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Abstract 

Decision-makers express a strong need for reliable information on future climate changes 

to come up with the best mitigation and adaptation strategies to address its impacts. These 

decisions are based on future climate projections simulated using different Representative 

Concentration Pathways (RCPs), General Circulation Models (GCMs) and downscaling 

techniques to obtain high-resolution Regional Climate Models (RCMs). RCPs defined by 

the Intergovernmental Panel on Climate Change (IPCC) entail a certain combination of 

the underlying driving forces behind climate and land use/land cover (LULC) changes, 

which leads to different anthropogenic Greenhouse Gases (GHGs) concentration 

trajectories. The projections of global and regional climate change should also take into 



account relevant sources of uncertainty and stakeholders’ risk attitudes when defining 

climate polices. 

The goal of this paper is to improve regional climate projections by their prioritized 

aggregation through the ordered weighted averaging (OWA) operator. The aggregated 

projection is achieved by considering the similarity of the projections obtained combining 

different GCMs, RCPs and downscaling techniques. The relative weights of the different 

projections to be aggregated by the OWA operator are obtained by regular increasing 

monotone fuzzy quantifiers, which allows modelling the stakeholders’ risk attitudes. The 

methodology provides a robust decision-making tool to evaluate the performance of 

future climate projections and to design sustainable policies under uncertainty and risk 

tolerance, which has been successfully applied to a real-case study. 

 

Keywords: OWA operators; climate change; General Circulation Models; aggregation; 
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1. Introduction 

Climate change and global warming is a major concern for societies and policy-makers 

in order to achieve a sustainable development. The climate change impacts are broadly 

categorized into three main areas: erratic climate and weather extremes (e.g., water 

scarcity, floods, droughts, melting of the cryosphere, sea level rise, higher temperatures, 

more severe storms, desertification, erosion, landslides, salt water intrusion), altered 

ecosystems and habitats (e.g., migration of species, damages to coral and shellfish, forests 

are more prone to deadly infestations, endangered species) and risks to human health and 

society (e.g., threats to agriculture and food availability, threats to tourism in coastal 



areas, significant health problems because the air and water are warmer and polluted, 

damages to infrastructure and transportation). 

The decision-making process to design mitigation and adaptation strategies is hindered 

by the complex interactions among the driving forces of the climate change, ranging from 

natural causes, energy use, lifestyle and climate policies, to demographic, technological, 

socio-economic and environmental developments. A large number of methodologies have 

been developed to deal with decision-making processes in environmental problems (e.g., 

; Llopis-Albert and Palacios-Marqués, 2016). 

The assessment of the impacts of climate change relies on future climate projections 

obtained using different Representative Concentration Pathways (RCPs), General 

Circulation Models (GCMs) and downscaling techniques for obtaining high-resolution 

Regional Climate Models (RCMs). RCPs as adopted by the Intergovernmental Panel on 

Climate Change (IPCC) in its fifth Assessment Report (AR5) entail diverse driving forces 

behind anthropogenic Greenhouse Gases (GHGs) concentration trajectories (IPCC, 

2014). Furthermore, this report establishes that humans through the GHGs trends are the 

main cause of current global warming. 

The projections of global and regional climate change are hampered by the large existing 

uncertainties, which range from low confidence in climate variable observations, the 

underlying driving forces of climate and land use/land cover (LULC) changes, possible 

future climate change scenarios and anthropogenic impacts, GCMs assumptions and 

limitations, spatial resolutions, initial conditions to downscaling techniques to obtain 

regional projections. These uncertainties are translated into regional projections, which 

lead to dissimilar results and occasionally opposite to each other. Therefore, the IPCC 

(2014) recommends in climate change studies the use of stochastic approaches, i.e., the 

use of an ensemble of projections (e.g. Andersson et al., 2006) or a combination of those 



projections through different weighting methods (e.g., Gay and Estrada, 2010). Stochastic 

approaches are highly use to deal with many environmental problems, such as 

groundwater flow and mass transport (e.g., Llopis-Albert et al., 2015), saltwater intrusion 

(e.g., Llopis-Albert et al., 2016), hydro-economic models (e.g., Llopis-Albert et al., 

2014). 

As a rule of thumb, regional projections are key to understanding the climate change, but 

a methodology to deal with uncertainties and risk tolerance is advisable. 

This paper is intended to improve regional climate projections by their prioritized 

aggregation by means of the ordered weighted averaging (OWA) operator. The 

heterogeneous and uncertain future climate projections (simulated using a variety of 

GCMs, RCPs and downscaling techniques) are aggregated in accordance with their 

similarity, where the relative weights of the projections are obtained by regular increasing 

monotone fuzzy quantifiers. In this way, the methodology also allows reducing 

uncertainty and modelling the risk tolerance when defining climate polices, i.e. the 

optimism/pessimism degrees of decision-makers. The procedure has been successfully 

applied to future regional projections for mainland Spain using the data provided by the 

State Meteorological Agency of Spain (AEMET, 2017).  

The rest of the paper is organized as follows. Section 2 presents the methodology 

based on the prioritized OWA operator. Section 3 shows an application to a case study, 

while section 4 concludes the paper. 

 

 

2. Methodology 

2.1. Overview 



We have selected ordered weighted averaging (OWA) operators (Yager, 1988) to 

aggregate the future regional projections for analyzing the climate change because its 

capability to encompass a range of operators from minimum to maximum, including 

several averaging aggregation operations like arithmetic mean. In the aggregation of 

fuzzy sets several fuzzy numbers are combined to produce a single fuzzy number (Klir 

and Yuan, 1995). This combination can be performed by intersection, minimum, product 

(i.e., fuzzy t-norms or disjunctive quantifiers) and union, maximum, summation (i.e., s-

norms or conjunctive quantifiers). In addition, there are other well-known operators for 

aggregation such as arithmetic, geometric and harmonic means. A review on the 

development of aggregation operators can be found in Yu (2015).  

OWA operators (Yager, 1988; Yager et al., 2011) and prioritized multi-criteria 

decision-making problem has been widely tackled in the literature (e.g.,  Yu et al., 2012). 

OWA operator has been extended under a wide range of frameworks including 

probabilities (Merigó, 2010), distance measures (Merigó and Casanovas, 2011), linguistic 

information (Merigó and Gil-Lafuente, 2013), moving averages (Merigó and Yager, 

2013) and continuous operators (Zhou et al., 2016). Wei and Tang (2012) developed 

generalized prioritized aggregation operators. Chen et al. (2014a) developed a weakly 

prioritized measure for multi-criteria decision making and Yu et al. (2013) with 

preference relations. In fuzzy environments, Verma and Sharma (2016) designed 

prioritized operators with triangular fuzzy numbers, Ye (2014) considered trapezoidal 

intuitionistic fuzzy sets, Chen (2014) used interval-valued intuitionistic fuzzy sets, and 

Dong and Wan (2016) focused on triangular intuitionistic fuzzy numbers. Some other 

authors have used hesitant fuzzy sets in the aggregation process (e.g., Jin et al., 2016). 

Additionally, other authors have considered other environments with interval numbers 

(Ran and Wei, 2015) and linguistic information (Zhao et al., 2014). 



However, this technique has been scarcely applied to climate change. Rahmani 

and Zarghami (2013) developed a new approach to combine climate change projections 

by using OWA operators.  

The methodology entails three main steps. First, based on the future regional 

climate projections provided by AEMET, the similarity of a specific projection (obtained 

using a certain GCM, RCP and downscaling technique) is determined by comparing it 

with other projections obtained using other GCMs and/or downscaling techniques. 

Second, the methodology finds the total similarity through OWA operators considering 

different stakeholders’ risk tolerance. Third, it averages the regional climate projections 

based on their total similarity, thus minimizing uncertainty.  

Another advantage of the OWA operator is that since the similarity of regionals 

projections depends on stakeholders’ risk attitudes, a sensitivity analysis can be carried 

out based on their preferences.  

 

2.2. Comparison of future regional projections. 

The regional projections obtained with different GCMs and downscaling techniques leads 

to a wide range of uncertainties. They show dissimilar results and occasionally opposite 

to each other, which hinders their direct use by policy-makers. 

This problem can be diminished by finding the weak projections and reducing their effects 

in averaging. In order to measure the weakness the unlikeness measure 𝑈𝑖,𝑠
𝑥  is used, which 

calculates the total distance and/or error of a prediction by comparing a regional 

projection 𝑖 (obtained using a certain GCM, RCP and downscaling technique) with regard 

to the other regional projections, 𝑗, in a station 𝑠 (Rahmani and Zarghami, 2013): 



𝑈𝑖,𝑠
𝑥 = ∑ ∑|𝑥𝑖,𝑡,𝑠 − 𝑥𝑗,𝑡,𝑠|

𝑘

𝑡=1

𝑚

𝑗=1,𝑖≠𝑗

                                                                                            (1) 

where 𝑥𝑖,𝑡,𝑠 is the change in variable of 𝑥 (rainfall, minimum temperature or maximum 

temperature) predicted by regional projection 𝑖 to the value of its baseline in month 𝑡; 

𝑚 represents the number of all projections; 𝑘 is the number of all months; and 𝑠 indicates 

the stations. The value of 𝑥 expresses the percent of change for rainfall and the absolute 

change for temperature. 

In order to facilitate the analysis, a conversion between the unlikeness measure to 

similarity and a normalization of values to be within the interval [0, 1] is carried out 

(Rahmani and Zarghami, 2013): 

𝐿𝑖,𝑠
𝑥 =

𝑀𝑎𝑥𝑖𝑈𝑖,𝑠
𝑥 − 𝑈𝑖,𝑠

𝑥

𝑀𝑎𝑥𝑖𝑈𝑖,𝑠
𝑥 − 𝑀𝑖𝑛𝑖𝑈𝑖,𝑠

𝑥                                                                                             (2) 

where 𝐿𝑖,𝑠
𝑥  is the normalized similarity of a regional projection 𝑖 in station 𝑠 on variable 𝑥 

regarding the other projections. 

 

2.3. Aggregation of future regional projections by OWA operators. 

The aggregation of the similarity measures for all stations is carried out by OWA 

operators, which is a well-known technique to deal with uncertain and complex 

environments in multi-person and multi-criteria problems. The methodology aims to 

consider stakeholders’ risk preferences when defining climate polices, and to minimize 

the existing uncertainties. The risk tolerance define the optimism/pessimism degrees of 

decision-makers, i.e., if they are willing to accept risk or, conversely, they are risk averse. 

Climate change is a global challenge that can only be effectively addressed through a 

global effort. The stakeholders involved in the decision-making process for defining 



climate policies may cover the governments and governmental agencies, experts and 

opinion formers in climate change, civil society, non-governmental organization (NGOs), 

mass-media, economic sectors, and the IPCC. The risk attitude or optimism degree of the 

decision-makers can be collected through public government information, meetings, 

surveys, polls, conferences, workshops, round tables, personal interviews, debate forums, 

expert panels and mass-media information.The priority of a regional projection is ranked 

through its total similarity measures considering all stations, 𝑇𝐿𝑖
𝑥, while an n-dimensional 

OWA operator is used to determine the aggregation value: 

𝑇𝐿𝑖
𝑥 =  𝑂𝑊𝐴(𝐿𝑖,1

𝑥 , 𝐿𝑖,2
𝑥 , … , 𝐿𝑖,𝑛

𝑥 ) = ∑ 𝜔𝑔𝑏𝑔

𝑛

𝑔=1

                                                                     (3) 

where (𝑏𝑖,1
𝑥 , 𝑏𝑖,2,

𝑥 , … , 𝑏𝑖,𝑛
𝑥 ) is the sorted vector in descending order of the (𝐿𝑖,1

𝑥 , 𝐿𝑖,2
𝑥 , … , 𝐿𝑖,𝑛

𝑥 ) 

vector, in which 𝑛 is the numbers of stations. The weight vector (𝜔1, 𝜔2, … , 𝜔𝑛) indicates 

the order weights, and each component 𝜔𝑔 satisfies that 𝜔𝑔 ∈ [0,1] and ∑ 𝜔𝑔 = 1𝑛
𝑔=1 . 

The weights can be obtained by different techniques, such as fuzzy linguistic quantifiers, 

orness measure, dispersion measure, O’Hagan’s maximum entropy measure, normal 

distribution based method, training etc. (e.g., Yager, 1988; O'Hagan, 1988; Xu, 2005; 

Sadiq and Tesfamariam,  2010). 

Two characterizing measures called orness measure and dispersion measure associated 

with the weighting vector  𝜔 of an OWA operator were introduced by Yager (1988). The 

orness measure of the aggregation operator is defined as: 

𝛼 =
1

𝑛 − 1
∑  𝜔𝑖(𝑛 − 1)     

𝑛

𝑖=1

                                                                                           (4) 

with 𝛼 ∈ [0,1]. 



It characterizes the degree to which the aggregation is like an or operator. When 𝛼 = 0 

the vector 𝜔 becomes (0, 0, … , 1), which means that minimum value in the vector 

(𝐿𝑖,1
𝑥 , 𝐿𝑖,2

𝑥 , … , 𝐿𝑖,𝑛
𝑥 ) is assigned the complete weight (i.e., the OWA behaves as a minimum 

operator). Likewise, when 𝛼 = 1 becomes (1, 0, … , 0), which means that maximum value 

in the vector (𝐿𝑖,1
𝑥 , 𝐿𝑖,2

𝑥 , … , 𝐿𝑖,𝑛
𝑥 ) receives the complete weight (i.e., the OWA behaves as 

a maximum operator). If all elements in the vector (𝐿𝑖,1
𝑥 , 𝐿𝑖,2

𝑥 , … , 𝐿𝑖,𝑛
𝑥 ) are assigned equal 

weights (i.e., arithmetic average) the vector 𝜔 becomes (1/𝑛, 1/𝑛, … , 1/𝑛) and 𝛼 = 0.5. 

Between the two extreme values (i.e., 𝛼 = 0 and 𝛼 = 1) there is an infinite number of 

possible 𝛼 values, which lead to different weights distributions. Note that 𝛼 = 0.5 does 

not assure that weights are uniformly distributed (i.e.,  𝜔𝑖 = 1/𝑛), instead it means that 

weights are distributed symmetrically regarding the mean. Then any symmetric 

probability density function (PDF) like uniform or normal presents an 𝛼 = 0.5. 

The weight distribution for a given 𝛼 can be analyzed through the dispersion measure 

𝐷𝑖𝑠𝑝(𝜔) as presented by Yager (1998): 

𝐷𝑖𝑠𝑝(𝜔) =  − ∑ 𝜔𝑖

𝑛

𝑖=1

ln (𝜔𝑖)                                                                                          (5) 

where 0 ≤ 𝐷𝑖𝑠𝑝(𝜔) ≤ ln(𝑛). It provides a degree to which the information in the 

arguments is used. In this way, when 𝛼 = 0 or 𝛼 = 1 (i.e., 𝜔𝑖 = 1) the dispersion is zero 

and when 𝜔𝑖 = 1/𝑛 (i.e., a uniform distribution) it takes its maximum value (i.e., ln(𝑛)). 

In this study, we use a fuzzy linguistic quantifiers (𝑄) to obtain the weights, such 

as a regular increasing monotone (RIM) quantifier (Yager, 2009): 

𝜔𝑔 = 𝑄 (
𝑔

𝑛
) − 𝑄 (

𝑔−1

𝑛
) , 𝑔 = 1,2, … , 𝑛                     (6) 

The quantifier is defined as 𝑄(𝑟) = 𝑟𝛽, where r≥ 0 and 𝛽 is a parameter that depends on 

the risk tolerance of the stakeholder, which is represented using fuzzy terms. Then, values 



of 𝛽 < 1 expresses stakeholders’ optimism (risk acceptance), 𝛽 = 1 for risk neutral and 

𝛽 > 1 for pessimism (risk aversion).  

This is because the RIM function is bounded by two linguistic quantifier “there 

exists” 𝑄∗(𝑟) (OR) and “for all”, 𝑄∗(𝑟) (AND). Therefore, for a given 𝑄(𝑟)  the 

relationship  𝑄∗(𝑟) ≤ 𝑄(𝑟) ≤ 𝑄∗(𝑟) is always fulfilled. 

For 𝛽 = 1, the RIM quantifier becomes a uniform distribution (i.e., weight distribution is 

similar to an arithmetic mean, which means that 𝜔𝑖 = 1
𝑛⁄ ). For 𝛽  > 1, it leans towards 

right (i.e., ‘‘And-type’’ operators showing negatively skewed OWA weight 

distributions). Likewise, for 𝛽 < 1, it leans towards left and becomes a regular decreasing 

monotone (RDM) quantifier (i.e., ‘‘Or-type’’ operators showing positively skewed OWA 

weight distributions). 

Additionally, the OWA operator has some important properties, i.e., monotonicity, 

commutativity and boundary (e.g., Wang et al., 2014). Furthermore, note that many other 

aggregation operators could also be considered in the analysis (Yager, 2011). 

 

2.3. Average of regional projections based on their total similarity. 

A simple additive weighting is used to average the regional projections based on their 

total similarity. The weight for each projected variable, 𝜈𝑖, is calculated in accordance 

with the order of total similarity regarding a specific regional projection 𝑖, 𝑇𝐿𝑖
𝑥 (Rahmani 

and Zarghami, 2013): 

𝜈𝑖
𝑥,𝛼 =

𝑚 + 1 − 𝑜𝑟𝑑(𝑇𝐿𝑖
𝑥,𝛼)

∑ 𝑖𝑚
𝑖=1

                                                                                              (7) 

where 𝑚 is the number of regional projections and ord()  represents the rank, i.e., one for 

the highest similarity and 𝑚 for the lowest one. The weights 𝜈𝑖 are defined to add up the 



unity. It is worthwhile mentioning, that 𝜔𝑔 indicates the order in the OWA methodology 

based on the stakeholders’ risk preferences, while 𝜈𝑖 represents the effect of similarity. 

As a result, the average projection of a certain variable 𝑥𝑖,𝑡,𝑠 (i.e., rainfall, minimum 

temperature or maximum temperature) using different regional projections is defined as 

follows: 

�̅�𝑡,𝑠
𝛼 =∑ 𝜈𝑖

𝑥,𝛼𝑚
𝑖=1 𝑥𝑖,𝑡,𝑠                                                                                                                (8) 

 

3. Application to a case study 

Spain is a country located in southwestern Europe occupying about 85 percent of the 

Iberian Peninsula. It has an area of 504,030 km², of which 499,542 km² is land and 5,240 

km² is water. Spain is the second largest country in Western Europe and with an average 

altitude of 650 m, the third highest country in Europe. It lies between latitudes 36° and 

44° N, and longitudes 19° W and 5° E, and its Atlantic coast is 710 km long. 

The climate of Spain varies across the country and presents three main climatic zones, 

based on the geographical situation and orographic conditions. The Mediterranean 

climate is characterized by dry and warm summers and cool to mild and wet winters.    

The oceanic climate is located in the northern part of the country, especially in the regions 

of Basque Country, Asturias, Cantabria and Galicia. The semiarid climate is located in 

the south eastern part of the country, especially in the region of Murcia and in the Ebro 

valley. In contrast to the Mediterranean climate, the dry season continues beyond the end 

of summer. 

We use regional projections for mainland Spain as provided by the State Meteorological 

Agency of Spain (AEMET, 2017). These projections are obtained following the 

guidelines of the fifth Assessment Report (AR5) of the Intergovernmental Panel on 



Climate Change (IPCC, 2014). This study uses a set of 42 future regional projections 

encompassing 24 GCMs, 3 RPCs scenarios and 2 downscaling techniques. These regional 

climate projections are obtained for the 21st century and comprise the variables 

precipitation (using 2321 weather stations), and maximum and minimum temperature 

(using 374 weather stations).  

All GCMs models used to obtain regional projections are from CMIP5 Project (Coupled 

Model Intercomparison Project Phase 5) and within the framework of the AR5-IPCC. 

They provide daily information for the variables precipitation, and maximum and 

minimum temperature (AEMET, 2017). The AR5 (IPCC, 2014) defines four new 

scenarios in comparison with the AR4 and the ENSEMBLES (Stream 1 y Stream 2) 

project (IPCC, 2007). On the one hand, the ENSEMBLES project generated a collection 

of regionalized climate change projections based on a set of global models, regional 

models and emission scenarios. These projections were generated under the emission 

scenarios named as SRES (Special Report Emissions Scenarios), which cover four 

possible emission scenarios: high emissions (A2), average emissions (A1B), low 

emissions (B1) and a scenario of aggressive mitigation in order to avoid the possibility of 

exceeding 2ºC of global warming (E1) with regard to pre-industrial levels (Van der 

Linden and Mitchell, 2009). 

On the other hand, the four new emission scenarios provided by the AR5, called 

Representative Concentration Pathways (RCPs), are considered as plausible scenarios 

depending on different Greenhouse Gases (GHGs) concentration trajectories. The four 

RCPs (i.e., RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) entail a different range of radiative 

forcing values in the year 2100 relative to pre-industrial values (+2.6, +4.5, +6.0, and 

+8.5 W/m2, respectively). An important difference of the new RCPs regarding the 

emission scenarios used in the AR4 is that the latter did not contemplate the effects of 



possible policies or international agreements with the aim of mitigating emissions. 

Instead, they represent potential socio-economic developments without restrictions on 

emissions. On the contrary, some of the new RCPs consider the effects of policies to limit 

climate change over the 21st century. Each RCP has an associated high spatial resolution 

database of emissions of pollutants (classified by sector), emissions and concentrations 

of GHGs and land use/land cover (LULC) changes until the year 2100, based on a 

combination of models of different complexity of atmospheric chemistry and the carbon 

cycle. As a result, this is translated into different range of radiative forcing values. 

RCP 2.6 entails an extremely low scenario that reflects aggressive GHGs reduction and 

sequestration efforts. RCP 4.5 implies a low scenario in which GHGs emissions stabilize 

by midcentury and fall sharply thereafter.  RCP 6.0 assumes a medium scenario in which 

GHGs emissions increase gradually until stabilizing in the final decades of the 21st 

century. Finally, RCP 8.5 postulates increasing GHGs emissions until the end of the 21st 

century, i.e., atmospheric CO2 concentrations are more than triple by 2100 relative to pre-

industrial levels.  

The downscaling techniques to obtain high-resolution RCMs from the GCMs are based 

on statistical downscaling methods (such as linear regression or synoptic analogue 

methods, e.g., Wilby et al., (2002), Wilby and Dawson, (2004)) or dynamical 

downscaling methods (e.g., Wang et al., 2014). On the one hand, statistical downscaling 

methods provide results at any scale, down to station-level information, are 

computationally inexpensive and efficient, and require low volume of data inputs. The 

main disadvantages are that they assume that the derived relationships do not change as 

the climate is perturbed, require a sufficient amount of good quality of observational data 

to produce reliable projections, and cannot explicitly describe the physical processes 

affecting the climate change. On the other hand, dynamic downscaling methods provide 



20-50 km grid cell information, including information at sites with no observational data, 

i.e., they are not constrained to historical records. The main advantage is that they are 

physically based but are more complex and with a high computational cost and volume 

of data inputs (Murphy, 1999). Both approaches provide good results in terms of 

reproducing the observed variability of the local climate variables, but the lower 

computational cost of statistical downscaling has led to their greater use. 

In addition, a review of downscaling methods for climate change projections with regard 

to advantages, disadvantages, outputs, requirements, and applications can be found in 

Trzaska and Schnarr (2014). 

Further information about the generation of regional scenarios of climate change for 

Spain can be found in Brunet et al. (2009) and Morata-Gasca (2014). 

Fig. 1 and Fig. 2 show the changes for different climatic variables and for an ensemble of 

future climate regional projections in comparison with the historical data for the period 

1981-2010 (AEMET, 2017). Fig. 1 presents these changes for the annual average 

maximum and minimum temperature during the 21st century, while Fig. 2 depicts these 

changes for precipitation. As aforementioned, the changes of the climatic variables are 

obtained using a set of 42 future regional climate projections encompassing 24 GCMs, 3 

RPCs scenarios and 2 downscaling techniques. Fig 1 and Fig. 2 present future reginal 

projections obtained using a specific GCM, RPC and downscaling technique. Therefore, 

the future projections show a wide range of climatic variables changes. Temperature 

changes may differ several degrees centigrade from one future projection to another, and 

the differences regarding the precipitation changes are also important. The largest 

differences are mainly due to the underlying assumptions of each GCM considered. The 

GCM with lower emission scenarios and implementing policies or international 

agreements with the aim of mitigating emissions lead to lower changes in the climatic 



variables and vice versa. The same can be enunciated for the different RCPs, those with 

higher radiative forcing values lead to higher changes of the climatic variables, and 

conversely, for lower values. The downscaling techniques used in the future regional 

projections lead to less important but non-negligible differences. It is worth mentioning 

that results strongly depend on how many projections based on each GCM, RCP or 

downscaling technique are used for obtaining the aggregated projections. Then, if more 

future projections with higher RCP values are used, the aggregated projection would be 

biased towards the higher values and vice versa. However, the aggregate projection with 

risk acceptance (𝛽 < 1) would lead to a lower bias towards the higher values. 

The proposed methodology is applied to properly tackle with those large uncertainties 

while considering different degrees of optimism of decision-makers. In this sense, these 

figures also show the changes of the aggregated future regional projections, obtained 

using prioritized OWA operators, for different stakeholders’ risk tolerances. That is, since 

the similarity of regionals projections obtained using OWA operators depends on 

stakeholders’ risk preferences, a sensitivity analysis has been performed using three 

different values of risk tolerance. Specifically, for 𝛽 = 0.5 (risk acceptance), 𝛽 =

1 (risk neutral), and 𝛽 = 2 (risk aversion).According to these premises, Fig. 1 shows for 

the set of future projections  that there is a growing trend regarding the maximum 

temperature changes over the whole period, but with a wide range of values depending 

on which GCM, RPC and downscaling technique are based on. This upward trend reaches 

an increase among 1-4 ºC at the end of the 21st century, and is less pronounced in some 

coastal areas. The largest increase corresponds to summer months with up to 4-7 ºC. In 

the winter the expected average values show an increase of around 3 °C. The percentage 

of warm days keeps a constant growing trend throughout the period. The aggregated 

projections also show the growing trend in the maximum temperature changes to a greater 



or lesser extent, but with higher changes and with greater variations between successive 

years for larger risk acceptance attitudes (i.e., for β=0.5). That is, with more risk 

acceptance, temperatures or precipitations closest to the extreme values among all of 

future projections for a certain time are achieved. On the contrary, with risk aversion 

attitudes values closest to the average of all future projections are obtained. Furthermore, 

the changes may differ significantly at some years of the series for the different risk 

acceptance preferences. This shows the worth of the methodology to model those 

attitudes and uncertainties, which allows to come up with better policies and with more 

consensus among decision-makers. 

Results show that there is also a growing trend of the annual minimum temperature 

change, with increasing values for the set of future projections and the aggregated 

projections of around 1-4 ° C at the end of the 21st century (Fig. 1). This increase is greater 

in southern peninsular and during the summer months, while the days of frost decreases 

and the percentage of warm nights increases. Similar results regarding the aggregated 

projections can be drawn, i.e., higher risk tolerance leads to higher temperature changes 

and variations between successive years. 

The percentage change in precipitations is on a downward trend for the aggregated 

projections, with reductions ranging from 3 to 23% at the end of the 21st century (Fig. 2). 

In general, a downward trend in precipitations is observed throughout the peninsular area, 

although is lower in the northern half of the peninsula. The number of rainy days 

decreases, and the duration of dry periods tend to be longer, which would increase the 

risk of droughts especially in summer and the southern half peninsula. That is, the 

seasonal cycles are more noticeable. 



Again, results show that for stakeholders’ with risk acceptance (𝛽 = 0.5) higher changes 

for the climatic variables are achieved, while for risk aversion (𝛽 = 2) lower changes are 

obtained. 

Finally, these results are in line with that obtained by other authors, which show that there 

will be a more intense heat in the summer months, together with increases in the intensity 

and frequency of heat waves over southern Europe and the Mediterranean and a decrease 

in precipitation (e.g., Fischer and Schär, 2010; Morata-Gasca, 2014). 

 

 



 

Figure 1. Annual maximum and minimum temperature change (ºC) for an ensemble of 

future climate regional projections and aggregated projections with different 

stakeholders’ risk attitude (β) obtained for mainland Spain and the 21st century (i.e., the 

period 2011-2100). 



 

Figure 2. Annual precipitation change (%) for an ensemble of future climate regional 

projections and aggregated projections with different stakeholders’ risk attitude (β) 

obtained for mainland Spain and the 21st century (i.e., the period 2011-2100). 

 

4. Conclusions 

Long-term climate change projections may provide a wide range of possible outcomes. 

The selection of climate policies based on these projections should take into account 

relevant sources of uncertainties and stakeholders’ risk attitudes. Furthermore, studies of 

climate change rarely yield consensus among stakeholders because their different 

perceptions about the expected impacts and preferences about the adopted policies.  

We have presented a methodology that makes use of prioritized OWA operators to 

provide an effective way to address stakeholders’ risk attitudes and preferences regarding 

the measures to be undertaken. The methodology also allows minimizing the uncertainties 

associated to GCMs, RCPs and downscaling techniques, which are translated into future 

regional projections. These projections are combined by considering their similarity in 



such a way that the relative weights of the different projections are obtained by regular 

increasing monotone fuzzy quantifiers. The methodology provides a robust and effective 

decision-making tool to design sustainable climate policies under uncertainty and risk 

tolerance. Furthermore, it has been successfully applied to evaluate the climate change in 

Spain. The future aggregated regional projections have shown that a global warming is 

observed with a growing trend in maximum and minimum average temperatures and a 

downward trend in precipitations over the 21st century and throughout the peninsular area. 
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