L

W
M

A
FS

[N
issim

and
B

rafm
an

2012]
IL

D
M

ulti-agent
heuristic

forw
ard

search
L

W
M

A
D

-A
*

[N
issim

and
B

rafm
an

2012]
IL

D
M

ulti-agent
A

*
heuristic

forw
ard

search
L

W
S

ecure-M
A

FS
[B

rafm
an

2015]
IL

C
M

ulti-agent
heuristic

forw
ard

search
L

S
G

P
P

P
[M

aliah
et

al.2016]
IL

C
M

ulti-agent
heuristic

forw
ard

search
(relaxed,subgoals)

G
W

M
A

P
lan

[F
išer

et
al.2015]

IL
D

M
ulti-agent

heuristic
forw

ard
search

G
/L

W

D
istribution:C

-centralized,D
-distributed

(subsum
es

centralized)
C

oordination:U
T

-unthreaded,IL
-interleaved

P
rivacy:N

-no
privacy,W

-w
eak

privacy,O
C

-object
cardinality

privacy,S
-strong

privacy
H

euristic:L
-local,G

-global

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:27

Planning First, 2008 (implemented in 2010). Planning First [Nissim et al. 2010] is the first
MAP solver that draws upon the fundamentals of the MA-STRIPS approach [Brafman
and Domshlak 2008]. Planning First is an early representative of the unthreaded co-
ordination strategy that inspired the development of many subsequent solvers, which
are presented in the next paragraphs.

Planning First aims at efficiently solving loosely-coupled MA-STRIPS tasks (see sec-
tion 2.3). It generates a local plan for each agent in a centralized fashion by means of
the FF planner [Hoffmann and Nebel 2001], and coordinates the local plans through a
distributed Constraint Satisfaction Problem (DisCSP) solver to come up with a global
solution plan. More precisely, Planning First distributes the MAP task among the agents
and identifies the coordination points of the task as the actions whose application af-
fects other agents. Then, it defines a DisCSP by using a lazily generated domain of
possible local agents’ plans. The DisCSP models the choice of coordination points of
each agent considering only sound local plans. If the DisCSP solver finds a solution,
the global plan is directly reconstructed from the local plans since the DisCSP solution
guarantees compatibility among the underlying local plans.

DPGM, 2010 (implemented in 2013). DPGM [Pellier 2010] also uses a CSP to coordinate
the agents’ local plans. Unlike Planning First, which uses FF to generate local solutions
and delegates the coordination to a DisCSP, the CSP solver in DPGM is explicitly dis-
tributed across agents and it is used to extract the local plans from a set of distributed
planning graphs. Under the iterative response planning strategy introduced by DPGM,
the solving process is started by one agent, which proposes a local plan along with a set
of coordination constraints. The subsequent agent uses its CSP to extract a local plan
compatible with the prior agent’s plan and constraints. If an agent is not able to gen-
erate a compliant plan, DPGM backtracks to the previous agent, which puts forward
an alternative plan with different coordination constraints.

µ-SATPLAN, 2010. µ-SATPLAN [Dimopoulos et al. 2012] is a MAP solver that extends
the satisfiability-based planner SATPLAN [Kautz 2006] to a multi-agent context. µ-
SATPLAN performs an a priori distribution of the MAP task goals, G, among the agents
inAG. Similarly to DPGM, agents follow an iterative response planning strategy, where
each participant takes the previous agent’s solution as an input and extends it to solve
its assigned goals via SATPLAN. This way, agents progressively generate a solution.
µ-SATPLAN is limited to collaborative tasks and it is not able to tackle tasks that

include cooperative goals because it assumes that each agent can solve its assigned
goals by itself. Although µ-SATPLAN was experimentally validated on tasks with only
two planning agents, authors claim that the planner is capable of solving tasks with a
higher number agents via the application of the iterative response planning scheme.

MAPR, 2013. Similarly to µ-SATPLAN, Multi-Agent Planning by Reuse (MAPR) [Bor-
rajo 2013] allocates the MAP task goals G among the agents before planning through a
relaxed reachability analysis. MAPR grants weak privacy preservation by obfuscating
the agents’ local tasks. This way, the private information of the local plans is encrypted.

MAPR follows an iterative response planning resolution scheme, like DPGM and µ-
SATPLAN. An agent takes the previous agent’s solution plan as an input and runs
the LAMA planner [Richter and Westphal 2010] to obtain an extended solution plan
that attains its allocated agent’s goals. The solution plan synthesized by the last agent
is a sound global plan for the MAP task, which is then parallelized to ensure that
execution agents perform as many actions in parallel as possible. MAPR is limited to
collaborative tasks without specialized agents nor cooperative goals. This limitation is
a consequence of the assumption that each agent is able to solve its allocated goals by
itself, which renders MAPR incomplete.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:28 A. Torreño et al.

PMR, 2014. Plan Merging by Reuse (PMR) [Luis and Borrajo 2014; 2015] is a MAP
solver that draws upon the goal allocation and obfuscation privacy mechanisms of
MAPR. PMR replaces the iterative response planning scheme of MAPR by a post-
planning plan merging strategy. Agents carry out the planning stage simultaneously
instead of sequentially, and each agent generates local plans for its assigned goals. The
resulting local plans are then concatenated, resulting in a sequential global solution.
If a solution is not found, the task is solved via a single-agent planner. If the result of
the concatenation does not return a sound global plan, agents merge the local plans
through a repair procedure. The resulting sequential solution plan is parallelized to
ensure the concurrent execution of actions when possible.

CMAP, 2015. CMAP [Borrajo and Fernández 2015] follows the same goal allocation
and obfuscation strategy of MAPR and PMR. However, CMAP’s resolution scheme
merges the encrypted local tasks into a single-agent task (|AG| = 1), which is then
solved through the single-agent planner LAMA [Richter and Westphal 2010]. Then,
the resulting sequential plan is parallielized to optimize its concurrent execution.

MAP-LAPKT, 2015. Similarly to CMAP, MAP-LAPKT [Muise et al. 2015] conceives a
MAP task as a problem that can be solved by a single-agent planner by using the ap-
propriate encoding. More precisely, MAP-LAPKT compiles the MAP task into a single-
agent planning task with |AG| = 1 and solves it through the LAPKT toolkit [Ramirez
et al. 2015], which provides an independent set of search methods and heuristics. Au-
thors in [Muise et al. 2015] try three different variations of best-first and depth-first
search that result in different theoretical properties and performance. The task trans-
lation performed by MAP-LAPKT offers weak privacy preservation guarantees.

MARC, 2015. The Multi-Agent Planner for Required Cooperation (MARC) [Sreedha-
ran et al. 2015] is a centralized MAP solver based on the theory of required cooperation
[Zhang and Kambhampati 2014]. MARC analyzes the distribution of the MAP task and
comes up with a different arrangement of planning agents. More precisely, MARC com-
piles the original task into a task with a set of transformer agents, each one being an
ensemble of various agents; i.e., |AGMARC | < |AG|. A transformer agent comprises the
representation of various agents of the original MAP task by using all their actions.
The current implementation of MARC merges all the agents in AG into a single trans-
former agent (|AGMARC | = 1) to obtain a solution plan; otherwise, the task is solved
through a single-agent classical planner.

The resolution scheme of MARC involves three different stages. First, the original
MAP task is compiled into a transformer agent task with |AGMARC | = 1. Next, MARC
synthesizes a solution for the transformer agent task through the classical planner
FD [Helmert 2006] or the portfolio planner IBACOP [Cenamor et al. 2014]. Finally, the
solution plan is translated into a solution for the original MAP task, converting each
action of the transformer agent plan into multiple agent-specific actions [Sreedharan
et al. 2015]. MARC guarantees weak privacy since private elements of the MAP task
are occluded in the transformer agent task.

ADP, 2013. The Agent Decomposition-based Planner (ADP) [Crosby et al. 2013] is a
factored planning solver that exploits the inherently multi-agent structure (agentiza-
tion) of some classical STRIPS-style planning tasks and comes up with a MAP task
where |AG| > 1. ADP applies a state-based centralized planning procedure to solve the
MAP task. In each iteration, ADP determines a set of subgoals that can be attained
from the current state by one of the agents. A search process, guided through the well-
known hFF heuristic [Hoffmann and Nebel 2001], is then applied to find a plan that
achieves those subgoals, thus resulting in a new state. This mechanism iterates suc-
cessively until a solution is found.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:29

Distoplan, 2010. Distoplan [Fabre et al. 2010] is a factored planning approach that ex-
ploits independence within a planning task. Unlike other factored methods [Brafman
and Domshlak 2008; Kelareva et al. 2007], Distoplan does not set any bound on the
number of actions or coordination points of local plans. In Distoplan, a component or
abstraction of the global task is represented as a Finite Automata, which recognizes
the regular language formed by the local valid plan of the component. This way, all
local plans are manipulated at once and a generic distributed optimization technique,
called the message passing algorithm, enables to limit the number of compatible local
plans. With this unbounded representation, all valid plans can be computed in one run
but stronger conditions are required to guarantee polynomial runtime. Distoplan is the
first optimal MAP solver in the literature (note that Planning First is optimal with re-
spect to the number of coordination points, but local planning is carried out through a
suboptimal planner).

A#, 2012 (not implemented). In the line of factored planning, A# [Jezequel and Fabre
2012] is a multi-agent A* search that finds a path for the goal in each local component
of a task and ensures that the component actions that must be jointly performed are
compatible. A# runs modified runs in parallel a modified version of the A* algorithm
in each component, and the local search processes are guided towards finding local
plans that are compatible with the local plans of the other components. Each local A*
finds a plan as a path search in a graph and informs its neighbours of the common
actions that may lead to a solution. Particularly, each agent searches its local graph or
component while considering the constraints and costs of the rest of agents received
through an asynchronous communication mechanism. Authors in [Jezequel and Fabre
2012] do not validate A# experimentally; however, the soundness, completeness and
optimality properties of A# are formally proven.

PSM, 2014. PSM [Tožička et al. 2015b; Tožička et al. 2015a] is a recent distributed
MAP solver that follows Distoplan’s compact representation of local agents plans into
Finite Automata that represent sets of local plans, called Planning State Machines
(PSMs). Two basic operations are defined over a PSM: obtaining a public projection of
the PSM and merging two different PSM. These operations are applied to build a public
PSM consisting of merged public parts of individual PSMs. The PSM resolution scheme
gradually expands the agents’ local PSMs by means of new local plans. A solution
for the MAP task is found once the public PSM is not empty. PSM weakly preserves
privacy because, despite not revealing private information, it obfuscates states of the
PSMs in some situations (see section 3.4.3).

DPP, 2016. The DP-Projection Planner (DPP) [Shani et al. 2016], is a centralized MA-
STRIPS solver that uses the Dependency-Preserving (DP) projection, a novel and ac-
curate public projection of the MAP task information. The single planning agent of
DPP uses FD [Helmert 2006] to create a high-level plan and then this plan is extended
with the agents’ private actions via the FF planner [Hoffmann and Nebel 2001], thus
resulting in a multi-agent solution plan.

TFPOP, 2011. TFPOP [Kvarnström 2011] is a hybrid approach that combines the flex-
ibility of partial-order planning and the performance of forward-chaining search. In
contrast to most MA-STRIPS-based solvers, TFPOP supports temporal reasoning with
durative actions. Authors of TFPOP assume that, whereas it is desirable to grant con-
current execution of the executors’ plans, an execution agent performs actions sequen-
tially. For this reason, TFPOP synthesizes threaded partial-order plans; i.e., non-linear
plans that keep a thread of sequentially-ordered actions per agent.

TFPOP follows a centralized approach and synthesizes a solution for multiple ex-
ecutors. The resolution scheme first selects an agent thread to extend and generates

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:30 A. Torreño et al.

successors by adding one action to the thread and supporting all the preconditions
through causal links. Then, TFPOP verifies that the action does not interfere with ac-
tions in other threads of the plan, and that there is not any conflict regarding the usage
of resources.

4.2. Interleaved Planning and Coordination MAP Solvers
Interleaved MAP solvers apply a form of coordinated search in which agents jointly
explore the search space, continually coordinating their activities. Thus, planning and
coordination in this setting are inseparable and take place alternatively, in an inter-
twined manner. The development of interleaved MAP solvers heavily relies on the
design of robust communication protocols to coordinate agents during planning.

MAP-POP, FMAP, MH-FMAP, 2010-2015. The leitmotiv of this family of MAP solvers
draws upon a distributed exploration of the plan space by multiple agents. Agents lo-
cally synthesize plans through an embedded partial-order planning (POP) component
and they build a multi-agent search tree by following an A* search strategy which uses
global heuristic functions.

MAP-POP [Torreño et al. 2012; 2014a] carries out an incomplete search based on
backward POP algorithms and POP heuristics. FMAP [Torreño et al. 2014b] introduces
a sound and complete resolution scheme based on forward-chaining POP [Benton et al.
2012]. FMAP search is governed through hDTG, a novel state-based heuristic based on
Domain Transition Graphs (DTGs) [Helmert 2006]. Finally, MH-FMAP [Torreño et al.
2015] introduces a multi-heuristic search approach that alternates hDTG and hLand,
and builds a Landmark Graph (LG) to estimate the number of pending landmarks
of the partial-order plans. The three approaches guarantee weak privacy since private
information is occluded throughout the planning process and heuristic evaluation. The
hLand estimator resorts to a form of obfuscation during the construction of the LG.

MADLA, 2013. The Multiagent Distributed and Local Asynchronous Planner (MADLA)
[Štolba and Komenda 2013; 2014] is a centralized solver that applies global and pro-
jected (local) heuristics that require no communication among agents in a distributed
state-based search. More precisely, MADLA combines two multi-agent variants of the
hFF heuristic [Hoffmann and Nebel 2001], a projected version locally computed by
each agent (hL), and a global version (hD). MADLA tries to evaluate as many states as
possible using the global heuristic hD, which is more informative than hL. However,
if hD is busy evaluating another state, the quality of the current state is estimated
through hL. This way, MADLA can use a computationally hard global heuristic without
blocking the planning process, thus improving the performance of the system.

MAFS, MAD-A*, 2012-2014. Planning First lacks practical efficiency in large MAP tasks,
which motivated its authors to propose a MA-STRIPS approach inspired by efficient
classical planners that use state-based heuristics. The Multi-Agent Forward Search
(MAFS) [Nissim and Brafman 2014] is a distributed forward-chaining MA-STRIPS-
based system in which agents jointly explore the state space. An agent in MAFS main-
tains an independent open list of states and expands the best one according to its local
heuristic estimates. To optimize search, only relevant states are shared; that is, an
agent i sends a state S to an agent j if j has at least one action whose public precondi-
tions hold in S, and the action that produces S is public.

Authors also introduce an cost-optimal variation of MAFS, the Multi-Agent Dis-
tributed A*, MAD-A* [Nissim and Brafman 2012]. In this case, each agent expands the
state that minimizes f = g + h, where h is estimated through an admissible heuristic.
Particularly, authors tested the landmark heuristic LM-cut [Helmert and Domshlak

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:31

2009] and the abstraction heuristic Merge&Shrink [Helmert et al. 2007]. MAD-A* is
the first distributed and interleaved solver based on MA-STRIPS.

Secure-MAFS, 2015 (not implemented). Secure-MAFS [Brafman 2015] is an extension of
MAFS towards secure MAP, and it is currently the only solver that offers strong privacy
guarantees. Authors prove strong privacy for a subset of logistics tasks. As opposite
to MAFS, an agent i in Secure-MAFS only sends a state S to relevant agents in AG
after verifying that no other state that contains the same non-private information has
already been communicated. This way, Secure-MAFS guarantees that agents cannot
deduce any private information. Currently, Secure-MAFS is a theoretical work that
has not been yet implemented nor experimentally evaluated.

GPPP, 2014. The Greedy Privacy-Preserving Planner (GPPP) [Maliah et al. 2014;
2016] builds upon MAFS and improves its performance via a global landmark-based
heuristic function. GPPP applies first a global planning stage and then a local plan-
ning stage. In the former, agents agree on a joint coordination scheme by solving a
relaxed MAP task that only contains public actions, thereby preserving privacy. As a
result, agents obtain a skeleton plan made of public actions only. In the local stage,
agents individually calculate private plans to achieve the preconditions of the actions
in the skeleton plan. Since the joint coordination is done over a relaxed MAP task,
the individual plans of the agents may not succeed at solving the actions precondi-
tions. In this case, the global planning stage is executed again to generate a different
coordination scheme, until a solution is found. In GPPP, agents weakly preserve pri-
vacy by obfuscating the private information of the shared states through private state
identifiers.

MAPlan, 2015. MAPlan [Fišer et al. 2015] is a heuristic MAFS-based solver that adapts
several concepts from MAD-A* and MADLA. MAPlan is a distributed and flexible ap-
proach that implements a collection of state-space search methods, such as best first
or A*, as well as several local and global heuristic functions (hFF , LM-cut, potential
heuristics and others), which allows the solver to be run in different configurations.
MAPlan can be executed in a single-machine, using local communications, or in a dis-
tributed fashion, where each agent is in a different machine and communications are
implemented through network message passing. Regarding privacy, MADLA applies a
form of obfuscation, replacing private facts in search states by unique local identifiers,
which grants weak privacy.

5. ONGOING TRENDS IN DISTRIBUTED AND MULTI-AGENT PLANNING
This section sketches the ongoing and future directions in MAP. We focus on two dif-
ferent topics that have recently captured the attention of the MAP community and
constitute the current main research trends in this area; namely, privacy and practical
applications.

The state of the art in MAP shows a growing effort in analyzing and formalizing
privacy in MAP solvers. On the one hand, the literature includes different approaches
to model private information and to define information sharing in privacy-preserving
MAP. Moreover, the particular implementation of a MAP solver may jeopardize pri-
vacy, since in many cases an agent may be able to infer private information from the
received public data. Aside from the four-level classification disclosed in section 3.4.3,
there are other recent attempts to theoretically quantify the privacy guarantees of a
MAP solver [Štolba et al. 2016c].

On the other hand, some recent approaches to MAP make a smart use of privacy to
increase the performance of the solver. A paradigmatic example of this trend is DPP
[Shani et al. 2016], which calculates the Dependency-Preserving (DP) projection, an

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:32 A. Torreño et al.

accurate public projection of the MAP task, which is used to obtain a robust high-level
plan that is completed afterwards with private actions. This scheme outperforms a
general search and vastly reduces the communication requirements.

MAP has been used in a great variety of practical applications, like in product as-
sembly problems in industry (e.g., car assembly). Agents plan the manufacturing path
of the product through the assembly line, which is composed of a number of intercon-
nected resources that can individually perform different operations. ExPlanTech, for
instance, is a consolidated framework for agent-based production planning, manufac-
turing, simulation and supply chain management [Pechoucek et al. 2007].

MAP has also been used to control the flow of electricity in the Smart Grid [Reddy
and Veloso 2011]. The agents’ actions are individually rational and contribute to desir-
able global goals such as promoting the use of renewable energy, encouraging energy
efficiency and enabling distributed fault tolerance. Another interesting application of
MAP is the automated creation of workflows in biological pathways like the Multi-
Agent System for Genomic Annotation (BioMAS) [Decker et al. 2002]. This system uses
DECAF, a toolkit that provides standard services to integrate agent capabilities, and
incorporates a GPGP [Lesser et al. 2004] to coordinate multi-agent tasks.

In decentralized control problems, MAP is applied in coordination of space rovers
and helicopter flights, multi-access broadcast channels, and sensor network manage-
ment, among others [Seuken and Zilberstein 2008]. MAP combined with argumenta-
tion techniques to handle belief changes about the context has been used in applica-
tions of ambient intelligence in the field of healthcare [Pajares and Onaindia 2013].

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES
J. Benton, Amanda J. Coles, and Andrew I. Coles. 2012. Temporal Planning with Preferences and Time-

Dependent Continuous Costs. In Proceedings of the 22nd International Conference on Automated Plan-
ning and Scheduling (ICAPS). 2–10.

Andrea Bonisoli, Alfonso E. Gerevini, Alessandro Saetti, and Ivan Serina. 2014. A Privacy-preserving Model
for the Multi-agent Propositional Planning Problem. In Proceedings of the 21st European Conference on
Artificial Intelligence (ECAI). 973–974.

Daniel Borrajo. 2013. Multi-Agent Planning by Plan Reuse. In Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multi-agent Systems (AAMAS). 1141–1142.

Daniel Borrajo and Susana Fernández. 2015. MAPR and CMAP. In Proceedings of the Competition of Dis-
tributed and Multi-Agent Planners (CoDMAP-15). 1–3.

Ronen I. Brafman. 2015. A Privacy Preserving Algorithm for Multi-Agent Planning and Search. In Proceed-
ings of the 24th International Joint Conference on Artificial Intelligence (IJCAI). 1530–1536.

Ronen I. Brafman and Carmel Domshlak. 2006. Factored Planning: How, When, and When Not. In Proceed-
ings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of
Artificial Intelligence Conference. 809–814.

Ronen I. Brafman and Carmel Domshlak. 2008. From One to Many: Planning for Loosely Coupled Multi-
Agent Systems. In Proceedings of the 18th International Conference on Automated Planning and
Scheduling (ICAPS). 28–35.

Isabel Cenamor, Tomás de la Rosa, and Fernando Fernández. 2014. IBACOP and IBACOP2 planner. In
Proceedings of the International Planning Competition (IPC).

Matthew Crosby, Michael Rovatsos, and Ronald P.A. Petrick. 2013. Automated Agent Decomposition for
Classical Planning. In Proceedings of the 23rd International Conference on Automated Planning and
Scheduling (ICAPS). 46–54.

Mathijs de Weerdt and Bradley J. Clement. 2009. Introduction to planning in multiagent systems. Multia-
gent and Grid Systems 5, 4 (2009), 345–355.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:33

Keith Decker, S. Khan, C.J. Schmidt, G. Situ, R. Makkena, and D. Michaud. 2002. BioMAS: a multi-agent
system for genomic annotation. International Journal of Cooperative Information Systems 11, 3 (2002),
265–292.

Keith Decker and Victor R. Lesser. 1992. Generalizing the Partial Global Planning Algorithm. International
Journal of Cooperative Information Systems 2, 2 (1992), 319–346.

Marie E. desJardins, Edmund H. Durfee, Charles L. Ortiz, and Michael J. Wolverton. 1999. A survey of
research in distributed continual planning. AI Magazine 20, 4 (1999), 13–22.

Yannis Dimopoulos, Muhammad A. Hashmi, and Pavlos Moraitis. 2012. µ-SATPLAN: Multi-agent planning
as satisfiability. Knowledge-Based Systems 29 (2012), 54–62.

Eric Fabre, Loı̈g Jezequel, Patrik Haslum, and Sylvie Thiébaux. 2010. Cost-Optimal Factored Planning:
Promises and Pitfalls. In Proceedings of the 20th International Conference on Automated Planning and
Scheduling (ICAPS). 65–72.

Boi Faltings, Thomas Léauté, and Adrian Petcu. 2008. Privacy guarantees through distributed constraint
satisfaction. In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology (WI-IAT), Vol. 2. IEEE, 350–358.

Richard Fikes and Nils J. Nilsson. 1971. STRIPS: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence 2, 3 (1971), 189–208.

Daniel Fišer, Michal Štolba, and Antonı́n Komenda. 2015. MAPlan. In Proceedings of the Competition of
Distributed and Multi-Agent Planners (CoDMAP-15). 8–10.

Maria Fox, Andrea Gerevini, Derek Long, and Ivan Serina. 2006. Plan stability: replanning versus plan
repair. In Proceedings of the 16th International Conference on Automated Planning and Scheduling
(ICAPS06). 212–221.

Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram, Manuela M. Veloso, Daniel
Weld, and David Wilkins. 1998. PDDL - The Planning Domain Definition Language. AIPS-98 Planning
Committee (1998).

Malte Helmert. 2004. A Planning Heuristic Based on Causal Graph Analysis. Proceedings of the 14th Inter-
national Conference on Automated Planning and Scheduling (ICAPS) (2004), 161–170.

Malte Helmert. 2006. The Fast Downward planning system. Journal of Artificial Intelligence Research 26, 1
(2006), 191–246.

Malte Helmert and Carmel Domshlak. 2009. Landmarks, Critical Paths and Abstractions: What’s the Differ-
ence Anyway?. In Proceedings of the 19th International Conference on Automated Planning and Schedul-
ing (ICAPS). 162–169.

Malte Helmert, Patrik Haslum, and Jörg Hoffmann. 2007. Flexible Abstraction Heuristics for Optimal Se-
quential Planning. In Proceedings of the 17th International Conference on Automated Planning and
Scheduling (ICAPS). 176–183.

Jörg Hoffmann and Bernhard Nebel. 2001. The FF Planning System: Fast Planning Generation Through
Heuristic Search. Journal of Artificial Intelligence Research 14 (2001), 253–302.

Loı̈g Jezequel and Eric Fabre. 2012. A#: A distributed version of A* for factored planning. In Proceedings of
the 51th IEEE Conference on Decision and Control, (CDC). 7377–7382.

Henry A. Kautz. 2006. Deconstructing planning as satisfiability. In Proceedings of the National Conference
on Artificial Intelligence, Vol. 21. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999, 1524.

Elena Kelareva, Olivier Buffet, Jinbo Huang, and Sylvie Thiébaux. 2007. Factored Planning Using Decompo-
sition Trees. In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI).
1942–1947.

Daniel L. Kovacs. 2011. Complete BNF description of PDDL3.1. Technical Report.
Daniel L. Kovacs. 2012. A Multi-Agent Extension of PDDL3.1. In Proceedings of the 3rd Workshop on the

International Planning Competition (IPC). 19–27.
Jonas Kvarnström. 2011. Planning for Loosely Coupled Agents Using Partial Order Forward-Chaining.

In Proceedings of the 21st International Conference on Automated Planning and Scheduling (ICAPS).
AAAI, 138–145.

V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman, R. Podorozhny, M. Prasad, A.
Raja, and others. 2004. Evolution of the GPGP/TAEMS domain-independent coordination framework.
Autonomous agents and multi-agent systems 9, 1-2 (2004), 87–143.

Nerea Luis and Daniel Borrajo. 2014. Plan Merging by Reuse for Multi-Agent Planning. In Proceedings of
the 2nd ICAPS Workshop on Distributed and Multi-Agent Planning (DMAP). 38–44.

Nerea Luis and Daniel Borrajo. 2015. PMR: Plan Merging by Reuse. In Proceedings of the Competition of
Distributed and Multi-Agent Planners (CoDMAP-15). 11–13.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:34 A. Torreño et al.

Shlomi Maliah, Guy Shani, and Roni Stern. 2014. Privacy Preserving Landmark Detection. In Proceedings
of the 21st European Conference on Artificial Intelligence (ECAI). 597–602.

Shlomi Maliah, Guy Shani, and Roni Stern. 2015. Privacy Preserving Pattern Databases. Proceedings of the
3rd ICAPS Workshop on Distributed and Multi-Agent Planning (DMAP) (2015), 9.

Shlomi Maliah, Guy Shani, and Roni Stern. 2016. Collaborative privacy preserving
multi-agent planning. Autonomous Agents and Multi-Agent Systems (2016), 1–38.
DOI:http://dx.doi.org/10.1007/s10458-016-9333-9

Christian Muise, Nir Lipovetzky, and Miquel Ramirez. 2015. MAP-LAPKT: Omnipotent Multi-Agent Plan-
ning via Compilation to Classical Planning. In Proceedings of the Competition of Distributed and Multi-
Agent Planners (CoDMAP-15). 14–16.

Raz Nissim and Ronen I. Brafman. 2012. Multi-agent A* for parallel and distributed systems. In Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS). 1265–
1266.

Raz Nissim and Ronen I. Brafman. 2014. Distributed Heuristic Forward Search for Multi-agent Planning.
Journal of Artificial Intelligence Research 51 (2014), 293–332.

Raz Nissim, Ronen I. Brafman, and Carmel Domshlak. 2010. A general, fully distributed multi-agent plan-
ning algorithm. In Proceedings of the 9th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS). 1323–1330.

Sergio Pajares and Eva Onaindia. 2013. Context-aware multi-agent planning in intelligent environments.
Information Sciences 227 (2013), 22–42.

Michal Pechoucek, Martin Rehák, Petr Charvát, Tomáš Vlcek, and Michal Kolar. 2007. Agent-based ap-
proach to mass-oriented production planning: case study. IEEE Transactions on Systems, Man, and
Cybernetics, Part C 37, 3 (2007), 386–395.

Damien Pellier. 2010. Distributed Planning through Graph Merging. In Proceedings of the 2nd
International Conference on Agents and Artificial Intelligence (ICAART 2010). 128–134.
DOI:http://dx.doi.org/10.5220/0002702601280134

Miquel Ramirez, Nir Lipovetzky, and Christian Muise. 2015. Lightweight Automated Planning ToolKiT.
http://lapkt.org/. (2015).

Prashant P. Reddy and Manuela M. Veloso. 2011. Strategy learning for autonomous agents in smart grid
markets. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI).
1446–1451.

Silvia Richter and Matthias Westphal. 2010. The LAMA planner: Guiding cost-based anytime planning with
landmarks. Journal of Artificial Intelligence Research 39, 1 (2010), 127–177.

Óscar Sapena, Eva Onaindia, Antonio Garrido, and Marlene Arangú. 2008. A distributed CSP approach for
collaborative planning systems. Engineering Applications of Artificial Intelligence 21, 5 (2008), 698–709.

Emilio Serrano, Jose M. Such, Juan A. Botı́a, and Ana Garcı́a-Fornes. 2013. Strategies for avoiding prefer-
ence profiling in agent-based e-commerce environments. Applied Intelligence (2013), 1–16.

Sven Seuken and Shlomo Zilberstein. 2008. Formal models and algorithms for decentralized decision making
under uncertainty. Autonomous Agents and Multi-Agent Systems 17, 2 (2008), 190–250.

Guy Shani, Shlomi Maliah, and Roni Stern. 2016. Stronger Privacy Preserving Projections for Multi-Agent
Planning. In Proceedings of the 26th International Conference on Automated Planning and Scheduling
(ICAPS). 221–229.

Claude E. Shannon. 1948. A mathematical theory of communication. The Bell System Technical Journal 27,
3 (1948), 379–423.

Sarath Sreedharan, Yu Zhang, and Subbarao Kambhampati. 2015. A First Multi-agent Planner for Re-
quired Cooperation (MARC). In Proceedings of the Competition of Distributed and Multi-Agent Planners
(CoDMAP-15). 17–20.

Michal Štolba, Daniel Fišer, and Antonı́n Komenda. 2015. Admissible Landmark Heuristic for Multi-Agent
Planning. In Proceedings of the 25th International Conference on Automated Planning and Scheduling
(ICAPS). 211–219.

Michal Štolba, Daniel Fišer, and Antonı́n Komenda. 2016a. Potential Heuristics for Multi-Agent Planning.
In Proceedings of the 26th International Conference on Automated Planning and Scheduling (ICAPS).
308–316.

Michal Štolba and Antonı́n Komenda. 2013. Fast-forward heuristic for multiagent planning. In Proceedings
of the 1st ICAPS Workshop on Distributed and Multi-Agent Planning (DMAP). 75–83.

Michal Štolba and Antonı́n Komenda. 2014. Relaxation Heuristics for Multiagent Planning. In Proceedings
of the 24th International Conference on Automated Planning and Scheduling (ICAPS). 298–306.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey 0:35

Michal Štolba and Antonı́n Komenda. 2015. MADLA: Planning with Distributed and Local Search. In Pro-
ceedings of the Competition of Distributed and Multi-Agent Planners (CoDMAP-15). 21–24.

Michal Štolba, Antonı́n Komenda, and Daniel L. Kovacs. 2016b. Competition of Distributed and Multiagent
Planners (CoDMAP). In Proceedings of the 30th AAAI Conference on Artificial Intelligence (What’s Hot
Track).

Michal Štolba, Jan Tožička, and Antonı́n Komenda. 2016c. Quantifying Privacy Leakage in Multi-Agent
Planning. Proceedings of the 4rd ICAPS Workshop on Distributed and Multi-Agent Planning (DMAP)
(2016), 80–88.

Alejandro Torreño, Eva Onaindia, and Óscar Sapena. 2012. An approach to multi-agent planning with in-
complete information. In Proceedings of the 20th European Conference on Artificial Intelligence (ECAI),
Vol. 242. IOS Press, 762–767.

Alejandro Torreño, Eva Onaindia, and Óscar Sapena. 2014a. A Flexible Coupling Approach to Multi-Agent
Planning under Incomplete Information. Knowledge and Information Systems 38, 1 (2014), 141–178.

Alejandro Torreño, Eva Onaindia, and Óscar Sapena. 2014b. FMAP: Distributed cooperative multi-agent
planning. Applied Intelligence 41, 2 (2014), 606–626. DOI:http://dx.doi.org/10.1007/s10489-014-0540-2

Alejandro Torreño, Eva Onaindia, and Óscar Sapena. 2015. Global Heuristics for Distributed Cooperative
Multi-Agent Planning. In Proceedings of the 25th International Conference on Automated Planning and
Scheduling (ICAPS). 225–233.

Alejandro Torreño, Óscar Sapena, and Eva Onaindia. 2015. MH-FMAP: Alternating Global Heuristics in
Multi-Agent Planning. In Proceedings of the Competition of Distributed and Multi-Agent Planners
(CoDMAP-15). 25–28.

Jan Tožička, Jan Jakubuv, and Antonı́n Komenda. 2014. Generating Multi-Agent Plans by Distributed In-
tersection of Finite State Machines. In Proceedings of the 21st European Conference on Artificial Intelli-
gence (ECAI). 1111–1112.

Jan Tožička, Jan Jakubuv, and Antonı́n Komenda. 2015a. PSM-based Planners Description for CoDMAP
2015 Competition. In Proceedings of the Competition of Distributed and Multi-Agent Planners
(CoDMAP-15). 29–32.

Jan Tožička, Jan Jakubuv, Antonı́n Komenda, and Michal Pěchouček. 2015b. Privacy-concerned
multiagent planning. Knowledge and Information Systems (2015), online pre–print.
DOI:http://dx.doi.org/10.1007/s10115-015-0887-7

Roman van der Krogt. 2007. Privacy Loss in Classical Multiagent Planning. In Proceedings of the
IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT). 168–174.

Roman van der Krogt. 2009. Quantifying privacy in multiagent planning. Multiagent and Grid Systems 5, 4
(2009), 451–469.

Michael Wooldridge. 1997. Agent-Based Software Engineering. IEE Proceedings - Software Engineering 144,
1 (1997), 26–37.

Jian F. Zhang, Xuan T. Nguyen, and Ryszard Kowalczyk. 2007. Graph-based Multi-agent Replanning Algo-
rithm. In Proceedings of the 6th Conference on Autonomous Agents and Multiagent Systems (AAMAS).
798–805.

Yu Zhang and Subbarao Kambhampati. 2014. A Formal Analysis of Required Cooperation in Multi-agent
Planning. CoRR abs/1404.5643 (2014). http://arxiv.org/abs/1404.5643

Received July 2016; revised -; accepted -

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Online Appendix to:
Distributed and Multi-Agent Planning: A Survey

ALEJANDRO TORREÑO, Universitat Politècnica de València
EVA ONAINDIA, Universitat Politècnica de València
ANTONÍN KOMENDA, Czech Technical University in Prague
MICHAL ŠTOLBA, Czech Technical University in Prague

A. RESULTS OF THE 2015 COMPETITION OF DISTRIBUTED AND MULTIAGENT PLANNING
Directly comparing MAP solvers from the taxonomy presented in section 4 is cumber-
some because the input format of the planning tasks and output format of the solution
plans is not unified. This issue was one for the main motivations for the organization of
the first Competition of Distributed and Multiagent Planners4 (CoDMAP). More than
a half of the MAP solvers listed in section 4 entered the competition and were made
compatible with the MA-PDDL input language and the CoDMAP output format.

A.1. List of Participating Solvers
In order to make the CoDMAP competition as open as possible to various planning
paradigms and implementations, it was split into two tracks. The Centralized Track
served as a transitional track with less strict rules, where planners run on one machine
centrally (possibly on more threads in parallel though). The Distributed Track forced
stricter rules and also required the planners to consume distributed input and run
on multiple physical machines in a distributed fashion (each planning agent on one
machine). In both tracks, the planning systems were evaluated separately, therefore
different planners were not affecting each other. A restricted variant of the Multi-
agent Planning Domain Definition Language (MA-PDDL) [Kovacs 2012] was used in
both tracks and all planners were required by the rules to accept the planning tasks
in MA-PDDL.

The two Tables below describe the features of the MAP solvers that took part in
the Centralized and Distributed Track, respectively. Despite not being mandatory in
the Centralized Track, all the participating solvers (with the only exception of ADP)
partition the actions among the set of agents described in the MA-PDDL task and most
of the solvers stick to the MA-PDDL definition of private and public facts and actions
as well. Since action partitioning follows the MA-STRIPS definition, all MAP solvers
competing in the Centralized Track are also MA-STRIPS-compatible.

In the Distributed Track, it was compulsory to apply both task partitioning and pri-
vacy preservation as defined in the factored MA-PDDL task descriptions. These three
approaches to MAP, together with MAD-A*, are currently the only implementations
which provide distributed run. Moreover, MH-FMAP is the only distributed planner
able to utilize more than one computational thread for each particular agent.

4http://agents.fel.cvut.cz/codmap

c© 2016 ACM. 0360-0300/2016/-ART0 $15.00
DOI: 0000001.0000001

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

App–2 A. Torreño et al.

Table IV. Summary of the MAP solvers competing in the Centralized Track of the 2015 CoDMAP. The coordi-
nation division is not strict.

Planner Coord. Complete. Optimal. MA-PDDL MA-STRIPS Priv. Single-
Factored Privacy compatible /multi-thr.

ADP IL Yes No No* No No N S
CMAP IL Yes No Yes Yes Yes OB S
GPPP IL Yes No Yes Yes Yes OB S
MADLA IL Yes No Yes No+ Yes OB M
MAP-LAPKT IL Yes Yes×/No Yes Yes Yes OB S
MAPlan IL Yes Yes/No Yes/No Yes/No+ Yes OB M
MAPR UT No No Yes Yes Yes OB S
MARC IL Yes No Yes Yes Yes OC S
MH-FMAP IL Yes No Yes Yes Yes OC M
PMR UT No No Yes Yes Yes OB S
PSM UT Yes No Yes No Yes OB M

Coordination: UT - unthreaded, IL - interleaved
Privacy: N - no privacy, OB - obfuscation (weak), OC - occlusion (weak)
Notes: * automated factorization, + by MA-STRIPS, × asymptotically

Table V. Summary of the MAP solvers competing in the Distributed Track (each agent on an indepen-
dent machine) of the 2015 CoDMAP. The coordination division is not strict. In contrast to the centralized
planners, the multi-threaded capability here means that an agent can run in a multi-threaded fashion.

Planner Coord. Complete. Optimal. MA-PDDL MA-STRIPS Priv. Single-
Factored Privacy compatible /multi-thr.

MAPlan IL Yes Yes/No Yes Yes Yes OB S
MH-FMAP IL Yes No Yes Yes Yes OC M
PSM UT Yes No Yes Yes Yes OB S

Coordination: UT - unthreaded, IL - interleaved
Privacy: OB - obfuscation (weak), OC - occlusion (weak)

A.2. Summary of the CoDMAP Results
The results of the 2015 CoDMAP are summarized in the Table below. The left-hand
side of the Table displays the results of the MAP solvers competing in the Centralized
Track, while the right-hand side collects the results of the Distributed Track.

Three of the metrics used in the International Planning Competition5 (IPC) tracks
were used in the CoDMAP to compare the participating MAP solvers:

— Coverage (number of solved tasks) over all domains.
— IPC score over the plan quality Q (a sum over all tasks Q∗

Q , where Q∗ is the cost of
the optimal plan or of the best plan found by any of the participating solvers).

— IPC Agile score over the planning time T (a sum over all the tasks 1
(1+log10(T/T

∗)) ,
where T ∗ is the runtime of the fastest planner).

In the Distributed Track, plan quality was evaluated both in terms of total cost,
which is the sum of costs of all the actions in a plan, and makespan or duration, de-
fined as the length of the longest agent’s plan before reaching a goal. All actions were
considered to have a duration of one unit, i.e., non-durative (cf. durative actions in
temporal planning).

5http://icaps-conference.org/index.php/Main/Competitions

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

Distributed and Multi-Agent Planning: A Survey App–3

Table VI. Summary of the CoDMAP results. The used metrics are coverage (cvg.) of solved
problems from the set of 240 problems in 12 domains, IPC quality score and IPC agile score.

Centralized Track Distributed Track
Planner Cvg. Quality Agility Planner Cvg. Quality Agility
ADP 219 176.23 157.14 PSM 180 140.18 126.75
MAP-LAPKT (t) 217 166.33 165.48 MAPlan 174 134.51 158.83
MAP-LAPKT (q) 217 201.23 71.22 MH-FMAP 107 99.87 52.25
MARC 216 166.20 138.52
CMAP (t) 211 172.59 161.50
CMAP (q) 199 188.95 62.51
MAPlan 197 129.90 114.88
GPPP 184 149.28 85.43
PSM 167 111.94 69.44
MADLA 158 88.31 76.96
PMR 147 114.68 90.57
MAPR 139 112.52 106.24
MH-FMAP 81 80.82 42.36

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 2016.

