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Abstract

Humans have specially developed their perceptual capacity to process faces
and to extract information from facial features. Using our behavioral capacity
to perceive faces, we make attributions such as personality, intelligence or
trustworthiness based on facial appearance that often have a strong impact on
social behavior in different domains. Therefore, faces play a central role in our
relationships with other people and in our everyday decisions.

With the popularization of the Internet, people participate in many kinds of
virtual interactions, from social experiences, such as games, dating or commu-
nities, to professional activities, such as e-commerce, e-learning, e-therapy or
e-health. These virtual interactions manifest the need for faces that represent
the actual people interacting in the digital world: thus the concept of avatar
emerged. Avatars are used to represent users in different scenarios and scopes,
from personal life to professional situations. In all these cases, the appear-
ance of the avatar may have an effect not only on other person’s opinion and
perception but on self-perception, influencing the subject’s own attitude and
behavior. In fact, avatars are often employed to elicit impressions or emotions
through non-verbal expressions, and are able to improve online interactions or
even useful for education purposes or therapy. Then, being able to generate
realistic looking avatars which elicit a certain set of desired social impressions
poses a very interesting and novel tool, useful in a wide range of fields.

This thesis proposes a novel method for generating realistic looking faces with
an associated social profile comprising 15 different impressions. For this pur-
pose, several partial objectives were accomplished.
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First, facial features were extracted from a database of real faces and grouped
by appearance in an automatic and objective manner employing dimensionality
reduction and clustering techniques. This yielded a taxonomy which allows to
systematically and objectively codify faces according to the previously obtained
clusters. Furthermore, the use of the proposed method is not restricted to facial
features, and it should be possible to extend its use to automatically group any
other kind of images by appearance.

Second, the existing relationships among the different facial features and the
social impressions were found. This helps to know how much a certain facial
feature influences the perception of a given social impression, allowing to focus
on the most important feature or features when designing faces with a sought
social perception.

Third, an image editing method was implemented to generate a completely
new, realistic face from just a face definition using the aforementioned facial
feature taxonomy.

Finally, a system to generate realistic faces with an associated social trait
profile was developed, which fulfills the main objective of the present thesis.

The main novelty of this work resides in the ability to work with several trait
dimensions at a time on realistic faces. Thus, in contrast with the previous
works that use noisy images, or cartoon-like or synthetic faces, the system
developed in this thesis allows to generate realistic looking faces choosing the
desired levels of fifteen impressions, namely Afraid, Angry, Attractive, Baby-
face, Disgusted, Dominant, Feminine, Happy, Masculine, Prototypical, Sad,
Surprised, Threatening, Trustworthy and Unusual.

The promising results obtained in this thesis will allow to further investigate
how to model social perception in faces using a completely new approach.
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Resumen

Los seres humanos han desarrollado especialmente su capacidad perceptiva
para procesar caras y extraer información de las características faciales. Us-
ando nuestra capacidad conductual para percibir rostros, hacemos atribuciones
tales como personalidad, inteligencia o confiabilidad basadas en la apariencia
facial que a menudo tienen un fuerte impacto en el comportamiento social en
diferentes dominios. Por lo tanto, las caras desempeñan un papel fundamental
en nuestras relaciones con otras personas y en nuestras decisiones cotidianas.

Con la popularización de Internet, las personas participan en muchos tipos
de interacciones virtuales, desde experiencias sociales, como juegos, citas o
comunidades, hasta actividades profesionales, como e-commerce, e-learning, e-
therapy o e-health. Estas interacciones virtuales manifiestan la necesidad de
caras que representen a las personas reales que interactúan en el mundo digital:
así surgió el concepto de avatar. Los avatares se utilizan para representar a
los usuarios en diferentes escenarios y ámbitos, desde la vida personal hasta
situaciones profesionales. En todos estos casos, la aparición del avatar puede
tener un efecto no solo en la opinión y percepción de otra persona, sino en la
autopercepción, que influye en la actitud y el comportamiento del sujeto. De
hecho, los avatares a menudo se emplean para obtener impresiones o emociones
a través de expresiones no verbales, y pueden mejorar las interacciones en línea
o incluso son útiles para fines educativos o terapéuticos. Por lo tanto, la posi-
bilidad de generar avatares de aspecto realista que provoquen un determinado
conjunto de impresiones sociales supone una herramienta muy interesante y
novedosa, útil en un amplio abanico de campos.
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Esta tesis propone un método novedoso para generar caras de aspecto realistas
con un perfil social asociado que comprende 15 impresiones diferentes. Para
este propósito, se completaron varios objetivos parciales.

En primer lugar, las características faciales se extrajeron de una base de datos
de caras reales y se agruparon por aspecto de una manera automática y objetiva
empleando técnicas de reducción de dimensionalidad y agrupamiento. Esto
produjo una taxonomía que permite codificar de manera sistemática y objetiva
las caras de acuerdo con los grupos obtenidos previamente. Además, el uso
del método propuesto no se limita a las características faciales, y se podría
extender su uso para agrupar automáticamente cualquier otro tipo de imágenes
por apariencia.

En segundo lugar, se encontraron las relaciones existentes entre las diferentes
características faciales y las impresiones sociales. Esto ayuda a saber en qué
medida una determinada característica facial influye en la percepción de una
determinada impresión social, lo que permite centrarse en la característica o
características más importantes al diseñar rostros con una percepción social
deseada.

En tercer lugar, se implementó un método de edición de imágenes para generar
una cara totalmente nueva y realista a partir de una definición de rostro uti-
lizando la taxonomía de rasgos faciales antes mencionada.

Finalmente, se desarrolló un sistema para generar caras realistas con un perfil
de rasgo social asociado, lo cual cumple el objetivo principal de la presente
tesis.

La principal novedad de este trabajo reside en la capacidad de trabajar con
varias dimensiones de rasgos a la vez en caras realistas. Por lo tanto, en con-
traste con los trabajos anteriores que usan imágenes con ruido, o caras de dibu-
jos animados o sintéticas, el sistema desarrollado en esta tesis permite generar
caras de aspecto realista eligiendo los niveles deseados de quince impresiones:
Miedo, Enfado, Atractivo, Cara de niño, Disgustado, Dominante, Femenino,
Feliz, Masculino, Prototípico, Triste, Sorprendido, Amenazante, Confiable e
Inusual.

Los prometedores resultados obtenidos en esta tesis permitirán investigar más
a fondo cómo modelar la percepción social en las caras utilizando un enfoque
completamente nuevo.
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Resum

Els sers humans han desenvolupat especialment la seua capacitat perceptiva
per a processar cares i extraure informació de les característiques facials. Usant
la nostra capacitat conductual per a percebre rostres, fem atribucions com
ara personalitat, intel·ligència o confiabilitat basades en l’aparença facial que
sovint tenen un fort impacte en el comportament social en diferents dominis.
Per tant, les cares exercixen un paper fonamental en les nostres relacions amb
altres persones i en les nostres decisions quotidianes.

Amb la popularització d’Internet, les persones participen en molts tipus d’inter-
accions virtuals, des d’experiències socials, com a jocs, cites o comunitats, fins
a activitats professionals, com e-commerce, e-learning, e-therapy o e-health.
Estes interaccions virtuals manifesten la necessitat de cares que representen a
les persones reals que interactuen en el món digital: així va sorgir el concepte
d’avatar. Els avatars s’utilitzen per a representar als usuaris en diferents esce-
naris i àmbits, des de la vida personal fins a situacions professionals. En tots
estos casos, l’aparició de l’avatar pot tindre un efecte no sols en l’opinió i per-
cepció d’una altra persona, sinó en l’autopercepció, que influïx en l’actitud i el
comportament del subjecte. De fet, els avatars sovint s’empren per a obtindre
impressions o emocions a través d’expressions no verbals, i poden millorar les
interaccions en línia o inclús són útils per a fins educatius o terapèutics. Per
tant, la possibilitat de generar avatars d’aspecte realista que provoquen un
determinat conjunt d’impressions socials planteja una ferramenta molt inter-
essant i nova, útil en un ampla varietat de camps.
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Esta tesi proposa un mètode nou per a generar cares d’aspecte realistes amb un
perfil social associat que comprén 15 impressions diferents. Per a este propòsit,
es van completar diversos objectius parcials.

En primer lloc, les característiques facials es van extraure d’una base de dades
de cares reals i es van agrupar per aspecte d’una manera automàtica i objec-
tiva emprant tècniques de reducció de dimensionalidad i agrupament. Açò va
produir una taxonomia que permet codificar de manera sistemàtica i objectiva
les cares d’acord amb els grups obtinguts prèviament. A més, l’ús del mètode
proposat no es limita a les característiques facials, i es podria estendre el seu
ús per a agrupar automàticament qualsevol altre tipus d’imatges per aparença.

En segon lloc, es van trobar les relacions existents entre les diferents carac-
terístiques facials i les impressions socials. Açò ajuda a saber en quina mesura
una determinada característica facial influïx en la percepció d’una determi-
nada impressió social, la qual cosa permet centrar-se en la característica o
característiques més importants al dissenyar rostres amb una percepció social
desitjada.

En tercer lloc, es va implementar un mètode d’edició d’imatges per a generar
una cara totalment nova i realista a partir d’una definició de rostre utilitzant
la taxonomia de trets facials abans mencionada.

Finalment, es va desenrotllar un sistema per a generar cares realistes amb un
perfil de tret social associat, la qual cosa complix l’objectiu principal de la
present tesi.

La principal novetat d’este treball residix en la capacitat de treballar amb
diverses dimensions de trets al mateix temps en cares realistes. Per tant,
en contrast amb els treballs anteriors que usen imatges amb soroll, o cares
de dibuixos animats o sintètiques, el sistema desenrotllat en esta tesi permet
generar cares d’aspecte realista triant els nivells desitjats de quinze impressions:
Por, Enuig, Atractiu, Cara de xiquet, Disgustat, Dominant, Femení, Feliç,
Masculí, Prototípic, Trist, Sorprés, Amenaçador, Confiable i Inusual.

Els prometedors resultats obtinguts en esta tesi permetran investigar més a
fons com modelar la percepció social en les cares utilitzant un enfocament
completament nou.
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Chapter 1

Introduction

This chapter introduces the motivations behind this thesis, its
objectives and its main contributions. In addition, it also presents
the thesis outline.

Contents
1.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation

Humans have specially developed their perceptual capacity to process faces
and to extract information from facial features (Bruce and A. Young, 1986;
Damasio, 1985). Our brain has a specialized neural network for processing
face information (Kanwisher et al., 1997) that allows to identify people, their
gender, age and race, or even to judge their emotions or personality impres-
sions. Using our behavioral capacity to perceive faces, we make attributions
such as personality, intelligence or trustworthiness based on facial appearance
(Bruce and A. W. Young, 2012). Furthermore, these attributions often affect
face memory and have a strong impact on social behavior in different domains
(Walker and Vetter, 2009). Therefore, faces play a central role in our rela-
tionships with other people and in our everyday decisions (Little et al., 2007;
Todorov, 2011).
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Nowadays, with the popularization of Internet, people participate in many
kinds of virtual interactions, from social experiences (games, dating, communi-
ties...) to professional activities (e-commerce, e-therapy and e-health, meetings
and interviews online, e-learning and education...). These virtual interactions
manifest the need for faces that represent the actual people interacting. In
this context the concept of “avatar” emerged. Avatars are defined as “general
graphic representations that are personified by means of computer technology”
(Holzwarth et al., 2006).

Types of avatars are varied and depend on the user, the context and the situ-
ation. The same person may be using different avatars in different scenarios.
Some research has focused on the study of the social implications that the use of
avatars has as a way of self-presentation and communication in Internet (Chung
et al., 2007; Schultze, 2010). Avatars can also be used in professional situations
as online collaborative design (Koutsabasis et al., 2012) or e-commerce. They
can also be employed to treat disorders such as autism (Konstantinidis et al.,
2009).

In all these cases, the appearance of the avatar may have an effect on another
person’s opinion and perception. For example, anthropomorphic and less an-
drogynous avatars are perceived as more credible and trustworthy (Nowak and
Rauh, 2008). Large pupils and a slow flicker frequency make avatars look more
sociable and attractive (Weibel et al., 2010)). Elderly avatars are perceived by
adult users as more intelligent and reliable (Marin and S. Lee, 2013). Attrac-
tive and more elaborate avatars are more successful in their social interactions
(Banakou et al., 2009), and even receive more favorable ratings in virtual job
interviews (Behrend et al., 2012). Similar results can be found in Hasler et al.
(2013).

A recent study on the motivations and strategies for designing avatars found
that users design avatars considering the following objectives: the virtual ex-
ploration (living experiences that are only possible in the digital world), social
navigation, contextual adaptation and identity representation (H. Lin and H.
Wang, 2014). Furthermore, the attitude and behavior of people may be influ-
enced by their avatar’s features. For example, Yee and Bailenson (2007) show
how people propensity to establish online relationships and their self-confidence
are affected by the attractiveness and height of their avatars.

On the other hand, avatars are also employed to elicit impressions or emotions
through non-verbal expressions. For example, expressive avatars and emoticons
can improve online interactions (Fabri and Moore, 2005) or even be useful for
education purposes or therapy (Wiederhold and Riva, 2009). Moreover, the
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transmission of emotions is strongly related to credibility, which in turn affects
the ability to persuade (Bărbat and Cretulscu, 2003). This ability is important
for applications in areas ranging from e-commerce to e-therapy. For example,
Holzwarth et al. (2006) showed that an expert avatar is more effective for selling
products of high level of product involvement, while an attractive avatar is
better at moderate levels. These attributions people rapidly make from faces
(such as if a seller is trustworthy or attractive) are called trait impressions,
and the human being creates them unconsciously in as little as 34 milliseconds
(Todorov, Olivola, et al., 2015).

With the available technology, it is possible to generate realistic faces. How-
ever, the possibility to generate realistic faces with the ability to elicit a certain
set of trait impressions is very limited. Dotsch and Todorov (2012) employed
reverse correlation techniques to create faces that model social perception of
faces by superimposing random noise on them. Vernon et al. (2014) mod-
eled first impressions of faces from highly variable facial images and created
computer-generated cartoon face-like images depicting how features affect im-
pressions. Sutherland, Oldmeadow, et al. (2013) created a three-dimensional
model to characterize social inferences from faces. Although all these works
were successful at modeling social traits in faces, none of them achieved realis-
tic looking faces nor could choose the intensity of several social traits at a time
on one face. On the other hand, Walker and Vetter (2009) achieved realistic
looking faces, but again only one social trait could be chosen at a time.

Therefore, the purpose of this thesis is the development of a system able to
design realistic faces controlling the impressions they have to convey in a series
of social traits. Since the avatars will be used by many people, the objective
will be to elicit the desired impressions on most of them.

1.2 Objectives

The main objective of this thesis is to develop a system with the capability of
creating avatar faces able to convey the most appropriate feelings to the viewer
according to a given context. Since avatars will be used by many people, the
goal is to transmit the desired sensation to most of them. The proposed system
focuses on a combination of image processing and artificial intelligence algo-
rithms, such as clustering methods and genetic algorithms, whose training is
based on the human perception of a set of real faces. From the main objective,
several secondary objectives arise:
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Development of an automatic method to group facial features by simi-
larity in an objective way. This procedure will allow to create feature
taxonomies which will be used to codify faces and create new ones.

Development of an automatic method to codify or define any new incom-
ing face.

Using the aforementioned taxonomies obtained by the grouping method,
determine how much each feature affects each impression formation.

Implementation of a system able to create a new realistic face from a
given codification or definition.

Provide the created realistic faces with the ability to elicit a certain set
of trait impressions.

1.3 Main contributions

This thesis provides novel methods for creating realistic faces able to convey
certain impressions to the observer. One of its main contributions is to de-
velop a method for automatic classification of facial features based on their
appearance.

The methods presented in chapter 2 are defined by combining different morpho-
logical operators, dimensionallity reduction methods and clustering algorithms.
Implementing an automatic classification method for facial features based on
their appearance makes possible the creation of taxonomies of facial features.
The importance of taxonomies lies in that by using them, any facial feature can
be classified in a certain type. In other words, they allow for using a common
terminology to define or codify face configurations providing a standardized
way to describe them. The novelty in this work is that the procedure followed
avoids the problems related to human limitations when classifying facial traits.
On the one hand, facial features were classified using only their visual appear-
ance, thus removing any possible human judgment. On the other hand, the
method developed has the capability of classifying any new incoming feature
in the already existent taxonomy. Furthermore, this method could easily be
adapted to create taxonomies of any other facial feature or even other matters.

Another important contribution of this thesis is finding the relationships among
facial features in creating social impressions. For example, it is now possible
to certainly know how much a given type of eyes affect the social perception of
happiness, or any of the other available impressions. This will allow to focus in
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the most important features when designing a new face which aim is to convey
any of the fifteen impressions used in this work. Furthermore, the method is
easily scalable and can be extended in the future to include new impressions
or features.

Finally, the last contribution of this thesis is a system able to create realistic
faces able to convey certain impressions to most observers. In particular, this
system is able to obtain a face with a certain profile of 15 different impressions
at the same time. The methods employed in chapter 3 to find the relationships
among features and to generate faces able to convey impressions include the
use of Genetic Algorithms and advanced image processing techniques such as
Poisson image editing.

To sum up, the contributions of this thesis are:

A method able to automatically and objectively classify facial features in
groups based on their appearance.

The existent relationships among facial features in the elicitation of fifteen
different impressions.

A method to codify new incoming faces in a standardized manner.

A system able to create realistic faces that convey certain impressions to
the gross of the population.

1.4 Outline

This thesis is divided into 4 chapters. This chapter has presented the motiva-
tions behind the research performed in the thesis, the objectives and its main
contributions.

Chapter 2 introduces the necessity of an automatic method to classify facial
features based on their appearance in order to create faces which elicit certain
trait impressions and the importance of taxonomies is explained. Moreover,
the most relevant works in this topic are reviewed and the methods followed to
implement the system developed in this thesis to extract and cluster the facial
features in order to create taxonomies are explained.

Chapter 3 presents the importance of automatic modeling of social impression
of faces and its current state-of-the-art. Then, the methods followed to find an
emotional function and to implement the face generator are explained.
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General and final conclusions in addition to future prospects are presented in
chapter 4. Figure 1.1 shows the implemented system flowchart.

Figure 1.1: Implemented system flowchart.

6



Chapter 2

Extraction and clustering
of facial features

In this chapter the procedure followed to extract and cluster
facial features is explained. First, an introduction on why it is
so important to create a method to automatically and objectively
group features based on their appearance is presented to the reader.
Then, the theoretical framework of the employed methods is ex-
plained. Next, the database used is depicted. Finally, the procedures
implemented to extract the features and cluster them is thoroughly
reviewed, resulting taxonomies are given and their validation is dis-
cussed.
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2.4 Automatic facial feature extraction . . . . . . . . . . . . . . . . . . 35
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2.4.6 Mouth extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.7 Jawline extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.8 Distances extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Facial features clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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7



Chapter 2. Extraction and clustering of facial features
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2.1 Introduction

For centuries, artists and researchers have tried to develop procedures to mea-
sure and classify human faces. Anthropometric facial analysis is used in dif-
ferent fields like surgery (Arslan et al., 2008; Ferring and Pancherz, 2008; J. P.
Porter and Olson, 2001), forensic science (Mane et al., 2010; Stefanie Ritz-
Timme et al., 2011; Ritz-Timme et al., 2011), art (Hochscheid et al., 2015;
Robins, 1984), face recognition, emotion recognition and facial trait judgments
(Boberg et al., 2008; Buckingham et al., 2006; Rojas et al., 2011). In the last
decades, new technologies have opened ways to automatically evaluate facial
features and gestures, and computational methods for analysis of facial infor-
mation are now applied to classify faces based on anthropometric or emotional
criteria (Tian et al., 2005).

Classification or typology systems used to categorize different human body
parts exist for many years. In 1940, William Sheldon developed somatotypes
to describe the body build of an individual. Sheldon proposed a classification
system in which all possible body types were characterized based on the degree
to which they matched these somatotypes (Sheldon, 1954). Other taxonomies
have been developed for the shape of the body (Alemany et al., 2010; Vinué
et al., 2015), hands (Jee and Yun, 2016), feet (N.-S. Kim and Do, 2014) or
head (Sarakon et al., 2014). Taxonomies, as classification system, allow using
a common terminology to define body part configurations providing a stan-
dardized way to describe them, and are widely used in many fields such as
ergonomics and bio-mechanics (Y.-L. Lin and K.-L. Lee, 1999; Preston and
Singh, 1972), criminalistics (Stefanie Ritz-Timme et al., 2011), sports (Mal-
ousaris et al., 2008; Massidda et al., 2013), medicine (Koleva et al., 2002),
design or apparel industry (Alemany et al., 2010). In general, this kind of
typology systems is intended for qualitative categorization based on the global
appearance of body parts, although, in some cases, a quantitative analysis of
some selected features is developed to obtain the classification.
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In the case of facial features, taxonomies are useful, for example, in ergonomics,
forensic, anthropology or crime prevention. New human-machine interaction
systems and online activities like e-commerce, e-learning, games, dating or so-
cial networks, are fields in which facial features classifications are needed. In
these activities it is common to use human digital representations that symbol-
ize the user’s presence or that act as virtual interlocutor (Davis et al., 2009).
The importance of communicative behaviors of avatars in new interaction sys-
tems (Carvalho et al., 2008; Fabri, Elzouki, et al., 2007; Fabri and Moore, 2005;
Orvalho et al., 2009; Yee and Bailenson, 2007) has led to an increasing interest
in creating realistic avatars able to convey appropriated sensations to users. In
this context, it is common to synthesize faces and facial expressions combining
facial features (Albin-Clark and Howard, 2009; Diego-Mas and Alcaide-Marzal,
2015; Sukhija et al., 2016; Trescak et al., 2012).

Several taxonomies of facial features can be found in the literature. For ex-
ample, Vanezis’s atlas (Vanezis et al., 1996) classifies 23 facial features, the
Disaster Victim Identification Form (DVI) by Interpol categorizes 6, and the
DVM database (Aßmann, 2007; Ohlrogge, 2009) 45 facial features. In Tamir
(2011), different shapes of the human nose are classified into 14 groups based
on the analysis of 1793 pictures of noses. A similar approach was used for
classifying human chin (Tamir, 2013). In these works, a big set of photographs
were analyzed and classified based on the similarity of the features.

This approach, while intuitively logical, has several problems not only in the
development of taxonomies, but also in its later use. The classification of facial
features is obtained from the opinion of a limited group of human observers.
Classic behavioral work has shown that humans’ brain integrates facial features
into a gestalt whole when it processes face information (holistic face processing,
(Richler et al., 2011)), decreasing our ability for processing individual features
or parts of faces (Taubert et al., 2011). This part-whole effect makes diffi-
cult, for example, to recognize familiar faces from isolated features (Davidoff
and Donnelly, 1990; Donnelly and Davidoff, 1999; Tanaka and Farah, 1993).
Moreover, individual differences exist in face recognition ability (R. Wang et
al., 2012), and some issues, like face race, influence the performance in pro-
cessing features and the configuration of facial information (Hayward et al.,
2008; Rhodes et al., 2009). This is reflected in low inter-observer and intra-
observer agreement in the evaluation of facial features (Stefanie Ritz-Timme et
al., 2011). Finally, apart from the difficulties of processing parts of faces, cre-
ating this kind of taxonomies implies classifying a very big set of elements (the
number of possible different features) in an undefined number of groups, and
this kind of tasks easily overcomes our capacities for information processing
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(Miller, 1956; Scharff et al., 2011). To deal with these problems, we propose
a new procedure to develop facial trait taxonomies based on its appearance
using computational methods for automatically classifying features.

Recently, analysis of facial images has become a major research topic, and new
computational methods for analysis of facial information have been developed.
A comparison of these techniques shows two different approaches to deal with
facial information (Rojas et al., 2011). The first one (structural approach)
automatically encodes the geometry of faces using several significant points
and relationships between them, doing a metric or morphological assessment
of facial features. Examples of this kind of techniques are those based on
SIFT feature descriptors (Meyers and Wolf, 2008), point distribution models
(T. F. Cootes et al., 2001) or local binary patterns (Ahonen et al., 2006). On
the other hand, the holistic approach uses appearance-based representations,
considering all available information and encompassing the global nature of the
faces. Holistic techniques include, for example, Fisherfaces (Belhumeur et al.,
1997) or Eigenfaces (Turk and Pentland, 1991). Some work in facial features
characterization has been done mixing structural and holistic techniques (Klare
and Jain, 2010).

Classification methods of facial traits are needed in order to develop tax-
onomies. Research using computational methods is usually focused on the
characterization of complete faces. However, less efforts have been done in
facial trait classification based on its appearance. The objective of this work is
to develop an appearance-based method to obtain a relatively low-dimensional
vector of characteristics for facial traits. On this basis, large sets of five facial
traits (eyebrows, eyes, noses, mouths and jawlines) of varying ethnicity (Asian,
Black, Latino and White) were characterized. Using this characterization, the
traits were clustered obtaining new taxonomies for each ethnic group. The
procedure followed avoids the problems related to human limitations in clas-
sifying facial traits. On the one hand, the characterization and clustering of
the traits were not based in human judgments. On the other hand, classifying
new traits in one of the groups of the taxonomies can be done in an automa-
tized way. Finally, the procedure was tested comparing human opinions with
automatically generated groups of traits.

Next section shows the theoretical background of the methods implemented in
this chapter. Then, the database employed in this thesis is depicted. Next,
the procedures followed to extract the facial features from the face images are
explained. Afterwards, the eigenfaces approach is employed to characterize the
recently extracted, large sets of photographs of five facial features (eyebrows,
eyes, noses, mouths, and jawlines). This holistic technique seems to be more
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consistent and reliable for categorizations than those that imply subjective
judgments (Rojas et al., 2011). The clustering process used to group features
is then described. Feature inter-distances are also extracted and clustered.
The classifications obtained and the agreement between human judgments and
these automatically generated taxonomies are then explained. Finally, the
results are discussed and conclusions are exposed.

The rest of the chapter is organized as follows: Section 2.2 shows the theoretical
background. Section 2.3 depicts the database utilized. Section 2.4 details the
procedure followed to extract the facial features, and Section 2.5 shows the
method followed to cluster the extracted facial features. Section 2.6 details the
results and the facial feature taxonomies obtained with the methods explained
above. Validation of the proposed procedure is provided in Section 2.7. Finally,
Section 2.8 provides conclusions.

2.2 Theoretical background

2.2.1 Mathematical morphological operators

Mathematical morphology is a theory for the analysis of spatial structures.
It is based on set theory, integral geometry and lattice algebra; and poses a
powerful image analysis technique (Soille, 2013).

Let f be a gray-scale image which is defined as f(x) : E → T where x is
the pixel position. In the case of discrete valued images, T = {tmin, tmin +
1, . . . , tmax} is an ordered set of gray-levels. Typically, in digital 8-bit images
tmin = 0 and tmax = 255. Furthermore, let B(x) be a sub-set of Z2 called
structuring element (shape probe) centred at point x, whose shape is usually
chosen according to some a priori knowledge about the geometry and size of
the relevant and irrelevant image structures.

Erosion and dilation are the two most basic mathematical morphology opera-
tors (Soille, 2013):

Dilation : [δB(f)](x) = maxb∈B(x) f(x + b)

Erosion : [εB(f)](x) = minb∈B(x) f(x + b).
(2.1)
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Their objective is to expand light or dark regions, respectively, according to
the size and shape of the structuring element. These elementary operations
can be combined to obtain a new set of operators or basic filters given by:

Opening : γB(f) = δB(εB(f))

Closing : ϕB(f) = εB(δB(f)) .
(2.2)

Light or dark structures are respectively filtered out from the image by these
operators regarding the structuring element chosen.

Another operator used in this work is the geodesic dilation. The geodesic dila-
tion is the iterative unitary dilation of an image f (marker) which is contained
within an image g (reference),

δ(n)
g (f) = δ(1)

g δ(n−1)
g (f), being δ(1)

g (f) = δB(f) ∧ g . (2.3)

In order to define the fill-holes operator, we must first introduce the geodesic
reconstruction by dilation, which performs the successive geodesic dilation of f
regarding g up to idempotence,

γrec(g, f) = δ(i)
g (f), so that δ(i)

g (f) = δ(i+1)
g (f) . (2.4)

We can now define the fill-holes operator. Basically, this operator fills all holes
in an image f that do not touch the image boundary f∂ (used as marker):

ψch(f) = [γrec(f c, f∂)]c , (2.5)

where f c is the complement image (i.e., the negative). For a gray-scale image,
it is considered a hole any set of connected points surrounded by connected
components of value strictly greater than the hole values.

The last algorithm used on this work is a hit-or-miss transform called thicken-
ing (Jain, 1989; Soille, 2013). In the case of binary hit-or-miss transformations,
the structuring element is a set with two components, B(x)FG and B(x)BG,
placed so that both reference pixels are at the same position (x) and are disjoint
sets (i.e., B(x)FG ∩B(x)BG = 0). B(x)FG defines the set of pixels that should
match the foreground, while B(x)BG does the same with the background. The
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hit-or-miss transform of a set f can be written in terms of an intersection of
two morphological erosions:

f ∗B = εBFG
(f) ∩ εBBG

(f c), (2.6)

where f c is the complement set of f , that is, the negative.

The thickening of a binary image f by a structuring element B is denoted by
f �B and defined as the union of f and the hit-or-miss transform of f by B:

f �B = f ∪ (f ∗B). (2.7)

2.2.2 Principal Component Analysis

The main idea of principal component analysis (PCA) is to transform a given
feature space into a lower-dimensional subspace, while retaining as much as
possible of the variation present in the original space (Toennies, 2012). If
many of the original features are correlated, the distribution of samples in
feature space actually occupies a lower-dimensional subspace. To achieve this
reduction of dimensionality, the PCA produces an orthogonal transformation
in the feature space such that all covariance values between features are zero
and the coordinate axes are aligned or orthogonal to this subspace (Figure 2.1).
Features corresponding to axes orthogonal to the subspace can be removed and
thus it is possible to reduce dimensionality of the space.

(a) (b) (c)

Figure 2.1: PCA transforms the original axis system into one that decorrelates the data.
To achieve it, new axes are oriented along the data distribution in the feature space, so
features of this new coordinate system can be removed if their projection on the remaining
axes produce only a small error. In example (a), no reduction is possible. In (b), reduction
is possible but it removes information. In (c), reduction removes just noise.
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In order to compute the PCA, the covariance matrix C of the original feature
space needs to be estimated from sample covariances:

C =


c11 c21 · · · cN1

c12 c22 · · · cN2

...
...

. . .
...

c1N c2N · · · cNN

 ,

cij ≈
1

K − 1

M∑
k=1

(
fik − f̄i

) (
fjk − f̄j

)
,

f̄i ≈
1

K

K∑
k=1

fik ,

(2.8)

where K is the number of samples available, and fik is the ith feature of the
kth feature vector in the set of samples.

All off-diagonal elements of C would be zero if features were linearly uncorre-
lated. If features are uncorrelated and occupy only a lower-dimensional sub-
space that is aligned with features axes, some of the variances in the diagonal
should be zero as well. Even if uncorrelated features are removed, any location
of a sample in feature space can still be exactly represented.

However, covariance between features usually exists, so C usually contains
nonzero off-diagonal elements. The PCA will create a new axis system in
which new features f ′ are linear combinations of features of f :

f ′j =
N∑
i=1

fieij (2.9)

so that the covariance matrix of the sample distribution f ′ no longer has
nonzero off-diagonal elements. The beauty of the method is that there ex-
ists a closed-form solution for computing weights eij (Figure 2.1).

Given an estimate of the original feature space covariance matrix C, a new
orthogonal system of feature axes f ′1, . . . , f ′N with covariance matrix C′ is com-
puted:
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Figure 2.2: The PCA solves an eigenproblem for the covariance matrix C. A new coordi-
nate system is created, in which the axes are the eigenvectors ei and the eigenvalues λi are
the variances (σ2

i ) along these axes. σi represents the standard deviations.

C =

σ2
1 0 0

0 σ2
2 0

0 0 σ2
N

 , (2.10)

where σ2
i represents the variance of the fi feature. Eigenvalues λi and eigen-

vectors ei = (ei1 ei2 . . . eiN) for C are computed as follows:

Cei = λiei ⇒ CE = EΛ⇔ ETCE = Λ ,

E =


e11 e21 · · · eN1

e12 e22 · · · eN2

...
...

. . .
...

e1N e2N · · · eNN

 ,
(2.11)

where Λ is a diagonal matrix containing the eigenvalues of C and can be
computed as:
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Λ = ETCE ≈ ET

[
1

K

K∑
k=1

(
fk − f̄

)
×
(
fk − f̄

)T]
E

=
1

K

K∑
k=1

[
ET
(
fk − f̄

)]
×
[(

fk − f̄
)T

E
]

=
1

K

K∑
k=1

f ′k × (f ′k)
T
,

(2.12)

where Λ is a diagonal matrix containing the eigenvalues of C. They correspond
to the feature variances of the covariance matrix C′ = Λ in a transformed
system where a new feature f ′ik is computed by projecting the feature vector
fk on the ith eigenvector:

f ′ik = (ei)
T (fk − f̄) . (2.13)

Feature reduction is then carried out by inspecting the eigenvalues (variances)
of C. Features f ′i with their corresponding eigenvalues λi equal or close to zero
can be removed, since that indicates high linear correlation.

To determine which features can be removed, they are sorted according to their
variance. In order to choose the amount of feature reduction, a value n < N is
chosen such that the percentage pvar(n) = σ2

accum(n)/σ2
accum(N) exceeds some

threshold, where σ2
accum(n) =

∑n
i=1 σ

2
i accounts for the accumulated variance.

For example, pvar(n) > 0.95 means that the first n features explain 95% of the
variance in feature space.

Eigenfaces approach

In mathematical terms, Eigenfaces method aims to find the principal compo-
nents of the distribution of faces, or the eigenvectors of the covariance matrix
of the set of face images, treating an image as a point (or vector) in a very
high dimensional space. These eigenvectors can be thought of as a set of
features that together characterize the variation between images, and are or-
dered accounting for a different amount of this variation. Each individual face
can be represented exactly in terms of a linear combination of the eigenfaces
(Figure 2.3) or using only the “best” eigenfaces (those that have the largest
eigenvalues, and therefore account for the most variance within the set of im-
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ages). The best M eigenfaces span an M -dimensional subspace of all possible
images.

Figure 2.3: Set of basis obtained by applying the eigenfaces method on a set of mouths.
This image shows the eigenmouths of a set of 92 mouths. Any original mouth can be recovered
with more or less detail by computing a linear combination of a number of eigenmouths.

Let a face image f be a two-dimensional N by N array representing an image.
The main idea of the principal component analysis is to find the vectors that
best account for the distribution of face images within the entire image space.
Each vector is of length N2, describes an N by N image and is a linear combi-
nation of the original face images. Because these vectors are the eigenvectors
of the covariance matrix corresponding to the original face images and they
are face-like in appearance, they are refered to as “eigenfaces".

Let the training set of images be f1, f2, f3, . . . , fM . The average face of the
set is defined by Ψ = 1

M

∑M
n=1 fn. Each face differs from the average by the

vector Φi = fi −Ψ. This set of very large vectors is then subject to principal
component analysis, which seeks a set ofM orthonormal vectors un which best
describes the distribution of the data. The computation of the covariance of
the matrix A = [Φ1Φ2 . . .ΦM ] is very expensive, but if M > N2 (being M the
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number of images, and N2 the total number of pixels in an image belonging to
M), the solution can be obtained by first solving for the eigenvectors of an M
by M matrix and then taking proper linear combinations of the face images
Φi. Consider the eigenvectors vi of ATA such that

ATAvi = µivi (2.14)

Pre-multiplying both sides by A

AATAvi = µiAvi (2.15)

from which Avi are the eigenvectors of C = AAT . Following this analysis,
an M by M matrix L = ATA is constructed, where Lmn = ΦT

mΦn, and the
M eigenvectors (vi) of L can be obtained. These vectors determine linear
combinations of the M training set face images to form the eigenfaces ui.

ui =
M∑
k=1

vlkΦk l = 1, ...,M (2.16)

The associated eigenvalues allow to rank the eigenvectors according to their
usefulness in characterizing the variation among the images (Turk and Pent-
land, 1991).

2.2.3 K-means clustering

K-means clustering is a variant of partitional clustering. It is an algorithm for
putting N data points in an d-dimensional space into K clusters (MacKay,
2003).

Given a set of observations xi ∈ X for i = 1, 2, . . . , N , where each observation
is a d-dimensional real vector, k-means clustering aims to partition the N
observations into K(≤ N) disjoint sets S = S1, S2, . . . , SK so as to minimize
the within-cluster sum of squares (sum of distance functions of each point in
the cluster to the K center)

arg min
S

K∑
i=1

∑
x∈Si

‖x− µi‖2 (2.17)
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where µi is the mean of points in Si. Any type of distance can be used with
this algorithm.

It uses an iterative refinement technique. Given an initial set of k means
µ

(1)
1 , . . . , µ

(1)
K , the algorithm proceeds by alternating between two steps:

Assignment step: assign each observation to the cluster whose mean yields
the least within-cluster sum of squares. Since the sum of squares is the
squared Euclidean distance, this is intuitively the “nearest” mean.

S
(t)
i =

{
xp :

∥∥xp − µ(t)
i

∥∥2 ≤
∥∥xp − µ(t)

j

∥∥2 ∀j, 1 ≤ j ≤ K
}

(2.18)

where each xp is assigned to exactly one S(t), even if it could be assigned
to two or more of them.

Update step: Calculate the new means to be the centroids of the obser-
vations in the new clusters.

µ
(t+1)
i =

1

|S(t)
i |

∑
xj∈S(t)

i

xj (2.19)

Since the arithmetic mean is a least-squares estimator, this also minimizes
the within-cluster sum of squares (WCSS) objective.

The algorithm has converged when the assignments no longer change (Fig-
ure 2.4, bottom right plot). Since both steps optimize the WCSS objective,
and there only exists a finite number of such partitionings, the algorithm must
converge to a (local) optimum. However, there is no guarantee that the global
optimum is found using this algorithm.

There are a number of cluster validity indexes that could be used to estimate
K. In this work, some of the most popular and that work with general distance
measures are used, which will be introduced below.
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Figure 2.4: k -means progress. In iteration 1, the k centroids are used to assign to them
their closest neighbours. Then, the mean of each of them is calculated, and the k centroids
are updated (Iteration 2). This process is repeated until convergence is reached (last plot).

Silhouette index

The Silhouette is a method of interpretation and validation of consistency
within clusters of data (Rousseeuw, 1987). Its value is a measure of how
similar an object xi is to its own cluster (cohesion) compared to other clusters
(separation):

s(xi) =
b(xi)− a(xi)

max {a(xi), b(xi)}
(2.20)

where a(xi) is the average dissimilarity of xi ∈ Sk to all other xj ∈ Sk, b(xi)
is the minimum dissimilarity over all clusters Sl, to which xi is not assigned,
of the average dissimilarities to xj ∈ Sl, l 6= k. Therefore, the silhouette value
s(xi) ranges from −1 to +1, where a high value indicates that the object is
well matched to its own cluster and poorly matched to neighboring clusters.
If s(xi) is around zero, the entity xi could be assigned to another cluster
without making cluster cohesion or separation any worse. A negative s(xi)
suggests that assignment of xi to this cluster is damaging cluster’s cohesion
and separation, whereas an s(xi) closer to 1 means the opposite. The validity of
the whole clustering is then assessed by computing the Silhouette index, defined
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as 1
N

∑
i∈X s(xi). This technique provides a succinct graphical representation

of how well each object lies within its cluster (Rousseeuw, 1987). Figure 2.5
shows an example of a silhouette analysis. Making use of the silhouette, one
can guess that the correct number of clusters is k = 4, as its silhouette is higher
and instances are better distributed.

(a)

(b)

Figure 2.5: Example of a Silhouette analysis. (a) shows the silhouette of the clustering for
k = 4, while (b) shows it for k = 5. As it is observed in this example, the silhouette is higher
for k = 4, meaning that it is better to chose this clustering due to its clusters cohesion and
compactness. Image extracted from http://scikit-learn.org/.
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The silhouette can be calculated with any distance metric, such as the Eu-
clidean distance or the Manhattan distance.

The literature indicates that there is no sole cluster validity index with a clear
advantage over the others in every case (Bezdek and Pal, 1998). However, the
Silhouette width index has performed well in many comparative experiments
(Arbelaitz et al., 2013; Pollard and Van Der Laan, 2002).

Dunn’s index

Dunn’s index (Dunn, 1974) is defined as the ratio of the smallest distance
between clusters, which estimates the separation of clusters, and the maximum
cluster diameter, which estimates its cohesion. This index allows for general
distance measures and was applied here with the Euclidean as well as general
Minkowski distances.

Dunn’s index is not without flaws. Possibly the most relevant in relation to
this thesis is its sensitivity to the information in noisy features. However, this
index does provide a rich and very general structure for defining cluster validity
indexes for different types of clusters (Bezdek and Pal, 1998).

2.2.4 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a machine learning
algorithm developed by Geoffrey Hinton and Laurens van der Maaten (Maaten
and G. Hinton, 2008) with the objective of reducing the dimensionallity of a
given dataset for visualization purposes. To achieve it, t-SNE algorithm mini-
mizes the divergence between two distributions: on the one hand, a distribution
that measures pairwise similarities of the input objects and, on the another
hand, a distribution that measures pairwise similarities of the corresponding
low-dimensional points in the embedding. Let’s assume a data set of high-
dimensional input objects D = {x1,x2, . . . ,xN} and a function d(xi,xj) that
computes a distance between a pair of objects, for example, the Euclidean
distance d(xi,xj) = ‖xi − xj‖2. The objective of the algorithm is to learn
an s-dimensional embedding in which each object is represented by a point,
E = {y1,y2, . . . ,yN} with yi ∈ Rs (typical values for s are 2 or 3). To this
end, t-SNE defines joint probabilities pij that measure the pairwise similarity
between objects xi and xj by symmetrizing two conditional probabilities
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pj|i =
exp (−d(xi,xj)

2/2σ2
i )∑

k 6=i exp (−d(xi,xk)2/2σ2
i )
, (2.21)

pi|i = 0 , pij =
pj|i + pi|j

2N
. (2.22)

In Equation 2.21, the bandwidth of the Gaussian kernels (σi) is set in such a
way that the perplexity of the conditional distribution Pi equals a predefined
perplexity u. The perplexity can be interpreted as a smooth measure of the
effective number of neighbors and is defined as

Perp(Pi) = 2H(Pi) , (2.23)

where H(Pi) is the Shannon entropy of Pi measured in bits

H(Pi) = −
∑
j

pj|i log2 pj|i . (2.24)

Consequently, the optimal value of σi varies per object: in regions of the data
space with a higher data density, σi tends to be smaller than in regions of the
data space with lower density. The optimal value of σi for each input object
can be found using a simple binary search (G. E. Hinton and Roweis, 2003)
or using a robust root-finding method (Vladymyrov and Carreira-Perpinán,
2013).

In the s-dimensional embedding E , the similarities between two points yi and
yj, that is, the low-dimensional models of xi and xj, are measured using a
normalized heavy-tailed kernel. In particular, the embedding similarity qij
between the two points yi and yj is computed as a normalized t-Student kernel
with a single degree of freedom (or Cauchy)

qij =
(1 + ‖yi − yj)‖2)−1∑
k 6=l(1 + ‖yk − yl)‖2)−1

, qii = 0 . (2.25)

t-SNE employs the t-Student with one degree of freedom distribution for the
map points in order to avoid imbalance in the distribution of the distances of a
point neighbors. Using the Gaussian distribution for the map points would get
such imbalance because even though the distribution of the distances is very
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different between a high-dimensional space and a low-dimensional space, the
algorithm tries to reproduce the same distances in the two spaces. This imbal-
ance would lead to an excess of attraction forces and a sometimes unappealing
mapping. This is actually what happens in the original SNE algorithm, by
Hinton and Roweis (G. E. Hinton and Roweis, 2003). However, the t-Student
with one degree of freedom (or Cauchy) distribution has a much heavier tail
than the Gaussian distribution, which compensates the original imbalance.
Therefore, for a given similarity between two data points, the two correspond-
ing map points will need to be much further apart in order for their similarity
to match the data similarity. Figure 2.6 shows this effect.

Figure 2.6: Gaussian distribution versus Cauchy distribution.

Concretely, the heavy tails of the normalized t-Student kernel allow dissimilar
input objects xi and xj to be modeled by low-dimensional counterparts yi
and yj that are too far apart. As aforementioned, this is desirable because it
creates more space to accurately model the small pairwise distances (i.e., the
local data structure) in the low-dimensional embedding.

The locations of the embedding points yi are determined by minimizing the
Kullback-Leibler divergence between the joint distributions P and Q:

C(E) = KL(P ||Q) =
∑
i6=j

pijlog
pij
qij

. (2.26)

Due to the asymmetry of the Kullback-Leiber divergence, the objective func-
tion focuses on modeling high values of pij (similar objects) by high values of
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qij (nearby points in the embedding space). The objective function is non-
convex in the embedding E . It is typically minimized by descending along the
gradient

∂C

∂yi
= 4

∑
j 6=i

(pij − qij)qijZ(yi − yj) , (2.27)

where the normalization therm Z =
∑

k 6=l(1 + ‖yk − yl‖2)−1.

It is straightforward to see that the evaluation of the joint distributions P and
Q is O(N2), because both distributions involve a normalization term that sum
over all N(N − 1) pairs of unique objects. Since t-SNE scales quadratically in
the number of objects N , its applicability is limited to data sets with only a few
thousand input objects; beyond that, learning becomes too slow to be practical
(and the memory requirements become too large) (Van Der Maaten, 2014). An
example of how t-SNE is able to reduce the dimensionality of a complex dataset
is shown in Figure 2.7, where a representation of the MNIST1data-set is shown.

2.2.5 Facial landmarks detection

The construction and alignment of generic deformable models able to capture
the variability of a non-rigid object is one of the most popular and well-studied
problems in the scope of computer vision. Particularly, the non-rigid object
most studied is the face. The detection of facial landmarks, also known as
facial feature points or facial fiducial points, plays an essential role in many
face analysis tasks, such as face recognition (Scheenstra et al., 2005; Shi et al.,
2006)), face morphing (Wolberg, 1998), face tracking (M. Kim et al., 2008),
head pose estimation (Zhu and Ramanan, 2012), attribute inference (Kumar
et al., 2009; Luo et al., 2013) or emotion recognition (Fasel and Luettin, 2003;
Ko and Sim, 2010). Facial landmark detectors normally include a face detector
prior to the landmark detection (the most commonly used is the Viola-Jones
detector (Viola and Jones, 2004)) whose goal is to locate the face within the
image and thus reduce the search space. After locating the face, a method
to obtain the facial feature points is applied only in the space where the face
should be (Figure 2.8). Facial landmarks have semantic meaning, that is, they
are located around facial features such as eyebrows, eyes, nose, mouth and
chin.

1The MNIST dataset is a large database of handwritten digits that is commonly used for train-
ing various image processing systems. It is comprised of 70000 gray-scale images of 28x28 pixels
representing numbers from 0 to 9.
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Chapter 2. Extraction and clustering of facial features

Figure 2.7: Graphical representation of instances of MNIST dataset using t-SNE. Image
extracted from Maaten and G. Hinton, 2008.

According to T. Cootes, Taylor, et al. (1995), there are three types of facial
feature points: application-dependent, such as the sharp corners of a bound-
ary or the center of a mouth or eye; application-independent, such as the
highest point on a face in some defined orientation (the highest point along
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Quick scan 
(Viola-Jones)

Close scrutiny 
(AAM, CLM, 

etc)

Figure 2.8: Workflow of facial landmark detection.

the nose’s bridge); and hybrid points from the two previous types, such as
points describing the chin. A model of facial landmarks can be composed of
different number of points, for example, a 17-point model, 29-point model or
68 point-model. Following the division performed by N. Wang et al. (2017),
the existing methodologies can be classified into four groups: constrained local
model (CLM)-based methods, active appearance model (AAM)-based meth-
ods, regression-based methods and other methods.

CLM-based methods make use of local experts in order to calculate a re-
sponse map accounting for the appearance variation around each facial fea-
ture point independently. These response maps are refined by a shape prior
normally learned from training shapes and then used to predict the facial
landmarks. AAM-based methods approach the appearance variation mod-
elling from a holistic perspective and make use of training shapes as well.
Regression-based methods, in contrast, directly estimate the shape from the
appearance regression-based methods without any shape model or appearance
model. “Other methods” can be further divided into four sub-categories: graph-
ical model-based methods, joint face alignment methods, independent facial
feature methods, and deep learning-based methods.

With independence of the number of facial landmarks detected and the ap-
proach employed, these points should locate several important commonly-used
areas, such as the eyes, nose and mouth. These are the areas that carry most
of the information for both generative and discriminative purposes (Asthana
et al., 2014; N. Wang et al., 2017).

In this work, an AAM-based method was used to detect the internal features
landmarks (eyebrows, eyes, nose and mouth) and a CLM-method to detect the
face contour landmarks (Figure 2.9). Therefore, in the following subsections,
these two methods will be explained in-depth.
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Figure 2.9: Facial feature point distribution indicating the internal features of the face
(AAM-based method, red color) and the face contour (CLM-based method, blue color).

Active Appearance Models

The Active Appearance Model (AAM) is a generalization of the widely used
Active Shape Model approach. The latter utilizes a statistical model of shape
to match a set of model points to an object in an image while the former seeks
to match both the model points and a representation of the texture of the
object to an image (T. Cootes, Edwards, et al., 1999). This means that AAM
models build a parametric model of the face shape and its appearance. This is
normally done by using linear models, meaning that the shape and appearance
is given as a linear combination of a set of template shapes and appearances,
which are learned from examples of facial images manually annotated. These
models, also called generative models, allow generating synthetic faces. In fact,
in order to fit the generative model to the target face, the model searches for
the most similar synthetic face to the input face.

An AAM model can be divided into three integral building blocks: a linear
shape model, a linear texture (or appearance) model and a deformation model.
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Linear shape model

A shape model is usually learned from training facial shapes and is taken as
the prior refining the configuration of facial landmarks. This prior consists of a
statistical distribution of facial landmarks (also known as the point distribution
model (PDM) proposed by T. Cootes and Taylor (1992), Figure 2.10).

Figure 2.10: Illustration of statistical distribution of facial landmarks. There are 600
shapes (smaller dot points in black) normalized by Procustes analysis. The larger red dot
points indicate the mean shape of the 600 shapes. Image extracted from N. Wang et al.
(2017).

Let’s see how a linear shape model is computed. A shape is represented by s =
(x1, y1, . . . , xL, yL)> ∈ R2L, a vector composed of (x, y)-coordinates of L land-
mark points connected to a triangulated mesh. Let τ = {(I1, s1), . . . , (Im, sm)}
be a training set of facial images Ij and corresponding shapes sj. The shape
model can be obtained by applying the principal component analysis (PCA)
on all the aligned training shapes (Matthews and Baker, 2004; N. Wang et
al., 2017). This alignment is performed by means of the Procustes Analysis
(Goodall, 1991) and removes the similarity transformations from the original
shapes sj. Then, a shape s generated by the model is represented as:

s = s0 +
n∑
i=1

αisi , (2.28)
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where s0 is the mean of all these aligned training shapes, {s1, . . . , sn} are n tem-
plate shapes which correspond to the n largest eigenvectors of the covariance
matrix calculated from the similarity-free shapes (where n is usually chosen to
preserve 90%-80% of the variance); and α = (α1, . . . , αn)> ∈ Rn is a vector of
shape parameters.

Since the shapes utilized to construct the model had their similarity removed by
the Procustes Analysis, global transformations like rotation, scaling or transla-
tion are not captured by it. This is resolved by a deformation model (Matthews
and Baker, 2004).

Deformation model

Two frames can be differentiated, the reference frame and the image frame.
The reference frame is composed by the transformation-free images, while the
image frame consists of the aligned images. In order to obtain a shape x
in the image frame, a deformation model is used. The deformation model
is defined by a function x = W(s;α) which warps pixel coordinates in the
reference frame s = (x, y) to coordinates in the image frame x = (x, y). The
vector α encapsulates the shape parameters as in the linear shape model. In
other words, this function transforms the points of a shape (usually s0) to any
possible shape defined by Equation 2.28:

xpoint = sRspoint + tpoint , (2.29)

where s is a scale factor, R is a rotation matrix, spoint denotes a rearranged
2×N matrix where each column corresponds to one point in the shape s and
tpoint consists of N replications of the translation vector t, one for each point
of spoint. Similarly, x is the rearrangement of xpoint.

Linear texture model

The texture model is normally defined within the mesh obtained by triangula-
tion of the mean shape s0. To build the texture model, every training face in
τ must be warped to the mean-shape frame, so the resultant images are free of
shape variation, thus accounting only for texture variations. These images are
called shape-free textures, and are usually obtained by triangulation or thin
plate spline method. Here, the deformation model W(s;α) is used to this end.
Then, the shape-free textures are transformed into a grey-level vector zi, which
is normalized by a scaling u and offset v to avoid the effect of global lighting:
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a =
zi − v · 1

u
, (2.30)

where u and v are the variance and the mean of the texture zi respectively,
and 1 is a vector of 1s with the same length as zi. Finally, the texture model
is obtained by applying PCA on all the geometrically normalized textures:

a = a0 +
m∑
i=1

βiai , (2.31)

where a0 is the mean appearance, {a1, . . . ,am} are m template textures and
β = (β1, . . . , βm)> ∈ Rm is a vector of texture parameters.

In the above formulation, the shape and appearance models have their inde-
pendent set of parameters (α and β, respectively). This is called independent
AAM (Matthews and Baker, 2004). On the other hand, it is possible to merge
their parameters into one only model, usually performing an additional PCA
on top of the shape and texture templates. This variant is called combined
AAM and is more general, often requiring more parameters to represent the
same degree of accuracy as the independent AAM. In turn, fitting the model
is more efficient and accurate, and coupling the parameters together is less
restrictive to choice the fitting algorithm, as prevents the joint texture-shape
templates to be orthogonal.

Fitting the models to an image

Once the shape and texture models have been obtained, the goal is to adjust
them to an input image I by finding a set of parameters αi (i = 1, . . . , n) and
βi (i = 1, . . . ,m) which solve the following non-linear least squares problem:

min
α,β

[
a0 +

m∑
i=1

βiai − I(W(s;α))

]2

. (2.32)

Matthews and Baker (2004) shown that this problem can be decomposed into
two independent sub-problems. First, finding the shape parameters α by solv-
ing Equation 2.33:

min
α

[a0 − I(W(s;α))]
2
. (2.33)
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Second, optimizing the texture parameters β, which have a closed solution.
There exist a wide variety of methods for minimizing Equation 2.33, being
the most commonly used the Lucas-Kanade algorihtm (Lucas, 1986; Lucas,
Kanade, et al., 1981), a method based on the Gauss-Newton algorithm.

Constrained Local Models

Constrained Local Models (CLM) are composed of three main parts: a point
distribution model (PDM), patch experts, and a fitting strategy. PDM is
employed to model the localization of facial landmarks within the image using
non-rigid shape and rigid global transformation parameters. Patch experts are
used to model the appearance of local patches around landmarks of interest and
are utilized to compute the response map which measures detection accuracy.
Regarding the fitting approach, there are very varied strategies. One of the
most popular is the Regularized Landmark Mean Shift (RLMS) (Saragih et al.,
2011).

Point Distribution Model

The first stage, as with AAM, is to train the model on labelled examples.
Once the model is trained, the objective is to estimate the rigid and non-rigid
parameters p, which fit the underlying image best:

p∗ = arg min
P

[
R(p) +

n∑
i=1

Di(xi; I)

]
, (2.34)

where R is the regularization term that penalizes low likely or too complex
shapes, and D accounts for the misalignment of the ith landmark at the location
xi of the image I. The location of the ith feature xi = [xi, yi, zi]

T is controlled
through the PDM by the parameter p:

xi = s ·R2D · (x̄i + Φiq) + t , (2.35)

where x̄i = [x̄i, ȳi, z̄i]
T is the mean value of the ith feature, Φi is a 3×m princi-

pal component matrix, and q is a vector of parameters of length m controlling
the non-rigid shape. The rigid shape parameters can be parameterized using
the following 6 scalars: a scaling term s, a translation t = [tx, ty]

T , and ori-
entation w = [wx, wy, wz]

T . Rotation parameters w control the first two rows
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of the rotation matrix R2D, which are in axis-angle form to facilitate their
linearization. Then, the whole shape can be described by p = [s, t,w,q].

Patch experts

Patch experts (also known as local detectors) compute response maps on the
local region around the facial feature points, that is, they evaluate the prob-
ability of a facial feature point being aligned at a determined pixel location.
The response of the ith patch expert πxi

at the image location xi based on the
surrounding support region is defined as:

πxi
= Ci(xi; I) , (2.36)

where Ci is the output of the ith feature regressor. This regressor can model
the misalignment from 0 (no alignment) to 1 (total alignment). There are
numerous methods that have been used as patch experts: a distance metric
such as the Mahalanobis distance, various Support Vector Regressor (SVR)
models and logistic regressors, or even simple template matching techniques.
The most commonly used patch expert is the linear Support Vector Regressor
in combination with a logistic regressor (Baltrusaitis et al., 2013). The reason
for using linear SVR is their efficient implementation on images due to the
possibility of using convolutions. In Figure 2.11 some response maps computed
with SVR can be observed.

Fitting the model

The fitting of CLM-based methods consists of two main steps: (1) predicting
local displacements of shape model points and (2) constraining the configura-
tion of all points to comply with the shape model. These two steps are iterated
until a converge criterion is satisfied.

To fit the model to a new incoming face, CLM-based methods update an initial
parameter estimate p0 (most usually from a face detector) to get closer to a
solution p∗ = p0 + ∆p (where p∗ is the optimal solution). Therefore, the
iterative fitting objective is as follows:

arg min
∆p

[
R(p0 + ∆p) +

n∑
i=1

Di(xi; I)

]
. (2.37)

Equation 2.37 can be solved using several methods, but the most commonly
used is the Regularized Landmark Mean Shift (Saragih et al., 2011).
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Figure 2.11: Sample response maps from patch experts of five features. The ground truth
column is the ideal response, and the SVR column the one achieved by a SVR model used by
CLM approaches. Red corresponds with high probability. Image extracted from Baltrusaitis
et al. (2013).

2.3 Database

The database employed in this work is the Chicago Face Database (Ma et al.,
2015), which is formed by 290 male and 307 female faces of ages ranging from
17 to 65 and varying ethnicity (Asian, Black, Latino and White). Each target
in the database is represented with a neutral expression photo that has been
normalized by an independent rater sample. In addition, for a small subset of
targets some facial expressions are also available: happy (with open mouth and
visible teeth), happy (with closed mouth), angry and fearful. As our purpose
is to predict which impression the target conveys to the observer removing
any possible trace of emotion, only neutral faces are used. By doing this, the
target face will not be expressing any emotion, so the impression perceived by
the observer will be due only to the structural configuration of the target face,
instead of the emotion they could be expressing in case of a non-neutral face.

All photographs are normalized and have the same size, illumination conditions
and position. In order to evaluate how the implemented evaluation model
works, the rating information available with the database is employed. For each
target, there are both physical and subjective attributes rated by a minimum
of 20 independent judges. For this work, only subjective attributes were used,
which were rated considering the person with respect to other people of the

34



2.4 Automatic facial feature extraction

same race and gender using a 1-7 Likert scale (Likert, 1932). Table 2.1 shows
a list of all the subjective attributes used.

Table 2.1: List of employed subjective attributes.

List of subjective attributes
Afraid Angry Attractive Babyface Disgusted

Dominant Feminine Happy Masculine Prototypic
Sad Surprised Threatening Trustworthy Unusual

Most of the named subjective attributes are very basic and do not need an
explanation, however, it is important to clarify what Prototypic and Unusual
means. Prototypic measures racial prototypicality. In other words, it measures
how much a face physical features resemble the features of people belonging
to the same ethnicity. For example, for an Asian face, it would measure if its
eyebrows, eyes, nose, cheeks, lips, and other physical features, are more Asian
(i.e., typical of Asians) or less Asian (i.e., less typical of Asians). On the other
hand, Unusual measures if the face being evaluated would stand out in a crowd
(highly unusual) or not (little unusual). It is important to note that every face
elicits every social trait to some extent. Therefore, the same face could be 60%
Happy and 20% Sad (and would have a level for each of the social traits left),
which would mean that to most observers, it resembles more a happy face than
a sad one.

As perception and trait impressions are not ethnicity independent (Walker,
Jiang, et al., 2011), the objective of this work was to create a dedicated pre-
dictor for each ethnicity individually. In addition, as this work is a proof of
concept, only male gender was considered for the sake of simplicity. This al-
lowed to avoid problems with long hair and make-up to some extent. Then,
the procedure described in this work was applied to each male ethnicity, re-
sulting in 290 male targets (52 Asian, 93 Black, 52 Latino and 93 White). The
extension to female gender remains as future work, although it should require
little to no modification in the method pipeline.

2.4 Automatic facial feature extraction

Faces are composed by different features, such as eyebrows, eyes, noses, mouths,
etc. Furthermore, these features are located in a deterministic place within the
face. If one is to define a face, the first step is to characterize these features,
and the second one, to establish their locations. Then, the procedure followed
in this work to completely characterize a face includes choosing which features
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are to be used and the distances to a reference point within the face. The facial
features employed in this work are divided into three groups: internal, external
and distance features. Internal features are composed by the eyebrow, the eye,
the nose and the mouth. Only one eyebrow and eye need to be defined in order
to completely characterize a face because, in this thesis, faces are considered
symmetric. Therefore, the left side was randomly chosen to characterize the
eyebrows and eyes, so the left hand side eyebrow and eye were chosen, and
the right hand eyebrow and eye were obtained by horizontally flipping the left
hand side ones. The external features refers to the jawline. On the other hand,
distance features are composed by five distances which are used to specify the
location of the before mentioned internal features, and are defined as follows:

deb: distance from the lowermost jawline landmark to the centroid of the
polygon formed by the eyebrow landmarks,

de: distance from the lowermost jawline landmark to the centroid of the
polygon formed by the eye landmarks,

dn: distance from the lowermost jawline landmark to the centroid of the
polygon formed by the nose landmarks,

dm: distance from the lowermost jawline landmark to the centroid of the
polygon formed by the mouth landmarks,

dee: distance between the centroids of the polygons formed by both eyes
landmarks.

Horizontal distances were not considered for any other feature than the eyebrow
and eye because symmetry and centrality were assumed (faces in the real world
are not, but it is assumed in this thesis for simplicity). Moreover, as eyebrows
are always above the eyes, only one horizontal distance needs to be accounted
for, the distance between eyes. This distance indicates how far of the vertical
line of face symmetry eyebrows and eyes should be.

The procedure implemented to extract the facial features from the full-face
images is completely automatic for all features. Hair is not considered due to
the difficulty existent in automatic hair segmentation, which is an extensively
studied problem which has not yet arrived to a good general solution (Aarabi,
2015; Guo and Aarabi, 2016; D. Wang et al., 2011). On the other hand, the
jawline is extracted as a set of shapes and reference points, and thus has a
different extraction procedure.

36



2.4 Automatic facial feature extraction

The procedure followed to extract the features starts with the facial landmarks
detection. Once the landmarks are detected, those corresponding to internal
features are used to create their respective masks. These are very coarse masks
with the aim to define the region where each internal feature is located. Then,
the extraction procedure begins.

Considering only internal features, that is, eyebrows, eyes, nose and mouth;
the automatic extraction procedure is very similar for all of them. First, the
face is aligned according to the landmarks of the processed feature. Then, the
coarse mask is used to extract the target feature from the full-face image. At
this point, the feature image is processed to remove all the non-desired regions.
Finally, feature images are cropped so there is as few skin as possible while
retaining the complete feature visible. Although the procedure is very similar
for all of these features, there exist slight differences which will be pointed
out in the next sections, where all the steps mentioned above are explained
in-depth.

Although the pipeline for facial feature extraction was designed for the CFD
database, it should be possible to employ the same procedure with any nor-
malized face database (i.e. faces are the same size).

2.4.1 Facial landmarks detection

Facial landmarks are the base of the whole method. Given their importance,
several facial landmark detection frameworks were tested. Finally, as men-
tioned in subsection 2.2.5, two algorithms were employed in this work:

Chehra, a facial landmark detector developed by Asthana et al. (2014),
who implemented an incremental discriminative facial deformable model
trained by a cascade of regressors. Chehra is able to accurately locate
the eyebrows, eyes, nose and mouth. However, it does not provide face
contour landmarks.

CLM-framework, which was developed by Thomas et al. (2016) and em-
ploys Constrained Local Models to locate the face landmarks, including
the face contour.

Chehra was found to be more accurate and faster than CLM-framework, so this
is the reason why two methods were used in order to extract the face landmarks:
CLM for the jawline, and Chehra for the rest of facial traits. Figure 2.12 shows
the facial landmark distribution for both frameworks.
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Figure 2.12: Facial landmark distribution for Chehra and CLM frameworks. In red, Chehra
detected landmarks. In blue, CLM landmarks.

Then, in the first step of the developed method every face image is processed
detecting its facial landmarks and storing them. These landmarks are used to
identify and locate each feature so they can be properly extracted.

2.4.2 Feature masks creation

Masks are needed to extract each feature from the face removing as much skin
and non-desired regions as possible. To do so, corresponding landmarks to
each feature are identified and used to create a polygon by joining each of
these feature landmarks (Figure 2.13).

These polygons are thickened with n =∞ (i.e. unconnected objects are thick-
ened by adding pixels to their exterior until when doing so would result in pre-
viously unconnected objects being 8-connected) obtaining the feature masks,
which delimit the feature area. The result is shown in Figure 2.14.

Feature masks allow to extract each feature independently. Then, having in-
troduced the facial landmarks and the feature masks, in the following sections
the procedure followed to extract each feature is thoroughly explained.
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Figure 2.13: Polygonal feature masks created from the facial landmarks detected in Fig-
ure 2.8.

Figure 2.14: Feature masks are obtained by thickening polygonal feature masks with
n =∞.
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2.4.3 Eyebrow extraction

The first facial feature extracted in this process is the eyebrow. In this case,
as human faces have two eyebrows, CFD database is doubled by adding the
horizontally flipped version of all the images to the existent ones. In such a
way, original CFD images can be used to extract the left hand side eyebrows,
and flipped CFD images provide the right hand side eyebrows flipped so they
are comparable with the left hand side ones. Once the images are flipped,
eyebrow landmarks are identified and all images are aligned using a point of
the eyebrow as reference. Then, an improved mask to delimit the eyebrow is
created from the thickened feature mask shown in Figure 2.14 and used to crop
the full-face image to the eyebrow region only. Finally, in the last step, eyebrow
images are cropped to the size of the biggest of the masks found. Figure 2.15
shows the flow of the eyebrow extraction procedure. In the following sections
the different steps of this procedure are explained in-depth.

Flip image horizontally

Alignment

Alignment

Mask 
retrieval

Mask 
improvement

Mask 
retrieval

Feature 
extraction

Mask 
improvement

Feature 
extraction

Cropping

Cropping

Figure 2.15: Eyebrow extraction flowchart.
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Alignment

The alignment process of the eyebrows takes the top middle point of the de-
tected eyebrow landmarks as reference and centers this point in the image. The
top middle point is computed by assigning the x value of the middle point be-
tween the left-most and the right-most eyebrow landmarks to the x-coordinate
and the y value of the up-most eyebrow landmark to the y-coordinate (Fig-
ure 2.16). Their alignment is completely necessary in order to be able to
compare them. Without alignment, there would not be any feasible way to
compare their sizes or shapes.

After this step, all top middle points for all eyebrows are at the same position
along the image set, which means that all eyebrows are aligned.

Masking

In the previous section all images were aligned. Now, comparison is possible,
but images contain a lot more information than just the eyebrow. Then, the
objective of this step is to remove all this non-desired information. To do so,
a precise mask is created for each eyebrow taking as starting point the feature
mask obtained in subsection 2.4.2.

In the following lines each step is thoroughly explained following Figure 2.17,
which illustrates the improved mask creation process. All the parameters uti-
lized in this procedure were empirically chosen. The input to the process is
the face image cropped to the size of the biggest existent thickened feature
mask (a), which contains the eyebrow, but also the eye, skin and even hair.
In order to remove these non-desired features, the eyebrow feature mask (b) is
modified until a precise mask is obtained (k). The first step consists in eroding
the feature mask with a vertical line of length l = b(height(Mb)/rf )c, where
Mb is the blob corresponding to the feature mask present in (b) and rf = 7
is the reduction factor. This operation results in the reduced mask visible in
(c). Next, vertical and horizontal pikes are removed from the mask. This is
achieved by cropping the top, bottom, left and right of the reduced mask Mc,
(c). Left and right sides are cropped by setting to black a number of pixels
dh = (rightmost_point(Mc)) − leftmost_point(Mc))/20 on (c), resulting in
(d). Top and bottom are handled in a different way. In order to get (e), (d) is
opened with a vertical line of length l = 6.5·dh chosen empirically. At this point
the mask has improved considerably by removing the hair and some skin, but
the operations performed resulted in a misalignment with the eyebrow. Then,
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(a) (b)

Figure 2.16: Eyebrow alignment process. (a) Refers to the original image, in which left
hand eyebrow is centered. (b) Corresponds to the horizontally flipped image, in which
the right hand eyebrow (now behaving as left eyebrow) is centered. Blue dots correspond to
detected eyebrow landmarks, and the red dot to the computed reference (eyebrow landmark’s
top middle point).

the mask in (e) is shifted down a number of pixels sp = b(height(Mb)/sr)c,
where sr = 10, resulting in (f).

As was mentioned before, non-desired regions such as hair or skin have been
already removed from mask (f), but there may still exist eye regions. To solve
this, the blob in (f) is horizontally divided in 5 intervals, and a sub-image with
the internal 3 intervals of the blow is taken (g) and eroded with a disk of radius
r = 2 · dh, resulting in (h). This sub-image is then pasted into (f), resulting
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 2.17: Eyebrow mask creation process.

in a mask which does not contain any of the non-desired eyes, (i). Finally, the
last step is a dilation with a disk of radius r = 5 (j). At this point the mask
needed to extract the eyebrow is already available.

This procedure is carried out on every eyebrow image, so at the end of the
process, all eyebrows are saved independently and have a mask hiding all non-
desired regions. However, these images are mostly composed by black pixels
due to the improved mask, with a low amount of pixels used for eyebrow
representation, which is a problem for the subsequent step, the clustering.
Then, eyebrow images need to be cropped to remove as much black background
as possible while keeping the same size for all of them.
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Cropping

This step is not strictly necessary for feature extraction, however, it is for
their posterior clustering. In this step eyebrows are cropped so the maximum
amount of black pixels are removed while maintaining the same size for every
image. This is achieved by computing the sizes of all the improved masks
and cropping the eyebrow images to the biggest of the improved mask sizes
(169× 96 pixels). Figure 2.18 shows the result of this cropping.

Figure 2.18: Eyebrow cropping for the clustering step.

At the end of this step, eyebrow images are ready to be clustered.

2.4.4 Eye extraction

As happened with the eyebrows, faces have two eyes as well, so the same
procedure is followed to add the flipped version of all the CFD images to the
existent ones so both eyes can be extracted as left hand side eyes. Once the
images are flipped and included with the originals, eye landmarks and masks
are identified. Eyes are then saved independently by means of the thickened
feature masks shown in Figure 2.14. Then, all eyes are centered in the image
using the centroid of the polygon formed by their landmarks as reference. To
perform the centering, eye image canvas is expanded until the eye is placed in
the center of the resulting image. This procedure is performed on every eye
image. Finally, in the last step, eye images are cropped to an empirically found
size which fits all eyes in a tight-fitting manner. Figure 2.19 shows the flow of
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the eye extraction procedure. In the following sections the different steps of
this procedure are explained in-depth.

Flip image horizontally

Eye extraction Alignment

Cropping

Eye extraction Alignment

Cropping

Figure 2.19: Eye extraction flowchart.

Extraction

The first step in the eye extraction pipeline is to extract and save each eye
independently. To do so, the thickened feature masks are used, as shown in
Figure 2.20 (a). For each eye, the bounding box of its corresponding thick-
ened feature mask is computed (Figure 2.20 (b)). Then, the original image
is cropped to this bounding box size (Figure 2.20 (c)). This is performed on
every image so every eye is saved independently in a new image, but these
images are not the same size and eyes are not aligned.
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(a) (b) (c)

Figure 2.20: Eye extraction process. (a) Original image with the thickened feature masks
visible. (b) Thickened feature mask employed to extract the eye. (c) Extracted eye.

Alignment

The alignment process of the eyes is different to the one used with eyebrows.
In this case, a mask to hide the non-desired regions is not desirable, as it would
hide expression lines and wrinkles. Therefore, no mask is employed with the
eyes. Instead, eye images are cropped in a way that no eyebrow region is visible
anymore. This is performed using each eye’s thickened feature mask, and it
usually yields eye images with the eye placed at the top half of the image.
Then, to center the eye in the image, the distance from the eye’s centroid to
each extreme of the image is computed (Figure 2.21).

(2)

(1)

(4)(3) (2)

(1)

(4)(3)

Figure 2.21: Alignment reference for left hand eye (left image) and flipped right hand eye
(right image).

This yields four distances: dhmin
(2), dhmax

(1), dvmin
(3) and dvmax

(4), where
dhmin/max

and dvmin/max
are the minimum and maximum horizontal and ver-

tical distances from the centroid of the eye to the horizontal and vertical
extremes of the image respectively. Next, eye image canvas is expanded to
match [dvmax

, dhmax
] pixels. The expansion is performed by repeating the last

horizontal/vertical line of pixels respectively.
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Figure 2.22: Eye alignment process. Left and right center aligned eyes.

This procedure allows for aligning the eye in the center of the image without
using any kind of mask, and thus, without hiding any relevant information.
However, although all eyes are now center aligned in their respective images,
these images are still different sizes.

Cropping

In eye images obtained in last section there is still too much skin around the
eye, which would lead the clustering algorithm to pay to much attention to
skin, while disregarding eye features themselves. Furthermore, eye images are
not the same size. Therefore, although this step is not strictly necessary for
feature extraction, it is for their posterior clustering. Then, as with eyebrows,
an extra step is carried out to remove as much skin as possible while retaining
as much expression lines and wrinkles as possible and the same image sizes.

In this step eye images are cropped to an empirically established size which
allows to remove a high amount of skin and at the same time keeps the whole
eye and some expression lines within the final image. Figure 2.23 shows the
result of this cropping, which results in 236× 116 pixel images.

At the end of this step, eye images are ready to be clustered.
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Figure 2.23: Eye cropping for the clustering step.

2.4.5 Nose extraction

Contrary to eyebrows and eyes, human face has only one nose, then it is not
necessary to perform the doubling procedure done with previous features. With
the nose, the first step is to identify its landmarks and mask. Then, images are
aligned using the centroid of a triangle formed by some of the nose landmarks
as reference. Next, the nose is extracted using the biggest thickened feature
mask found among all nose masks. Finally, the resulting image is cropped so
as few non-desired regions as possible remain visible. Figure 2.24 shows the
flow of the nose extraction procedure. In the following sections the different
steps of this procedure are explained in-depth.

Alignment Extraction Cropping

Figure 2.24: Nose extraction flowchart.
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Alignment

The first step in the process carried out to extract the nose is the alignment.
In this procedure, face images are processed so the nose ends up located in the
center of the image. To perform the alignment, a reference point consistent
across all images is necessary. In this case, the reference point was chosen as
the centroid of a triangle formed by three of the nose landmarks (Figure 2.25).
After performing this procedure, every nose is centered in its corresponding
image.

Figure 2.25: Method to compute the nose reference for alignment. In blue, the nose
landmarks. In red, the triangle formed by the landmarks chosen to compute the reference
point. In green, the centroid of the triangle, used for alignment.

Extraction

After performing the alignment, noses can be properly extracted from the
full-face images by means of the biggest nose thickened feature mask found
(Figure 2.26).

Thanks to the alignment, every resulting image will have the nose placed at
the same point, making it easy to compare one to another. However, as can be
observed in Figure 2.27, in this step some non-desired regions are still visible
on the image. In next section, an explanation about how these regions are
removed is presented.
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Figure 2.26: Biggest nose thickened feature mask found. Dots represent each existent nose
thickened feature mask boundaries. Stars represent the boundaries of the biggest one.

Figure 2.27: Nose after extraction.

Cropping

After alignment and masking of the nose images, the next step is the removal
of the non-desired regions. To perform this task, all nose images are cropped
to a sub-image frame empirically chosen. The result is an image of 187× 118
pixels containing only the nose. An example is shown in Figure 2.28.

At the end of this stage, nose images are ready to be clustered.
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Figure 2.28: Extracted nose after masking.

2.4.6 Mouth extraction

Mouth extraction is performed in a similar manner to nose extraction. As with
the previous features, the first step of the mouth extraction procedure consists
in identifying its landmarks and mask. Then, images are aligned using the
centroid of the mouth as reference, computed using its outer landmarks. Next,
the mouth is extracted using the biggest thickened feature mask found among
all mouth masks. Finally, the resulting image is masked, so beard and mustache
(if any) are removed and only the mouth remains visible. Figure 2.29 shows the
flow of the mouth extraction procedure. In the following sections the different
steps of this procedure are explained in-depth.

Alignment Extraction Masking

Figure 2.29: Mouth extraction flowchart.

Alignment

The first step in the process carried out to extract the mouth is the alignment.
In this procedure, face images are processed so the mouth ends up located in
the center of the image. To perform the alignment, a reference point consistent
across all images is necessary. In this case, the reference point was chosen as
the centroid of the outer mouth landmarks (Figure 2.30).

Thanks to the alignment, every resulting image will have the mouth placed at
the same point, making it easy to compare one to another.
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Figure 2.30: Method to compute the mouth reference for alignment. In red, the outer
mouth landmarks. In green, its centroid, used for alignment.

Extraction

After performing the alignment, mouths can be properly extracted from the
full-face images by means of the biggest mouth thickened feature mask found
(Figure 2.31).

Figure 2.31: Biggest mouth thickened feature mask found. Dots represent each existent
mouth thickened feature mask boundaries. Stars represent the boundaries of the biggest
one.

In this case, the biggest mask found is 191× 104 pixels. Therefore, all result-
ing images from this step will be this size. However, as can be observed in
Figure 2.32, mouths might present beard or moustache, something undesired
as it would distort the subsequent clustering. Then, in next section, a mask is
created to hide all possible non-desired region.
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Figure 2.32: Extracted mouth.

Masking

After alignment and extraction of the mouth images the next step is the mask-
ing of the non-desired regions. These regions are those where beard or mus-
tache might be present. To perform this task, the mouth polygonal feature
mask explained in subsection 2.4.2 is employed (Figure 2.33).

The result is an image of 191 × 104 pixels with only the mouth visible. An
example is shown in Figure 2.33.

Figure 2.33: Mouth masking step.

At the end of this stage, mouth images are ready to be clustered.

2.4.7 Jawline extraction

Jawlines are characterized as a set of points delimiting the face contour and the
centroids of the internal facial features. CFD images are already normalized
and aligned, so there is no need for alignment in this case. Figure 2.34 shows
the face contour landmarks distribution, composed by a total of 17 landmarks,
and the computed centroids of the internal features, formed by the centroid
coordinates of the eyes, the nose and the mouth. Internal feature centroids are
also taken as part of the jawline characterization because not only the shape
of the jawline is important, but how the features are distributed with regard
to it. In total, 21 points are used in order to characterize the face jawline.
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Figure 2.34: Jawline characterization.

2.4.8 Distances extraction

Human faces have different feature distributions, so it is important to model
these differences if a realistic looking face is to be generated. Therefore, the
following five distances were used to characterize the feature positions within
the face, all taking the lowermost jawline landmark as reference:

deb: distance from the mean point of the two eyebrow centroids to the
lowermost jawline landmark (1),

de: distance from the mean point of the two eye centroids to the lowermost
jawline landmark (2),

dn: distance from the nose centroid to the lowermost jawline landmark
(3),

dm: distance from the mouth centroid to the lowermost jawline landmark
(4),

dee: distance between both eye centroids (5).
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2.5 Facial features clustering

Figure 2.35 shows these distances on a face within the CFD database.

Figure 2.35: Distances characterization. In red, all detected facial landmarks. In green,
feature computed centroids. Blue stars denote the eyebrows and eyes centroid, respectively.

2.5 Facial features clustering

At this stage, sets of 580 eyebrows, 580 eyes, 290 noses, 290 mouths, 290 jaw-
lines and 290 sets of distances are available2. The clustering or classification by
appearance of the extracted features is necessary in order to create taxonomies,
which are needed to evaluate faces. As the main objective of this thesis is the
creation of new realistic faces by means of other face features, it is of sum
importance to be able to combine features extracted from different faces and
still have an appropriate score for these features. This way, it is possible to
compute a score for a new face created with these features.

It might seem difficult to understand why, so in the following lines a clarifying
explanation is provided. To make it easier to understand, only internal features
are considered in the explanation (eyebrows, eyes, noses and mouths).

2Some samples of these images are available in Appendix B. To consult all the im-
ages employed and see the clustering obtained, please go to https://github.com/flifuehu/
facial-feature-clustering.
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Chapter 2. Extraction and clustering of facial features

Let’s consider a list of faces with their features: eyebrows (EB), eyes (E), noses
(N) and mouths (M). It may seem enough to find a function of similarity able
to tell how similar are two features, and then take the score of the face where
the most similar feature is found. However, by doing this, the assumption that
features are independent among them is made, which is incorrect. When look-
ing a face, people see a gestalt of features, meaning that features interfere one
with another in order to form the impressions people experience when seeing
faces. One way to gather this interferences or relationships among features is
to group features by similarity. In this way, when a new face is processed, the
eye is compared with all the groups available, and one is chosen. Then, in-
side this group, several eyes extracted from several different faces are present.
Moreover, this group has a mean score computed having into account every
present face. The key point is that this score has been computed by using the
score of the faces to which the eyes belong instead of some sort of eye score
(there is no available score for just the eyes). This links the score obtained
by the cluster to the aforementioned type of eye, but also allows to consider
that this score will be the same or very similar for any possible combination
of the rest of facial features, because the eye cluster itself has been created
accounting for some variance of these other features, as shows Figure 2.36 (b).
However, if all the eyes were considered without any clustering, a similarity
function would tell which is the most similar eye, but this eye would be inside
a face with certain eyebrows, nose and mouth. Therefore, this score would be
valid only in the case of a face with these features (Figure 2.36 (a)). Although
the ideal situation would be to account for 2nd, 3rd, 4th order (and so on) rela-
tionships between features, thus modeling relationships of every feature with
each other, this requires a huge amount of rated faces unavailable at the mo-
ment, which makes it practically impossible to be implemented in this thesis
due to time and resources limitations. Then, the implemented solution tries
to overcome this problem to the extent possible, accounting for the feature
variability present on the faces within a certain cluster. This explanation is
valid for the rest of features employed in this thesis.

The procedure followed to cluster the distinct extracted features differs for
some of them, according to the extraction and characterization method fol-
lowed. On the one hand, internal features are extracted as images, so it is an
image what characterizes them. On the other hand, jawlines and distances fol-
low a different extraction and characterization method. Jawlines are character-
ized as a set of (x, y)-coordinates, and distances as a set of values representing
distances.
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2.5 Facial features clustering

(a)

(b)

Figure 2.36: Why clustering is necessary. (a) Shows why an approach without clustering
is not appropriate. (b) Shows the process followed using clustering. EB, E, N, and M stand
for eyebrow, eye, nose and mouth, respecitvely.

In order to cluster internal features, the pixels of the images themselves could
be used. In this manner, eyebrows, eyes, noses and mouths would be clustered
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in spaces of 169× 96, 236× 116, 187× 118 and 191× 104 dimensions respec-
tively. As can be noted, this approach yields very high dimensional spaces
for clustering, which makes the method slow, very sensitive to noise and weak
dealing with slight variations across images. Then, three possible approaches
were tested in order to characterize these features: geometric-based character-
ization, appearance-based characterization and mixed characterization. The
appearance-based approach was selected to characterize the features because
the objective was to classify them based on their global appearance more than
on their geometrical characteristics (structural approach). This method uses
the eigenfaces approach to obtain a relatively low-dimensional vector of char-
acteristics which characterizes the features (the term eigenfaces is maintained
although the method is now used over facial features). As explained in sub-
subsection 2.2.2, the eigenfaces approach is a method to efficiently represent
pictures of faces by a relatively low-dimensional vector. A principal component
analysis can be used on an ensemble of face images to form a set of basis fea-
tures (Sirovich and Kirby, 1987). These basis images, known as eigenpictures,
can be linearly combined to reconstruct images in the original set.

Using this procedure over each set of features it was possible to characterize
each feature by a set of M eigenvalues, thus reducing the quantity of infor-
mation needed to describe the features while increasing speed, robustness and
accuracy. This procedure allowed for automatic, robust, fast and objective
classification of internal features from varying ethnic groups (Asian, Black,
Latino and White) considering the global appearance of features while sum-
marizing the central information to characterize them. It is important to note
that this characterization was performed on a by-feature and by-ethnicity basis,
that is, features were separated by type and by ethnicity. This was necessary
due to the holistic character of the implemented method, completely based on
appearance. For example, Asian and Black features are very different, so the
basis computed by the eigenfaces approach would be very different for both of
them. Thus, eigenfaces method was applied over each subset of facial features
for each ethnicity independently.

On the other hand, jawlines were clustered using the coordinates extracted in
the previous section. In the case of the distances, the clustering was performed
making use of intervals.

In the following subsections the clustering process is explained in-detail for
every feature.
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2.5.1 Automatic internal features clustering

Internal features clustering includes the clustering of the eyebrows, the eyes, the
noses and the mouths. All of them were characterized with only 45 eigenvalues.
The same value was chosen for all of them in order to facilitate the subsequent
clustering process, bearing in mind that the explained variances were about
85% or higher in all cases (Table 2.2).

Table 2.2: Percentages of variance explained by 45 eigenfaces for each dataset (feature and
ethnicity).

Ethnic group
Feature Asian Black Latino White
Eyebrows 95.12 91.99 94.45 93.69
Eyes 91.15 84.98 88.61 86.22
Nose 98.55 93.49 98.19 91.36
Mouth 98.88 93.69 99.14 95.26

At this stage, the appearance of each feature can be characterized using 45
real values (eigenvalues). As an example of the information of the features
that is captured using eigenfaces, Figure 2.37 shows a reduced set of original
mouths (a), and the same set of mouths reconstructed using 45 eigenvalues
before de-normalization (b).

Figure 2.37: Original and reconstructed mouths before de-normalization using 45 eigen-
faces. (a) Original mouths. (b) Reconstructed mouths before de-normalization.

Finally, and after reducing the dimensionality of the internal features data, the
k-means algorithm (MacKay, 2003) is employed to cluster the features using
their eigenvalues as characteristics. For each internal feature and ethnicity, the
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total number of instances is clustered in a 45 dimensional subspace conformed
by the corresponding eigenvalues. A drawback of using this method is that
the number of clusters k must be predefined, and this is unknown a priori.
The approach followed to face this problem was to perform several k-means
executions varying k, and to calculate the Dunn’s Index (Dunn, 1974) for each
set of clusters while monitoring the number of existent mono-clusters, which
are defined as clusters with only one (for mouths and noses) or two instances
(for eyebrows and eyes). The Dunn’s Index measures the compactness and
separation of the clusters obtained for each k. A higher Dunn’s Index points
to a small intra-cluster variance and a high inter-cluster distance, that is,
the features included in each cluster are more similar among them, and more
different from the features belonging to other clusters. Therefore, the number
of clusters for each feature was selected as the k that maximized the Dunn’s
Index while keeping the number of mono-clusters equal or below 2.

2.5.2 Automatic jawlines clustering

The clustering of the jawlines is performed in the same manner as the internal
features clustering, but choosing M = 42 eigenvalues instead. The election
of this number of eigenvalues responds to the number of jawline points (17)
and centroids (4) used to characterize each jawline. These points give a total
of 21 (x, y)-coordinates, which unrolled to perform the clustering result in 42
parameters. In this way, all coordinates characterizing the jawline are used in
their clustering, which results in an explained variance of 100%.

Similarly, the election of the k is still a problem, so the same procedure de-
scribed for the internal features is followed for jawlines clustering.

2.5.3 Distances clustering

The case of the distances is completely different to the previous explained
features. In this case, distances are clustered into 11 regular intervals created
individually for each distance taking into account its minimum and maximum.
By having 11 intervals it is possible to move the facial features to the most
extreme top position in the CFD faces in 5 steps, leave them at their mean
position, or move them 5 steps to the bottom. Taking as example the clustering
for the distance from the eyebrows centroid to the lowermost point of the
jawline (deb), intervals are created taking steps of

s =
max(deb)−min(deb)

12
. (2.38)
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Then, distances are classified inside the corresponding interval out of the 11
available.

2.6 Results

In this section the clusterings obtained are assessed and the obtained clusters
are shown. For clarification purposes, metrics employed and computed in the
clustering process are explained with an example in the following lines, and
results are then presented for each ethnicity and feature in the subsequent sub-
sections. Therefore, for each clustering, a figure like Figure 2.38 is presented.
In this figure all the information relative to the presented clustering is shown.

Thus, Figure 2.38 (a) shows the Dunn’s Index of each cluster compared to the
number of existent mono-clusters. This information was used to find the best
possible k. As was explained in subsection 2.5.1, the number of clusters was
chosen as that of the clustering with the highest Dunn’s Index with two or less
mono-clusters. As can be drawn from this example, in this case k = 12.

In addition, several metrics were calculated in order to assess how good the
clustering was. On the one hand, a distance matrix was computed to show
how far one cluster is from another. Thus, the diagonal of this matrix will
always be 0 (distance of cluster n to itself), while the element (i, j) shows the
distance between clusters i and j (see Figure 2.38 (b)). Here, very low values
indicate two nearby clusters and therefore it is not desired, since it would mean
that those two clusters could possibly be taken as just one. In this example,
the diagonal is 0 as advised, and the rest of the values are all above 50, which
means that no cluster is very close to another.

On the other hand, a distance matrix was computed to check how distant are
images of a given cluster from the rest of clusters. To do so, the mean of the
distances of all instances of a determined cluster to each centroid of the other
clusters are computed. This produces a symmetric matrix of distances, where
position (1, 1) represents the mean distance of instances belonging to cluster 1
to its centroid. Position (1, 2) refers to the mean distance of instances belonging
to cluster 1 to cluster 2 centroid, and so on. Then, this matrix should have
a low valued diagonal, while the rest of values should be as high as possible.
This would mean that the instances of a cluster are very close to their centroid
and far from the rest of clusters (see Figure 2.38 (c)).

Figure 2.38 (d) represents the clustering representation in two dimensions. To
be able to plot it in just two dimensions, the t-SNE algorithm was used.
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(a)

(b) (c)

(d) (e)

Figure 2.38: Clustering metrics example. (a) shows the data employed in order to chose
k. (b) and (c) represent the inter-cluster distances and the distances of every instance
within a cluster to its centroid and all other cluster centroids respectively. (d) shows the
representation of the clustering in a two-dimensional space. (e) presents the silhouette of
the clustering.
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Figure 2.38 (e) shows the silhouette of the clustering, which allows to check
graphically how well each instance lies within its cluster. The vertical red
dashed line indicates the mean value of every cluster. As was explained in
subsubsection 2.2.3, silhouette values range from -1 to +1, where values close
to 1 indicate that the instance is far from the decision boundary of the cluster,
values close to 0 show that the instance is on or close to the boundary, and
values lower than 0 indicate that the instance might be incorrectly clustered.

As clusterings are performed for every ethnicity and feature independently,
results are also presented by ethnicity and feature. In this manner, each sub-
section presents the results obtained for all the features of a given ethnicity,
that is, the chosen k for each clustering, the Dunn’s index, the Silhouette index
and the resulting number of clusters after mono-cluster removal. Figures show-
ing each of the aforementioned computed metrics are available. However, due
to space limitations and for visualization purposes, these figures are given alto-
gether in Appendix A. Furthermore, the obtained taxonomy for each ethnicity
and feature is available in Appendix B. Validation of the clustering method
here explained is provided in next section.

2.6.1 Asian

Automatic clustered features

The results of the clustering for the Asian ethnicity are available in Table 2.3.

Table 2.3: Asian clustering metrics.

k kfinal # of mc DI SI
eyebrows 15 14 1 0.47 0.23
eyes 15 13 2 0.78 0.15
noses 16 14 2 0.30 0.20
mouths 9 7 2 0.19 0.20
jawlines 15 13 2 1.00 0.20

As can be observed, eyebrow’s final number of clusters after monoclusters (mc)
removal is k = 14, with a Dunn’s Index of DI = 0.47 and a Silhouette Index
of SI = 0.23 (Figure A.1). For eyes, the final number of clusters is k = 13,
with DI = 0.78 and SI = 0.15 (Figure A.2). Regarding the noses, the final
number of clusters is k = 14, DI = 0.30 and SI = 0.20 (Figure A.3). As for
mouths, the final number of clusters is k = 7, with DI = 0.19 and SI = 0.20
(Figure A.4). Finally, jawline’s final number of clusters is k = 13, with DI = 1
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and SI = 0.20 (Figure A.5). Table 2.4 shows the cluster representatives of
the internal features clusterings for Asian ethnicity. Along with each cluster
representative’s image is available the percentage of elements in that cluster
over the total number of elements in the corresponding clustering. Represen-
tatives are sorted in descendent order according to this percentage. On the
other hand, Table 2.5 does the same for the jawlines. Further, the obtained
Asian taxonomies are completely available in Appendix B.1.

Table 2.4: Representatives of the Asian clustering for every automatically clustered internal
feature. AEB identifies Asian eyebrow clusters, AE Asian eye clusters, AN Asian nose
clusters and AM Asian mouth clusters.

Name
(%) Repr. Name

(%) Repr. Name
(%) Repr. Name

(%) Repr.

AEB01
(18.27%)

AE01
(11.54%)

AN01
(19.23%)

AM01
(28.85%)

AEB02
(12.50%)

AE02
(11.54%)

AN02
(9.62%)

AM02
(23.08%)

AEB03
(10.58%)

AE03
(10.58%)

AN03
(7.69%)

AM03
(13.46%)

AEB04
(10.58%)

AE04
(8.65%)

AN04
(7.69%)

AM04
(11.54%)

AEB05
(7.69%)

AE05
(8.65%)

AN05
(7.69%)

AM05
(9.62%)

AEB06
(6.73%)

AE06
(7.69%)

AN06
(7.69%)

AM06
(7.69%)

AEB07
(6.73%)

AE07
(7.69%)

AN07
(7.69%)

AM07
(5.77%)

AEB08
(4.81%)

AE08
(6.73%)

AN08
(5.77%)

AEB09
(4.81%)

AE09
(6.73%)

AN09
(5.77%)

Continued on next page
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Table 2.4 – Continued from previous page
Name
(%) Repr. Name

(%) Repr. Name
(%) Repr. Name

(%) Repr.

AEB10
(3.85%)

AE10
(6.73%)

AN10
(5.77%)

AEB11
(3.85%)

AE11
(4.81%)

AN11
(3.85%)

AEB12
(3.85%)

AE12
(4.81%)

AN12
(3.85%)

AEB13
(2.88%)

AE13
(3.85%)

AN13
(3.85%)

AEB14
(2.88%)

AN14
(3.85%)

Distances

Distances were grouped in 11 regular intervals. Table 2.6 shows the minimum
and maximum, the range and the interval size for each distance.
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Table 2.5: Representatives of the Asian clustering for automatically clustered jawlines.

AJ01 (15.38%) AJ02 (11.54%) AJ03 (11.54%) AJ04 (9.62%)

AJ05 (7.69%) AJ06 (7.69%) AJ07 (7.69%) AJ08 (7.69%)

AJ09 (5.77%) AJ10 (3.85%) AJ11 (3.85%) AJ12 (3.85%)

AJ13 (3.85%)

Table 2.6: Distances clustering for Asian ethnicity.

Distance Min Max Range Interval size
deb 671.36 843.60 172.25 15.66
de 587.67 716.97 129.30 11.76
dn 428.53 550.46 121.93 11.09
dm 213.01 319.40 106.39 9.67
dee 314.33 388.42 74.08 6.74
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2.6.2 Black

Automatic clustered features

The results of the clustering for the Black ethnicity are available in Table 2.7.

Table 2.7: Black clustering metrics.

k kfinal # of mc DI SI
eyebrows 12 10 2 0.60 0.16
eyes 23 21 2 1.00 0.11
noses 21 20 1 0.46 0.17
mouths 9 8 1 0.53 0.18
jawlines 13 13 0 1.00 0.14

As can be observed, eyebrow’s final number of clusters after monoclusters re-
moval is k = 10, with a Dunn’s Index of DI = 0.60 and a Silhouette Index
of SI = 0.16 (Figure A.6). For eyes, the final number of clusters is k = 21,
with DI = 1 and SI = 0.11 (Figure A.7). Regarding the noses, the final
number of clusters is k = 20, DI = 0.46 and SI = 0.17 (Figure A.8). As for
mouths, the final number of clusters is k = 8, with DI = 0.53 and SI = 0.18
(Figure A.9). Finally, jawline’s final number of clusters is k = 13, with DI = 1
and SI = 0.14 (Figure A.10). Table 2.8 shows the cluster representatives of
the internal features clusterings for Black ethnicity. Along with each cluster
representative’s image is available the percentage of elements in that cluster
over the total number of elements in the corresponding clustering. Represen-
tatives are sorted in descendent order according to this percentage. On the
other hand, Table 2.9 does the same for the jawlines. Further, the obtained
Black taxonomies are completely available in Appendix B.2.

Table 2.8: Representatives of the Black clustering for every automatically clustered internal
feature. BEB identifies Black eyebrow clusters, BE Black eye clusters, BN Black nose clusters
and BM Black mouth clusters.

Name
(%) Repr. Name

(%) Repr. Name
(%) Repr. Name

(%) Repr.

BEB01
(19.35%)

BE01
(11.83%)

BN01
(9.68%)

BM01
(32.26%)

BEB02
(18.28%)

BE02
(8.06%)

BN02
(9.68%)

BM02
(16.13%)

Continued on next page
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Table 2.8 – Continued from previous page
Name
(%) Repr. Name

(%) Repr. Name
(%) Repr. Name

(%) Repr.

BEB03
(15.05%)

BE03
(8.06%)

BN03
(8.60%)

BM03
(15.05%)

BEB04
(14.52%)

BE04
(7.53%)

BN04
(7.53%)

BM04
(12.90%)

BEB05
(13.98%)

BE05
(6.45%)

BN05
(7.53%)

BM05
(10.75%)

BEB06
(6.45%)

BE06
(5.38%)

BN06
(6.45%)

BM06
(7.53%)

BEB07
(4.84%)

BE07
(5.38%)

BN07
(5.38%)

BM07
(3.23%)

BEB08
(3.23%)

BE08
(5.38%)

BN08
(5.38%)

BM08
(2.15%)

BEB09
(2.15%)

BE09
(5.38%)

BN09
(5.38%)

BEB10
(2.15%)

BE10
(4.84%)

BN10
(5.38%)

BE11
(4.30%)

BN11
(4.30%)

BE12
(3.76%)

BN12
(3.23%)

BE13
(3.23%)

BN13
(3.23%)

BE14
(3.23%)

BN14
(3.23%)

BE15
(3.23%)

BN15
(3.23%)

Continued on next page
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Table 2.8 – Continued from previous page
Name
(%) Repr. Name

(%) Repr. Name
(%) Repr. Name

(%) Repr.

BE16
(3.23%)

BN16
(3.23%)

BE17
(2.69%)

BN17
(2.15%)

BE18
(2.69%)

BN18
(2.15%)

BE19
(2.15%)

BN19
(2.15%)

BE20
(1.61%)

BN20
(2.15%)

BE21
(1.61%)

Distances

Distances were grouped in 11 regular intervals. Table 2.10 shows the minimum
and maximum, the range and the interval size for each distance.
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Table 2.9: Representatives of the Black clustering for automatically clustered jawlines.

BJ01 (15.05%) BJ02 (12.90%) BJ03 (11.83%) BJ04 (10.75%)

BJ05 (10.75%) BJ06 (8.60%) BJ07 (6.45%) BJ08 (5.38%)

BJ09 (5.38%) BJ10 (4.30%) BJ11 (4.30%) BJ12 (2.15%)

BJ13 (2.15%)

Table 2.10: Distances clustering for Black ethnicity.

Distance Min Max Range Interval size
deb 684.62 900.30 215.69 19.61
de 588.24 780.25 192.01 17.45
dn 433.06 609.91 176.86 16.08
dm 213.36 343.74 130.38 11.85
dee 323.48 415.51 92.03 8.37
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2.6.3 Latino

Automatic clustered features

The results of the clustering for the Latino ethnicity are available in Table 2.11.

Table 2.11: Latino clustering metrics.

k kfinal # of mc DI SI
eyebrows 10 9 1 0.56 0.16
eyes 17 16 1 0.84 0.10
noses 16 14 2 0.36 0.18
mouths 5 5 0 1.00 0.22
jawlines 15 14 1 1.00 0.18

As can be observed, eyebrow’s final number of clusters after monoclusters re-
moval is k = 9, with a Dunn’s Index of DI = 0.56 and a Silhouette Index
of SI = 0.16 (Figure A.11). For eyes, the final number of clusters is k = 16,
with DI = 0.84 and SI = 0.10 (Figure A.12). Regarding the noses, the final
number of clusters is k = 14, DI = 0.36 and SI = 0.18 (Figure A.13). As for
mouths, the final number of clusters is k = 5, with DI = 1 and SI = 0.22 )Fig-
ure A.14). Finally, jawline’s final number of clusters is k = 14, with DI = 1
and SI = 0.18 (Figure A.15). Table 2.12 shows the cluster representatives of
the internal features clusterings for Latino ethnicity. Along with each cluster
representative’s image is available the percentage of elements in that cluster
over the total number of elements in the corresponding clustering. Represen-
tatives are sorted in descendent order according to this percentage. On the
other hand, Table 2.13 does the same for the jawlines. Further, the obtained
Latino taxonomies are completely available in Appendix B.3.

Table 2.12: Representatives of the Latino clustering for every automatically clustered
internal feature. LEB identifies Latino eyebrow clusters, LE Latino eye clusters, LN Latino
nose clusters and LM Latino mouth clusters.

Name
(%) Repr. Name

(%) Repr. Name
(%) Repr. Name

(%) Repr.

LEB01
(24.04%)

LE01
(13.46%)

LN01
(13.46%)

LM01
(46.15%)

LEB02
(15.38%)

LE02
(9.62%)

LN02
(11.54%)

LM02
(32.69%)

Continued on next page
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Table 2.12 – Continued from previous page
Name
(%) Repr. Name

(%) Repr. Name
(%) Repr. Name

(%) Repr.

LEB03
(12.50%)

LE03
(7.69%)

LN03
(9.62%)

LM03
(9.62%)

LEB04
(11.54%)

LE04
(7.69%)

LN04
(7.69%)

LM04
(7.69%)

LEB05
(11.54%)

LE05
(7.69%)

LN05
(7.69%)

LM05
(3.85%)

LEB06
(9.62%)

LE06
(6.73%)

LN06
(7.69%)

LEB07
(7.69%)

LE07
(6.73%)

LN07
(7.69%)

LEB08
(3.85%)

LE08
(6.73%)

LN08
(5.77%)

LEB09
(3.85%)

LE09
(5.77%)

LN09
(5.77%)

LE10
(4.81%)

LN10
(5.77%)

LE11
(4.81%)

LN11
(5.77%)

LE12
(3.85%)

LN12
(3.85%)

LE13
(3.85%)

LN13
(3.85%)

LE14
(3.85%)

LN14
(3.85%)

LE15
(3.85%)

Continued on next page
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Table 2.12 – Continued from previous page
Name
(%) Repr. Name

(%) Repr. Name
(%) Repr. Name

(%) Repr.

LE16
(2.88%)

Table 2.13: Representatives of the Latino clustering for automatically clustered jawlines.

LJ01 (13.46%) LJ02 (11.54%) LJ03 (9.62%) LJ04 (9.62%)

LJ05 (9.62%) LJ06 (7.69%) LJ07 (7.69%) LJ08 (7.69%)

LJ09 (3.85%) LJ10 (3.85%) LJ11 (3.85%) LJ12 (3.85%)

LJ13 (3.85%) LJ14 (3.85%)
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Distances

Distances were grouped in 11 regular intervals. Table 2.14 shows the minimum
and maximum, the range and the interval size for each distance.

Table 2.14: Distances clustering for Latino ethnicity.

Distance Min Max Range Interval size
deb 698.87 845.41 146.54 13.32
de 600.55 738.47 137.92 12.54
dn 437.19 581.85 144.65 13.15
dm 213.70 339.41 125.71 11.43
dee 330.53 388.49 57.96 5.27

2.6.4 White

Automatic clustered features

The results of the clustering for the White ethnicity are available in Table 2.15.

Table 2.15: White clustering metrics.

k kfinal # of mc DI SI
eyebrows 12 10 2 0.57 0.21
eyes 19 19 0 0.86 0.12
noses 12 12 0 0.62 0.17
mouths 11 9 2 0.55 0.21
jawlines 12 11 1 1.00 0.22

As can be observed, eyebrow’s final number of clusters after monoclusters re-
moval is k = 10, with a Dunn’s Index of DI = 0.57 and a Silhouette Index
of SI = 0.21 (Figure A.16). For eyes, the final number of clusters is k = 19,
with DI = 0.86 and SI = 0.12 (Figure A.17). Regarding the noses, the fi-
nal number of clusters is k = 12, DI = 0.62 and SI = 0.17 (Figure A.18).
As for mouths, the final number of clusters is k = 9, with DI = 0.55 and
SI = 0.21 (Figure A.19). Finally, jawline’s final number of clusters is k = 11,
with DI = 1 and SI = 0.22 (Figure A.20). Table 2.16 shows the cluster repre-
sentatives of the internal features clusterings for White ethnicity. Along with
each cluster representative’s image is available the percentage of elements in
that cluster over the total number of elements in the corresponding clustering.
Representatives are sorted in descendent order according to this percentage.
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On the other hand, Table 2.17 does the same for the jawlines. Further, the
obtained White taxonomies are completely available in Appendix B.4.

Table 2.16: Representatives of the White clustering for every automatically clustered in-
ternal feature. WEB identifies White eyebrow clusters, WE White eye clusters, WN White
nose clusters and WM White mouth clusters.

Name
(%) Repr. Name

(%) Repr. Name
(%) Repr. Name

(%) Repr.

WEB01
(24.19%)

WE01
(12.90%)

WN01
(12.90%)

WM01
(21.51%)

WEB02
(12.37%)

WE02
(9.14%)

WN02
(11.83%)

WM02
(17.20%)

WEB03
(11.29%)

WE03
(8.06%)

WN03
(10.75%)

WM03
(17.20%)

WEB04
(10.75%)

WE04
(8.06%)

WN04
(10.75%)

WM04
(16.13%)

WEB05
(9.14%)

WE05
(8.06%)

WN05
(9.68%)

WM05
(8.60%)

WEB06
(8.60%)

WE06
(7.53%)

WN06
(9.68%)

WM06
(8.60%)

WEB07
(8.60%)

WE07
(6.99%)

WN07
(9.68%)

WM07
(4.30%)

WEB08
(8.06%)

WE08
(4.84%)

WN08
(6.45%)

WM08
(4.30%)

WEB09
(4.84%)

WE09
(4.84%)

WN09
(6.45%)

WM09
(2.15%)

WEB10
(2.15%)

WE10
(4.30%)

WN10
(4.30%)

WE11
(4.30%)

WN11
(4.30%)

Continued on next page
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Table 2.16 – Continued from previous page
Name
(%) Repr. Name

(%) Repr. Name
(%) Repr. Name

(%) Repr.

WE12
(3.76%)

WN12
(3.23%)

WE13
(3.76%)

WE14
(2.69%)

WE15
(2.69%)

WE16
(2.15%)

WE17
(2.15%)

WE18
(2.15%)

WE19
(1.61%)

Distances

Distances were grouped in 11 regular intervals. Table 2.18 shows the minimum
and maximum, the range and the interval size for each distance.
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Table 2.17: Representatives of the White clustering for automatically clustered jawlines.

WJ01 (15.05%) WJ02 (13.98%) WJ03 (12.90%) WJ04 (11.83%)

WJ05 (10.75%) WJ06 (7.53%) WJ07 (7.53%) WJ08 (6.45%)

WJ09 (6.45%) WJ10 (4.30%) WJ11 (3.23%)

Table 2.18: Distances clustering for White ethnicity.

Distance Min Max Range Interval size
deb 663.87 875.18 211.31 19.21
de 570.03 752.68 182.65 16.61
dn 438.21 588.53 150.32 13.67
dm 210.13 330.44 120.31 10.94
dee 321.24 405.13 83.88 7.63
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2.7 Validation of the procedure

The described methodology proposes an automatic procedure to classify fea-
tures based on their appearance. This procedure was used to group features
of faces extracted from the Chicago Face Database. The intuitively logical
approach to validate the procedure is to compare the obtained taxonomies
with those generated by human evaluators. However, as it has been aforemen-
tioned, this last approach has important drawbacks. Classifying a big set of
features in an undefined number of groups is a hard task considering human
capabilities for information processing (Miller, 1956; Scharff et al., 2011). On
the other hand, important problems of using this approach are the part-whole
effect (Taubert et al., 2011) that decreases human ability for processing indi-
vidual features, and the influence of face race on the performance in processing
facial information (Hayward et al., 2008; Rhodes et al., 2009). Previous works
have reported low inter-observer and intra-observer agreement in the evalua-
tion of facial features (Stefanie Ritz-Timme et al., 2011), therefore, a different
approach must be used to validate the proposed procedure.

Instead of comparing the obtained taxonomies with those generated by hu-
mans, we measured the agreement of human evaluators with the proposed tax-
onomies. The main objectives were to reduce the number of features presented
simultaneously to the human evaluators to make a decision and to simplify the
decision that must be made. To do this, a survey composed of several stages
was developed (Figure 2.39).

Figure 2.39: Stages 1 and 2 of the survey procedure.

Initially, the image of one feature was selected from the entire dataset in a ran-
dom way (target feature). Four different representative features were randomly
selected (representative features are the features designated as representatives
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of their groups in the obtained taxonomy). In the first stage of the survey, the
five features were presented to the evaluator in a web form (Figure 2.39 (a)).
The target feature was in the center of the form, and the four representative
features were at the corners. The evaluator was asked to select the representa-
tive feature most similar to the target feature by clicking it using the mouse.
Then, the selected representative feature passed to the second stage in which
a new form was composed like in Figure 2.39 (b). The target feature was in
the center again, and the selected representative feature was at a corner of
the form. Three new different representative features were randomly selected
and situated in the remaining corners. This process was repeated until every
representative feature was shown at least once. The cluster of the representa-
tive feature selected in the last stage was considered the result of the survey
(i.e. the cluster to which the target feature belongs according to the opinion
of the respondent). Using this procedure, the decision process was simplified
because the number of simultaneous alternatives was reduced to four. As a
drawback, the probability of one representative feature to be finally selected
depends slightly on the stage in which it is shown.

21 White males and 11 White females aged between 25 and 46 years old par-
ticipated in three surveys: eyes, noses and mouths. In each survey, 200 target
features were selected at random from each White features dataset excluding
the representatives. The target features were presented in the survey web form,
and the cluster of the representative feature finally selected by the evaluators
was registered. This validation procedure was performed only on White eyes,
noses and mouths due to time limitations, as it results practically impossible
to validate every feature for every ethnicity. Moreover, we intended to validate
the method, not the taxonomies themselves, and this approach allowed us to
achieve this goal.

Therefore, Tables 2.19, 2.20 and 2.21 show the results of the survey for White
eyes, noses and mouths respectively. The first column of the table presents the
finally selected cluster. In this column, Expected means the cluster in which
the target feature was grouped by the automatic procedure. 82 target mouths,
62 target eyes and 93 target noses were classified in the expected cluster. The
distance between clusters can be measured through the eigenvalues of their
representative features; therefore, it is possible to determine the distance from
the expected cluster to each of the other clusters. The closer two clusters are,
the more similar are the features they contain. In the aforementioned tables,
1st closest is the cluster closest to the expected cluster, 2nd closest is the second
cluster closest to the expected cluster and so on. The number, the percentage
and the cumulative percentage of features classified in each cluster are shown.
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The percentages of features classified in the expected cluster or in the three
clusters closest to it were 73.0% for eyes, 81.0% for noses and 75.5% for mouths.

Table 2.19: Results of the validation survey for White eyes.

Eyes
Selected cluster No % Cum %
Expected 62 31.0% 31.0%
1st closest 38 19.0% 50.0%
2nd closest 27 13.5% 63.5%
3rd closest 19 9.5% 73.0%
4th closest 12 6.0% 79.0%
5th closest 8 4.0% 83.0%
6th closest 5 2.5% 85.5%
7th closest 9 4.5% 90.0%
8th closest 4 2.0% 92.0%
9th closest 1 0.5% 92.5%
10th closest 5 2.5% 95.0%
11th closest 3 1.5% 96.5%
12th closest 1 0.5% 97.0%
13th closest 0 0.0% 97.0%
14th closest 2 1.0% 98.0%
15th closest 0 0.0% 98.0%
16th closest 1 0.5% 98.5%
17th closest 0 0.0% 98.5%
18th closest 1 0.5% 99.0%
19th closest 0 0.0% 99.0%
20th closest 0 0.0% 99.0%
21th closest 1 0.5% 99.5%
22th closest 1 0.5% 100.0%
23th closest 0 0.0% 100.0%
24th closest 0 0.0% 100.0%
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Table 2.20: Results of the validation survey for White noses.

Noses
Selected cluster No % Cum %
Expected 93 46.5% 46.5%
1st closest 36 18.0% 64.5%
2nd closest 21 10.5% 75.0%
3rd closest 12 6.0% 81.0%
4th closest 8 4.0% 85.0%
5th closest 14 7.0% 92.0%
6th closest 3 1.5% 93.5%
7th closest 5 2.5% 96.0%
8th closest 6 3.0% 99.0%
9th closest 1 0.5% 99.5%
10th closest 0 0.0% 99.5%
11th closest 1 0.5% 100.0%

Table 2.21: Results of the validation survey for White mouths.

Mouths
Selected cluster No % Cum %
Expected 82 41.0% 41.0%
1st closest 24 12.0% 53.0%
2nd closest 23 11.5% 64.5%
3rd closest 22 11.0% 75.5%
4th closest 17 8.5% 84.0%
5th closest 14 7.0% 91.0%
6th closest 6 3.0% 94.0%
7th closest 6 3.0% 97.0%
8th closest 6 3.0% 100.0%

2.8 Conclusions

Classification systems to categorize human body parts, or taxonomies obtained
from them, provide a standardized way to describe or configure the human
body, and a lot of work has been done to categorize many different body parts.
Describing facial features using a common terminology is essential in disciplines
like ergonomics, forensics, surgery or criminology. Moreover, the growth of new
technologies that use virtual interlocutors or avatars has led to an increasing
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interest in synthesizing faces and facial expressions that symbolize the user’s
presence in new human-machine interaction systems and online activities.

However, there are very few classification systems or taxonomies for features,
probably due to the complexity of this task, and to the human limited capacity
for processing individual features compared to processing whole faces. Classi-
fying the appearance of facial features requires a holistic approach considering
all visible information. Then, encoding the geometry and doing a metric or
morphological assessment is not enough to obtain facial features taxonomies
based on the appearance. Therefore, we employed appearance-based represen-
tations of the features (eigenfaces) in order to classify them. The developed
procedure groups the features considering all available information and encom-
passing their global nature.

This procedure was used to classify the features of 290 images of males with
neutral expression from the Chicago Face Database, obtaining taxonomies of
eyebrows, eyes, noses, mouths and jawlines for several ethnic groups. To val-
idate the procedure, the agreement of human evaluators with the proposed
taxonomies was measured. Out of 200 cases for each feature, 41.0% of mouths,
31.0% of eyes and 46.5% of noses, were classified by humans in the same cluster
as the automatic procedure. More than 73.0% of the features were classified
in the expected cluster or in the three clusters closest to it (75.5% of mouths,
73.0% of eyes and 81.0% of noses).

To the best of our knowledge, there are not similar studies to compare these
results. In (Stefanie Ritz-Timme et al., 2011), the applicability and feasibility
of the DMV atlas (Aßmann, 2007) was tested measuring the inter-observer
and intra-observer errors when classifying several morphological features of
male faces (e.g. head shape, nose bridge length, chin shape...). As an ex-
ample, in this test the shape of the chin (jawline) was classified into three
classes. Despite the low number of classes, the inter-observer error was ap-
proximately 39%, while the intra-observer error was 30% for no-experienced
observers. These results reflect the subjectivity when judging facial features
and the wide variability; every observer showed a specific recognition pattern
for the individual facial features. Moreover, this study also concluded that the
morphologic assessment of faces is affected by cultural variables. Although
more tests must be done, on the light of these results it can be concluded that
the proposed automatic procedure is a good approach to classify facial fea-
tures. Furthermore, the use of the proposed method is not restricted to facial
features, and it should be possible to extend its use to automatically group
any other kind of images by appearance.
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Nevertheless, this study has some limitations. The experiment carried out
employed 290 images of males with neutral expression from the Chicago Face
Database. Therefore, the taxonomies obtained are only representative of the
features of the faces belonging to this database. The representativeness of these
taxonomies with respect to other populations must be carefully analyzed before
using them. The objective of this work was not to achieve the taxonomies but
to develop the automatic procedure to classify facial features based on their
appearance. A more comprehensive face database can be used to obtain more
representative taxonomies. On the other hand, future work must be done
to extend this procedure to other facial features such as hair, and to obtain
features taxonomies from faces of females. Moreover, the asymmetry of the
face could be taken into account by introducing more horizontal distances to
characterize the face.

To sum up, although judging the similarity of facial features is a subjective
process with wide inter-observer and intra-observer variability, the results of
the validation survey developed in this work show that the proposed procedure
can be considered appropriate for the automatic classification of facial features
based on their appearance. This procedure deals with the difficulties associated
to classify features using judgments from human observers, and facilitates the
development of facial features taxonomies. Table 2.22 shows an example of
facial feature clustering for each ethnicity using the method implemented in
this thesis.

The facial feature clustering method explained in this chapter will be used in
this thesis to generate new faces which elicit certain impressions. The methods
followed to achieve it are explained in next chapter.
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Table 2.22: Example of the clustering of the facial features for each ethnicity.

Asian Black

AEB7 AE6 AN10 AM6 AJ13 BEB7 BE14 BN2 BM4 BJ10
ADEB10 ADE10 ADN9 ADM8 ADEE8 BDEB4 BDE5 BDN6 BDM4 BDEE5

Latino White

LEB6 LE10 LN3 LM4 LJ12 WEB10 WE12 WN12 WM8 WJ1
LDEB1 LDE2 LDN3 LDM5 LDEE3 WDEB4 WDE4 WDN2 WDM2 WDEE5
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Chapter 3

Generation of facial social
impressions

This chapter explains the procedure followed to develop and
implement the model of social trait impressions. First, an intro-
duction on the importance of social trait impressions and previous
works is given to the reader. Then, the theoretical framework is
explained. Next, the procedure followed is thoroughly reviewed. Fi-
nally, results and their validation are shown, and conclusions are
drawn in the light of these results.
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Chapter 3. Generation of facial social impressions

3.1 Introduction

People are constantly making attributions from faces, such as whether a person
is trustworthy or threatening. It is with good reason that the face is the primary
source of visual information for identifying people and reading their emotional
and mental states (Todorov, Dotsch, et al., 2011). In fact, these attributions
are formed very fast in our brains: an exposure of as little as 34 milliseconds is
enough to form an impression, and they do not change with exposures longer
than 200 milliseconds. Furthermore, attributions made from faces are very
important, as they are very likely to influence our behavior towards people,
such as whom we help, whom we hire, or whom we ask for a date (Rule and
Ambady, 2010; Zebrowitz and Montepare, 2008).

As Kahneman (2003) suggested, impressions from faces are natural assessments
that have more to do with perception than with thinking. The face has been
considered as a window to a person’s true nature ever since ancient cultures.
However, it was in the nineteenth century when this assumption reached his
heyday. Lavater (1800), a Swiss pastor, spread the ideas of physiognomy, the
“art” of reading personality in faces. Lombroso (2006), the founding father
of criminal anthropology, wrote about how it could be possible to identify
criminals by external, physical characteristics. Galton (1883) developed the
first morphing techniques in his work to identify specific human types ranging
from the ideal English man to the criminal. Their ideas were discarded in the
twentieth century, however, they were onto something.

A large body of research shows that facial appearances influence significant
social outcomes in very diverse domains, such as politics, law, business, and
the military. Many of the performed studies find that particular facial charac-
teristics can help to experience desirable outcomes (e.g., winning an election)
or avoid undesirable outcomes (e.g., being convicted of a crime) (Olivola et al.,
2014). So, what differences in facial structure and appearance lead to these
social inferences? For example, what information is used by people to decide
if a face looks trustworthy or untrustworthy?

A big problem when trying to model the possible relationships among facial
characteristics and social traits is that the space of possible variables driving
the perceptions of these traits is infinitely large, so it results almost impossible
to solve this problem with conventional approaches. Then, the standard ap-
proach is to systematically manipulate a facial feature and ask people to assess
the modified face in the range of social traits of interest. However, this ap-
proach does not necessarily show that this facial feature is the most important
feature for the assessed social trait. First, changes of other social features could
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produce similar effects. Second, the same feature could be perceived differently
in company of other features. Furthermore, it is not even clear how to define
facial features. Thus, following the idea that faces are perceived holistically as
integrated gestalts rather than as a collection of independent features, two set
of techniques can be differentiated: psychological reverse correlation methods
(PRCM) and reverse correlation methods in the context of face space models
(FSRCM) (Todorov, Dotsch, et al., 2011). PRCM are based on judgments of
images that are visually degraded or altered with randomly generated noise.
FSRCM, on the other hand, are based on judgments of randomly generated
faces from a multidimensional face space model.

3.1.1 Psychological Reverse Correlation Methods

In traditional paradigms, responses depend on meaningful manipulation of
stimulus attributes, and thus, relationships are quantified by correlating fixed
stimulus attributes with responses. In “reverse” correlation paradigms, on the
other hand, variations in stimulus attributes are random, and the correlation
between stimuli and responses is used to model those variations in stimulus
attributes that caused the acquired response pattern.

There are two popular PRCM techniques, both of them consisting in super-
imposing noise on visual images. In the first approach, the base image is
unambiguous (e.g., a prototypical sad face), while in the second technique,
the image is ambiguous (e.g., a morph of two facial expressions). These two
approaches also differ in their objectives: while the former, also known as in-
formational diagnosticity PRCM, aims at revealing the diagnostic information
used by the perceiver for the specific judgment, for example, sadness; the ob-
jective of the latter, also called internal representation PRCM, is to infer the
perceiver’s internal representation of the perceptual category (e.g., expression
of sadness).

The informational diagnosticity PRCM technique relies on the selection of a
predefined signal (e.g., comparing happy an sad faces). In contrast, the internal
representation PRCM technique is used when signal attributes are unknown
or when researchers want to examine participants’ subjective internal repre-
sentation of a category, without making any assumption about what typical
category members look like.

Some works in internal representation PRCM include those of Mangini and
Biederman (2004), who demonstrated that the method works well for gen-
der, identity classification and emotional expression; Dotsch, Wigboldus, et al.

87



Chapter 3. Generation of facial social impressions

(2008) who employed this method to reveal potential biases in the represen-
tation of a stigmatized ethnic out-group; or Dotsch and Todorov (2012), who
applied the method to judgments of trustworthiness, dominance and threat.

3.1.2 Reverse Correlation Methods in the Context of Face Space
models

While the previous approach made use of noise to achieve its objective, FSRCM
is focused on varying properties of the faces directly. It can be divided into two
tasks: creating a statistical model of face representation and using this model
to derive the changes in facial features that lead to corresponding changes in
social judgments. Similarly to PRCM, FSRCM does not explicitly manipulate
facial features.

This approach makes use of a face space, where faces are represented as points
in a multidimensional space and each dimension is a property of the face.
These multidimensional models provide a powerful representational framework
that can account for variations in face identity and facial expressions Calder
and A. W. Young (2005). Moreover, these models can generate an unlimited
number of faces, where each face is a point defined by its coordinates on all
face dimensions.

Oosterhof and Todorov (2008) followed this approach to generate models of
perceived face trustworthiness, dominance and threat. In a posterior work,
they also built models of several other social dimensions, such as attractive-
ness (Said and Todorov, 2011; Todorov, Dotsch, et al., 2011). On the other
hand, Walker and Vetter (2009) built models of six different social dimen-
sions: aggressiveness, extroversion, likeability, risk-seeking, social skills, and
trustworthiness. In addition, they applied these models to real faces showing
how subtle manipulations in their photographs can lead to the expected social
attributions.

3.1.3 Limitations

These previously described methods are powerful tools for identifying diagnos-
tic visual information for social traits perception in faces and for identifying
internal representations of particular social traits. However, these methods
have some inherent limitations.

First, Mangini and Biederman (2004) showed that the outcomes of reverse
correlation paradigms do not really correlate to actual mental representations,
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but to a quantification of the strategy used when performing a task (which
to a large extent correlates with mental representations). This is particularly
worrying when using a PRCM approach, where participants are asked to judge
a very large number of artificially degraded stimuli, as the motivation of the
participant to perform the task will most likely decay with time. FSRCM
approaches improve this aspect, as they use non-degraded images of faces that
approximate natural social perception as stimuli, which makes the evaluation
task more natural and easier for the participant.

Second, not every topic allows for reverse correlation application. Due to
the number of necessary trials (relative to the number of stimulus attribute
variations) reverse correlation data are commonly analyzed in a linear fashion
and interactions between features are mostly disregarded.

Moreover, both approaches need a large number of trials to model interactions,
which again has the risk of loosing the participant’s motivation and therefore
the quality of the procedure would decrease.

Finally, reverse correlation methods have been limited to two categories (e.g.
happy versus sad) or one dimension (e.g., trustworthy, dominant, etc.) per
task. Outcomes may change considerably when a participant simultaneously
considers multiple categories or dimensions.

3.1.4 Our method

Systems able to model face perception are very important, as denoted previ-
ously. While there already exist some methods trying to model the perception
of social traits from faces, these methods are far from being complete. Thus,
this thesis proposes a new method able to work with realistic faces in fifteen
categories or trait dimensions at a time.

The rest of the chapter is organized as follows: section 3.2 shows the theoretical
background of the implemented methods. Section 3.3 details the procedure
followed to assess the groups of features obtained in the previous chapter, the
development of a face evaluation function and its optimization, and the face
generation algorithm. Section 3.4 details the results and the faces obtained
following the methods explained above. Validation of the proposed procedure
is provided in section 3.5. Finally, section 3.6 provides conclusions.
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3.2 Theoretical background

3.2.1 Genetic Algorithms

Genetic Algorithms (GAs) are search algorithms based on the mechanics of
natural selection and natural genetics (Goldberg, 1989). They belong to the
field of Evolutionary Computation, which comprises Genetic Algorithms, Evo-
lutionary Strategies and Evolutive Programming. Developed by Holland (1975)
and his colleagues at the University of Michigan, GAs are adaptive methods,
usually employed in search and optimization problems, based on sexual repro-
duction and the survival of the fittest. More formally, according to Goldberg
(1989), genetic algorithms “combine survival of the fittest among string struc-
tures with a structured yet randomized information exchange to form a search
algorithm with some of the innovative flair of human search”. They are often
understood as function optimizers, even though they can be applied to a high
variety of different problems (Whitley, 1994).

According to the current literature search methods can be divided into three
branches: calculus-based techniques, enumerative techniques and guided ran-
dom search techniques (Goldberg, 1989). The main line of research on search
techniques has been robustness, that is, the balance between efficacy and ef-
ficiency needed for survival in many different environments. GAs have been
theoretically and empirically proven to provide robust search in complex spaces
while being relatively simple and not limited by restrictive assumptions about
the search space (continuity, existence of derivatives, unimodality, etc). Fur-
thermore, they have shown several advantages when compared with the other
conventional search methods such as calculus-based or enumerative methods.
For instance, calculus-based methods are local in scope, which means that they
have no possibility at escaping to local minima, and depend upon the existence
of derivatives, which is a severe shortcoming and makes them suitable to a very
limited problem domains. On the other hand, enumerative methods rely on
computing the objective function at every point in the search space, one at a
time, which makes them very inefficient. In contrast, genetic algorithms (which
are encompassed into guided random search techniques, Figure 3.1) use ran-
dom choice as a tool to guide a highly exploitative search through a coding
of a search space, overcoming the shortcomings before mentioned. These are
the main differences between genetic algorithms and conventional optimization
and search procedures:

GAs work with a coding of the parameter set, not the parameters them-
selves,
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GAs search from a population of points, not a single point,

GAs use payoff (objective function) information, not derivatives or any
other auxiliary knowledge,

GAs use probabilistic transition rules, not deterministic rules.

Search Techniques

Calculus Base 
Techniques

Guided Random 
Search Techniques

Enumerative 
Techniques

Fibonacci Sort DFS Dynamic 
Programming BFS

Tabu Search Hill Climbing Simulated 
Annealing

Evolutionary 
Algorithms

Genetic 
Programming

Genetic 
Algorithms

Figure 3.1: Search methods classification.

Components, structure and terminology

Since genetic algorithms are designed to mimic a biological process, many of
the terms employed are borrowed from biology (in a much simplified way).
The basic components of almost any genetic algorithm are:

a fitness function for optimization,

a population of chromosomes,

the genetic operators: a selection, crossover and mutation mechanisms
to produce the population of the next generation.

The fitness function tests and quantifies how “fit” each potential solution is,
therefore it is the function that the algorithm is trying to optimize. The popu-
lation is the subset of all the possible encoded solutions to the given problem.
The chromosome refers to the values that represent a candidate solution or
individual. Each chromosome is composed of several positions or genes, which
can take a defined range of values or alleles (Figure 3.2).
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Figure 3.2: Basic terminology of genetic algorithms: population, chromosomes, genes and
alleles.

If a problem has N dimensions, then each chromosome is typically encoded as
an N -element array [p1, p2, . . . , pN ] where each pi is a particular value or allele
of the ith parameter. Here, two solution spaces are distinguished: the compu-
tation space or genotype and the real world space or phenotype. In the former
one, the population is encoded in a way it can be easily understood and ma-
nipulated using a computer, while in the latter one, solutions are represented
in the same way they are represented in the real world. The way to transform
elements in one space into the another is by employing the encoding and decod-
ing functions (Figure 3.3). It is up to the creator to decide how to implement
the encoding and the decoding functions. One possible implementation of the
encoding function is to convert each parameter value into a bit string (sequence
of 0’s and 1’s) and then concatenate them end-to-end like genes in DNA strand
to create the chromosomes, but it is also possible to include permutations, real
numbers and many other objects inside the chromosomes.

Figure 3.3: Basic terminology of genetic algorithms: genotype, phenotype end encoding
and decoding functions.
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The initialization of a genetic algorithm consists of a randomly created set of
chromosomes which serves as the initial population (first generation). Then,
this initial population is evaluated with the fitness function to test how “good”
each solution is to the problem at hand. Now, the selection operator chooses
some of the chromosomes for reproduction based on a user defined probability
distribution. The fitter a chromosome is, the more likely it is to be selected. For
instance, let’s define f as a non-negative fitness function. Then, the probability
that chromosome C36 is chosen to reproduce from a population Npop might be

P (C36) =

∣∣∣∣∣ f(C36)∑Npop

i=1 f(Ci)

∣∣∣∣∣ . (3.1)

Selection operation is performed with replacement, so it is possible that the
same chromosome is chosen more than once. There exist a wide variety of
methods to perform chromosome selection, such as fitness proportionate selec-
tion, tournament selection, rank selection, random selection or elitism. The
most basic one is the fitness proportionate selection (FPS), in which every
individual can become a parent with a probability proportional to its fitness.
There are several approaches within the FPS methods, such as the Roulette
Wheel Selection (RWS) and the Stochastic Universal Sampling (SUS). The
RWS is the most basic one, in which as many chromosomes are chosen ac-
cording to where a randomly generated number is located within the fitness
distribution. However, this method punishes in excess chromosomes with low
fitness value. In contrast, SUS is a development of fitness proportionate selec-
tion (FPS) which exhibits no bias and minimal spread. Where RWS chooses
several solutions from the population by repeated random sampling, SUS uses
a single random value to sample all of the solutions by choosing them at evenly
spaced intervals (Figure 3.4). An important limitation of FPS methods is that
they cannot deal with negative fitness values.

The crossover operator is analogous to reproduction and biological crossover.
In it, two parents are selected and one or more off-spring are produced using
the genetic material of the parents. It is usually applied with a high proba-
bility Pcrossover. Some of the most used crossover methods are the one-point
crossover, multi-point crossover, uniform crossover, whole arithmetic recombi-
nation or Davis’ order crossover (OX1). The most basic crossover operator is
the one-point crossover, in which a random crossover point is selected and the
tails of its two parents are swapped to get new off-springs (Figure 3.5).
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Chrom. Fitness 
Value

A 8.2

B 3.2

C 1.4

D 1.2

E 4.2

F 0.3

Figure 3.4: Stochastic Universal Sampling (SUS) implementation of fitness proportionate
selection.

Figure 3.5: One-point crossover.

The mutation operator can be defined as a small random tweak in the chromo-
some to get a new solution. It is used to maintain and introduce diversity in
the genetic population and is usually applied with a low probability (Pmutation).
In fact, if the probability is very high, the GA behaves like a random search.
In turn, if the probability is very low, the algorithm can get stuck in a local
optimum instead of finding the global optimum (R. L. Haupt and S. E. Haupt,
2004). Some commonly used mutation operators are the bat flip mutation,
random resetting, uniform mutation, swap mutation, scramble mutation and
inversion mutation. The most simple mutation operator is the bat flip muta-
tion, used for binary encoded GAs, that consists in selecting one or more bits
and flip them (Figure 3.6).

Figure 3.6: Bat flip mutation.

However, in this work, due to the nature of the representation employed
(floating-point representation), the uniform mutation method was used (an
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extension of the bit flip for the float representation). In this method, a prob-
ability of mutation is randomly computed for each allele, and those which are
higher than the mutation probability (Pmutation), are muted. Alleles which are
to be muted take their new values from a uniform distribution that goes from
the lower to the upper established boundaries.

Typically, selection, crossover and mutation processes continue until the num-
ber of offspring is the same as the initial population, so that the first gener-
ation can be completely replaced by the new offspring. This replacement is
performed according to the Survivor Selection Policy, which determines which
individuals are to be kicked out and which are to be kept in the next gen-
eration based on the fitness value. Some GAs employ elitism, ensuring that
the current fittest member of the population is always propagated to the next
generation. The easiest policy is to kick random members out of the popula-
tion, but such an approach frequently has convergence issues, therefore, two
strategies are widely used: age-based selection and fitness-based selection. In
age-based selection each individual is allowed in the population for a finite
number of generations after which it is kicked out. An example is shown in
Figure 3.7 (a), where chromosome P4 and P7 are the ones to be replaced due
to their age. On the other hand, in fitness-based selection, the children tend to
replace the least fit individuals in the population. The selection of these least
fit individuals can be done using a variation of any of the selection methods
mentioned before (tournament selection, fitness proportionate selection, rank
selection, etc.). Figure 3.7 (b) shows an example in which P1 and P10 are
the least fit individuals and are the ones to be replaced. In addition, the best
chromosome (the one with the highest fitness value) is stored along with its
fitness value (Sbest).

The whole process of iterations is called a run, and it is usually repeated until
the algorithm converges, that is, until the fitness of the “best-so-far ” chromo-
some stabilizes and does not change for a number of generations. However,
there are other stop criteria, such as an absolute number of generations or a
certain pre-defined fitness value to be reached. An advantage of GAs is that
there is a “best-so-far ” solution available since iteration 1.

The “performance” of a genetic algorithm depends highly on the encoding used
and the fitness function, as well as the crossover and mutation probabilities.
Then, it is of sum importance to find a proper encoding and a good fitness func-
tion. The crossover and mutation probabilities are usually chosen empirically
after performing a few trial runs.

The pseudo-code of a genetic algorithm can be observed in algorithm 3.1.
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(a)

(b)

Figure 3.7: Survivor Selection Policies. In (a), age-based selection policy. In (b), fitness-
based selection policy.

3.2.2 Image seamless cloning

Seamless cloning consists in copying an image region from a foreground image
onto a background image without visual seams. These visual seams are usually
produced by differences in the color and texture of the two images. Naive
cloning, that is, cropping the desired region from the foreground image and
pasting it onto the background image produces an artificial result due to these
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Algorithm 3.1: Genetic algorithm pseudo-code.
Input: Populationsize, P roblemsize, PCrossover, Pmutation
Output: Sbest
Population → InitializePopulation (Populationsize, Problemsize) ;
EvaluatePopulation (Population) ;
Sbest → GetBestSolution (Population) ;
while ¬StopCondition do

Parents ← SelectParents (Population, Populationsize) ;
Children ← ∅ ;
foreach Parent1, Parent2 ∈ Parents do

Child1, Child2 ← Crossover (Parent1, Parent2, Pcrossover) ;
Children ← Mutate (Child1, Pmutation) ;
Children ← Mutate (Child2, Pmutation) ;

end
EvaluatePopulation (Children) ;
Sbest ← GetBestSolution (Children) ;
Population ← Replace (Population, Children) ;

end

return Sbest;

seams. On the contrary, seamless cloning is able to remove these seams. Figure
Figure 3.8 shows the difference between these two cloning methods.

Poisson method

One of the most famous seamless cloning method is that solving the Poisson
equation, which works by interpolating an image aided with a guidance vector
field (Pérez et al., 2003). As a color image has three channels, the interpolation
problem needs to be solved for each color component separately. Working
with each component independently allows for considering only scalar image
functions. Let S, a closed subset of R2, be the image definition domain, and
Ω a closed subset of S with boundary ∂Ω. Let f∗ be a known scalar function
defined over S minus the interior of Ω and f an unknown scalar function
defined over the interior of Ω. Finally, let v be a vector field defined over Ω
(Figure 3.9).
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(a) (b)

Figure 3.8: Differences between naive cloning (a) and seamless cloning (b). Image extracted
from Pérez et al. (2003).

Figure 3.9: Guided interpolation notations. Unknown function f interpolates in domain
Ω the destination function f∗ under guidance of vector field v, which might be or not the
gradient field of a source function g. Image extracted from Pérez et al. (2003).

The simplest function f which interpolates f∗ over Ω is the membrane inter-
polant defined as the solution of the minimization problem:

min
f

∫∫
Ω

|∇f |2 with f |∂Ω = f∗|∂Ω , (3.2)
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where ∇ =
[
∂
∂x
, ∂
∂y

]
is the gradient operator. The minimizer must satisfy the

Euler-Lagrange equation

∆f = 0 over Ω with f |∂Ω = f∗|∂Ω , (3.3)

where ∆ = ∂2

∂x2 + ∂2

∂y2
is the Laplacian operator. Equation 3.3 is a Laplace

equation with Dirichlet boundary conditions. This simple method produces an
unsatisfactory, blurred interpolant when used for image editing. To overcome
this limitation, further constraints are introduced to the problem in the form
of a guidance vector. A guidance vector is a vector field v used in an extended
version of the minimization problem (3.2) above:

min
f

∫∫
Ω

|∇f − v|2 with f |∂Ω = f∗|∂Ω , (3.4)

whose solution is the unique solution of the following Poisson equation with
Dirichlet boundary conditions:

∆f = div(v) over Ω with f |∂Ω = f∗|∂Ω , (3.5)

where div(v) = ∂u
∂x

+ ∂v
∂y

is the divergence of v = (u, v). Equation 3.5 allows to
fill in the region of interest following the color and intensity variations corre-
sponding to the scene to be inserted while keeps the solution coherent with the
intensities of the background image. When dealing with color images, three
Poisson equations (3.5) are solved independently in the three color channels of
the utilized color space.

The basic choice for the guidance field v to compute it from the source image.
However, there are situations where is desirable to combine both the source
and destination images. In this situations a mixing gradient is used. This will
be explained in-detail in the following section.

When the guidance field v is conservative, that is, it is the gradient of some
function g, it is helpful to understand the Poisson interpolation by defining a
correction function f̃ on Ω such that f = g + f̃ . Then, the Poisson equation
(3.5) becomes the following Laplace equation with boundary conditions:

∆f̃ = 0 over Ω with f̃ |∂Ω = f̃∗|∂Ω . (3.6)
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Therefore, inside Ω, the additive correction f̃ is a membrane interpolant of the
mismatch (f∗− g) between the source and the destination along the boundary
∂Ω.

Discrete Poisson solver

The variational problem (3.4) and the associated Poisson equation with Dirich-
let boundary conditions (3.5) for discrete images can be discretized and solved
by using the underlying discrete pixel grid. Let’s then define S and Ω as finite
point sets taken from an infinite discrete grid. S can include all the image
pixels or only a subset of them. For each pixel p ∈ S, let Np be the set of its
4-connected neighbors which are in S, and let 〈p, q〉 denote a pixel pair such
that q ∈ Np. Then, the boundary of Ω is ∂Ω = {p ∈ S \ Ω : Np ∩ Ω 6= ∅}. The
task is then to compute the set of intensities f |Ω = {fp, p ∈ Ω}, being fp the
intensity value of f at p.

When dealing with Dirichlet boundary conditions defined on an arbitrary shape
boundary, it is better to discretize the variational problem (3.4) directly rather
than the Poisson equation (3.5). The finite difference discretization of (3.4)
yields the following discrete, quadratic optimization problem:

min
f |Ω

∑
〈p,q〉∩Ω6=∅

(fp − fq − vpq)2 , with fp = f∗p for all p ∈ ∂Ω , (3.7)

where vpq is the projection of v
(
p+q

2

)
on the oriented edge [p, q], that is, vpq =(

p+q
2

)
· −→pq. The solution of (3.7) satisfies the following simultaneous linear

equations:

for all p ∈ Ω, |Np|fp −
∑

q∈Np∩Ω

fq =
∑

q∈Np∩∂Ω

f∗q +
∑
q∈Np

vpq . (3.8)

When Ω contains pixels on the border of S (edges of the pixel grid), they have
a truncated neighborhood (|Np| < 4). On the contrary, pixels in the interior
of Ω (Np ∈ Ω) have no boundary terms in the right hand side of (3.8):

|Np|fp −
∑
q∈Np

fq =
∑
q∈Np

vpq . (3.9)
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Equation 3.8 is a classical, sparse, symmetric, positive-definite system. Due to
the arbitrarity of the shape boundary ∂Ω iterative solvers such as Gauss-Seidel
iteration with successive over-relaxation or V-cycle must be used to solve it.

Guidance fields

As was briefly mentioned in the previous section, there exist two options as to
choose the guidance field. The first and most basic one consists in choosing the
guidance field v as a gradient taken directly from the source image (imported
gradient), while the second and more powerful approach combines the gradients
of both the source and destination image (mixed gradient), which is useful to
add objects with holes or partially transparent, for example.

Imported gradients

As was previously mentioned, the basic choice for the guidance field v is a
gradient field computed directly from a source image. Let g be the source
image. The guidance field is defined as:

v = ∇g . (3.10)

Equation 3.5 then reads

∆f = ∆g over Ω with f |∂Ω = f∗|∂Ω . (3.11)

Regarding the numerical implementation, the continuous specification (3.10)
translates into

for all 〈p, q〉 , vpq = gp − gq , (3.12)

which must be plugged into Equation 3.8.

Mixed gradients

Imported gradients described in the previous section have a limitation: no trace
of the image f∗ is kept inside Ω, that is, there is no possibility of combining
properties of f∗ with those of g. This could be useful to add objects with
holes or partially transparent on top of a textured or cluttered background
(Figure 3.10).
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Figure 3.10: Inserting transparent objects. Seamless cloning with mixed gradients as
guidance field facilitates the transfer of partially transparent objects. Image extracted from
Pérez et al. (2003).

Mixed gradients overcome this limitation by effectively combining both the
source and destination image gradients. One possibility would be to define the
guidance field v as a linear combination of the source and destination gradient
fields. However, this approach has the effect of washing out the textures, which
is not desired (Figure 3.11 (c)).

Another better possibility is to retain the stronger of the variations in f∗ or g
at each point x ∈ Ω using the following guidance field:

v(x) =

{
∇f∗(x) if |∇f∗(x)| > |∇g(x)|,
∇g(x) otherwise. (3.13)

This is possible because the Poisson methodology allows for the use of non-
conservative guidance fields. As for the numerical implementation of this guid-
ance field:

for all 〈p, q〉 , vpq =

{
f∗p − fq∗ if |f∗p − f∗q | > |gp − gq|,
gp − gq otherwise. (3.14)

Mixed gradient seamless cloning is also very useful when adding one object
from a source image very close to another object in the destination image
(Figure 3.12).
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Figure 3.11: Inserting objects with holes. (a) The classic method, color-based selection
and alpha masking. (b) Seamless cloning with imported gradient. (c) Seamless cloning
with mixed gradient as a linear combination of source and destination gradients. (d) Seam-
less cloning with mixed gradient based on gradient selection for each point x ∈ Ω. Image
extracted from Pérez et al. (2003).

Figure 3.12: Inserting one object close to another. Seamless cloning with mixed gradients
as guidance field inhibits the bleeding produced with imported gradient when an object
in the destination image touches the selected region Ω. Image extracted from Pérez et al.
(2003).
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3.3 Generation of facial social impressions

Faces are the most exposed part of the body when interacting with other
people. Therefore, the human being is able to process a face and extract
information regarding the social traits that person has very quickly (Bar et al.,
2006). As has been already mentioned in several occasions, the main objective
of this thesis is to develop a system able to create faces with a certain subset of
these social traits in order to have influence on the opinion the observer forms
when seeing a face. The method developed to achieve this objective is split
into three stages:

Assessment of the created facial feature clusters in the available social
traits.

Optimization of the function employed to compute the score of a face
given a certain set of facial features.

Implementation of the face generation system.

The creation of a database of facial features grouped by similarity was ex-
plained in chapter 2. However, these feature clusterings need to have an as-
sociated score for each available social trait. This is performed by employ-
ing the data available in CFD, consisting of assessments for 15 social traits1.
Then, with the feature clusters obtained by the process described in the pre-
vious chapter and the scores available for each face and social trait within
the database, it is possible to give each cluster a score for each of these social
traits. This process was already mentioned when explaining the necessity of the
clustering, in section 2.5. However, it is explained in depth in subsection 3.3.1.

Another stage of the system is the optimization of the function used to evaluate
a face. This function is needed in order to compute the impression scores of
a given set of facial features. Basically, this function was implemented as a
weighted sum of each facial feature score. In order to find the best possible
combination of weights for this function, a GA was employed. This process is
depicted in subsection 3.3.2.

Finally, the last stage involves the creation of a face with the most suitable
combination of features for the desired social trait profile. Section 3.3.3 ex-
plains this process in detail.

1CFD database consists of photographs of faces in several emotional states (neutral, happy, afraid,
etc). For this thesis purpose, only faces which were not expressing any emotion were selected (i.e.
neutral faces). Therefore, it is possible to assume that scores given to these neutral faces correspond
to their social traits, as they are not expressing any emotion.
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3.3.1 Social trait assessment of the facial feature clusters

In order to build a new face from the existing facial features clustered in the
previous chapter, a score for each trait impression needs to be associated to
these clusters. These scores are called clustering mean scores. The process
followed to compute them is explained thoroughly in the following lines. For the
sake of simplicity, let’s consider only 3 trait impressions and 5 facial features,
as Figure 3.13 shows. These are the data available to give each cluster a score:
on one side, the CFD scores for each face and impression; on the other side,
the clustering obtained in chapter 2.

Figure 3.13: Data available to create the cluster mean scores. The cluster nomenclature
is as follows: W stands for White ethnicity, EB for eyebrow, E for eye, N for nose, M for
mouth and J for jawline.

In order to assign scores to each cluster, the mean of all the faces to which
the instances of the clustering belong is computed. This is done for every
impression. Then, following this example, the cluster mean score of Afraid for
cluster 6 of White eyebrows would be computed as:

WEB6Afraid =
1.99 + 1.97

2
= 1.98 . (3.15)

This is easy to understand looking at Figure 3.13, where it is shown that image
CFD-WM-003 and CFD-WM-006 belong to the cluster WEB6. Therefore,
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looking the values for these two faces corresponding to Angry, it is possible to
build Equation 3.15.

Following the same procedure, the cluster mean score of Angry for WN2 would
be:

WN2Angry =
3.57 + 1.84 + 2.44

3
= 2.62 . (3.16)

Similarly, the cluster mean score of Attractive for cluster 4 of White mouths
would be defined as:

WM4Attractive =
2.51 + 3.68

2
= 3.10 . (3.17)

These examples illustrate the method followed to compute the cluster mean
score of each facial feature, impression and ethnicity. Figure 3.14 shows an ex-
ample for the computation of the cluster mean scores for White ethnicity. Rows
represent each cluster and columns the score for each impression computed as
indicated above.

3.3.2 Optimization of the face evaluation function

By having the cluster mean score of each social trait and cluster, it is possible
to compute the social trait profile of a face. To obtain the score of a face for
a given social trait, the cluster mean scores of this trait corresponding to the
selected facial features are pre-multiplied by the set of weights corresponding
to the selected trait (one per facial feature) and added up. These weights
are optimized by means of a Genetic Algorithm as will be shown later in this
section. Performing this operation for the fifteen traits available gives the
predicted face social trait profile. Equation 3.18 shows the calculation of the
global face score (GFS) for a social trait, where t denotes the social trait for
which the score is being calculated.
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Figure 3.14: Cluster mean scores of each impression and feature for White ethnicity.

GFSt =
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∗



weighttEB
weighttE
weighttN
weighttM
weighttJ

weighttDEB
weighttDE
weighttDN
weighttDM
weighttDEE



>

(3.18)

However, as the values employed in order to compute this calculation are the
means of the facial features belonging to each cluster, the variance is diminished
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in excess. Therefore, this prediction function cannot reproduce extreme values
present in the CFD database, as the means have flattened them. In order
to solve this situation, the predicted values are transformed so they have the
same mean and standard deviation as the original CFD scores. As each social
trait has a different mean and standard deviation, this process is performed
separately for each of them. Equation 3.19 illustrates this operation.

GFSexpanded =
GFS − µGFS

σGFS
· σCFD + µCFD (3.19)

GFS stands for the global face score for a given impression. µGFS and σGFS
are defined as the mean and the standard deviation of the global face score
obtained with the evaluation function. Finally, µGFS and σGFS are the mean
and the standard deviation of the CFD scores. By performing this operation,
original global scores are closer to the scale employed in CFD scores, so they
can be compared properly. The metric used to compare the predicted GFS
and the CFD scores was the mean squared error.

The capability of the developed model lies on achieving a good fitting of the
evaluating function to the data available on the CFD. Using a weight per
feature and impression allows to grant a different level of importance to each
facial feature on the formation of each impression. Therefore, each model is
more specific and captures in a better way the relationships among features to
obtain the global face score of a given impression. Then, it is very important
to find a good combination of weights that allows to obtain a global face score
in harmony with what most people would think of that face.

The intuitively way to compute these weights would be to use an optimization
method or a grid search. However, due to the high number of variables and
the size of the search space, a Genetic Algorithm was chosen instead in order
to find a solution in the most efficient manner.

Weight optimization

The process of weight optimization allowed to find relationships among facial
features and social traits. The GA employed to perform this optimization
was configured to perform single-point crossover and uniform mutation with a
probability of Pcrossover = 0.6 and Pmutation = 0.4 respectively on a population
of 50 individuals. The permitted range for the weights was set to the interval
[0, 1]. The number of iterations was established at 200 000, however, it was
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never reached due to the early stopping condition implemented. This condi-
tion allowed for a maximum of 100 consecutive iterations without a change
higher than 0.0001 in the fitness function solution. If iteration number 101
was reached without a change higher than the before mentioned tolerance, the
best individual of the last iteration was chosen as the solution. The selection
method employed was Stochastic Universal Sampling, and the Survivor Se-
lection Policy was fitness-based with elitism, that is, the best individual was
always selected for the next iteration. Finally, the fitness function was defined
as the mean squared error between the predictions made with a given combi-
nation of weights and the actual face scores of the used faces. For example,
if there were 50 individuals (solutions) in iteration 1 with 50 different combi-
nation of weights, the fitness function would compute the mean squared error
between the predictions obtained with each combination of weights and the
actual scores of the White faces. This process would result in 50 fitness values,
where lower is better. Table 3.1 shows an example of this process.

Table 3.1: Example of the fitness computation for an iteration of the Genetic Algorithm
for weights optimization. The best solution present in this iteration is marked in blue. FV
refers to Fitness Value.

Eyebrow Eye Nose Mouth Jawline DEB DE DN DM DEE FV
0.0776 0.2023 0.0839 0.1171 0.1255 0.0358 0.0365 0.1520 0.0505 0.1188 0.2371
0.1189 0.0409 0.0813 0.1115 0.0672 0.1137 0.0862 0.1071 0.1307 0.1426 0.5436
0.1617 0.2092 0.0210 0.2580 0.0033 0.0860 0.0727 0.1245 0.0421 0.0216 0.1874

...
...

...
...

...
...

...
...

...
...

...
0.1261 0.1729 0.0124 0.0298 0.0773 0.1212 0.1500 0.0192 0.1894 0.1015 0.3694

Following the example showed in Table 3.1, the best combination of weights
would be the one marked in blue, with FV = 0.1874. With this configuration,
the optimization was performed individually for each ethnicity and impression,
resulting in a total of 60 weight configurations, one for each trait impression
and ethnicity (15 trait impressions × 4 ethnicities = 60 weight configurations).

3.3.3 Implementation of the face generation system

In order to create a face which expresses a certain profile of impressions, it
would be necessary to compare the desired social trait profile with that of
the faces created with every possible combination of features. Again, this is
practically impossible due to the amount of time needed. Therefore, a GA
was employed to find the best combination of features needed to create a face
expressing the desired profile of social traits. Figure 3.15 shows the flowchart
of the implemented face generation system.
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Figure 3.15: Face generator flowchart.

The process of creation of a new face involves two steps: face definition and face
generation. Face definition refers to the process of finding the best combination
of facial features for a certain social trait profile. Facial surgery is the process
of adding the features into a base face to obtain the desired new face.

The following sections explain the process of creation of the base faces, the face
definition procedure and the face generation process.

Base face generation

Base faces is the way to introduce the jawline in the model. In order to avoid
automatically morphing the base face according to the jawline chosen by the
GA each time a new face had to be generated, it was done manually beforehand.

Then, to create the base faces, a face was generated with FaceGen (Inversions,
2008). This face was chosen as the mean male face of each ethnicity. Figure 3.16
shows the mean male face for White ethnicity. Due to time limitations, and to
follow the line of the thesis, base faces were generated only for White ethnicity.

In order to know where the facial features were located within the base face,
the same procedure as for CFD images was applied. This procedure consisted
in detecting the facial landmarks and creating the corresponding thickened
masks. After this procedure, a mask for each facial feature was available, as
shows Figure 3.17. These masks were necessary to indicate the image editing
algorithm which regions were to be used in each step.

The base face was then morphed to match each jawline representative using
Adobe Photoshop.

Table 3.2 shows the 11 base faces created corresponding to the 11 jawline
representatives of the jawline clustering for Whites.
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Figure 3.16: Base face for White ethnicity.

Figure 3.17: Base face masks for face generation.

Face definition

In order to create a face which expresses a certain profile of social traits, the
first step was to find the combination of facial features which better expressed
the desired social traits. This was performed by means of a GA which searched
the best combination of facial features representing the sought social traits.

Although the simplest way to find this combination of facial features would be
to compute every possible facial feature combination and compare the gener-
ated profile with the sought one, this is a difficult and time-consuming task
with an enormous search space, and therefore unpractical. For example, to
create a White face, it is necessary to choose between 10 eyebrows, 19 eyes, 12
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Baseface 1 Baseface 2 Baseface 3 Baseface 4

Baseface 5 Baseface 6 Baseface 7 Baseface 8

Baseface 9 Basefacel 10 Baseface 11

Table 3.2: Base faces for White ethnicity.

noses, 9 mouths, 11 jawlines, and 161 051 combinations of distances2, which
gives a total of 36 352 431 720 possible combinations, that is, more than 35
billions. This means that with a computer able to check 1 000 combinations
per second, it would take 421 days to check every possible combination, or in
other words, more than a year.

Therefore, the face definition function requires the use of a meta-heuristic
search algorithm to reduce the time needed to find a solution. For this reason,

211 intervals of 5 different distances give 115 = 161 051 possible combinations.
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a Genetic Algorithm was employed in order to find the combination of facial
features that better fitted the sought social trait profile. The GA employed
to perform this optimization was configured to perform single-point crossover
and uniform mutation with a probability of Pcrossover = 0.8 and Pmutation =
0.65 respectively on a population of 100 individuals. The codification of the
chromosome was performed by assigning a gene to each facial feature. Then,
the alleles of each chromosome were created independently for each gene as
the number of clusters available for each facial feature. Table 3.3 shows the
described codification.

Table 3.3: Codification used in the GA for face definition. DEB, DE, DN, DM and DEE
stand for the distances from the lowermost point of the jawline to the eyebrow, to the eye,
to the nose and to the mouth and the distance between eyes, respectively.

Eyebrow Eye Nose Mouth Jawline DEB DE DN DM DEE

The uniform mutation was implemented in two steps. First, a coin was flipped
to decide if the chromosome had to be muted or not. If so, one gene was
randomly selected and its value randomly chosen from the alleles. The number
of iterations was established at 1 000. The selection method employed was
Stochastic Universal Sampling, and the Survivor Selection Policy was fitness-
based with elitism. Finally, the fitness function was defined as the sum of the
absolute values of the differences between each impression prediction and its
desired value. Table 3.4 shows an example of this process.

Table 3.4: Example of the fitness computation for an iteration of the Genetic Algorithm
for face definition. Only 10 individuals are shown for clarity reasons. The list of impressions
is: Afraid, Angry, Attractive, Babyface, Disgusted, Dominant, Feminine, Happy, Masculine,
Prototipical, Sad, Surprised, Threatening, Trustworthy and Unusual. FV refers to the fitness
function value, and the star denotes the desired social trait profile. The best solution present
in this iteration is marked in blue.

# Afr. Ang. Att. Bab. Dis. Dom. Fem. Hap. Mas. Pro. Sad Sur. Thr. Tru. Unu. FV
1 2.55 2.25 2.65 3.59 2.18 1.86 2.10 1.97 3.58 3.86 3.49 1.70 1.83 3.22 2.32 26.47
2 2.04 3.57 2.51 1.79 3.03 3.86 1.70 2.01 4.88 1.87 2.78 1.79 3.53 2.98 3.31 27.27
3 1.99 2.45 3.68 2.88 2.18 3.36 1.92 2.54 4.89 4.19 2.67 1.89 2.57 3.58 2.64 20.55
4 1.80 1.84 4.66 2.47 1.74 3.15 1.80 2.63 4.85 4.29 2.43 1.47 1.76 3.56 1.93 16.74
5 1.97 2.44 3.51 3.05 2.02 3.48 2.58 2.75 4.48 3.86 2.44 1.76 2.48 3.43 2.93 21.64
6 2.12 2.78 4.08 2.91 2.38 3.35 2.03 2.26 4.73 3.49 2.39 1.86 2.46 3.51 2.23 21.02
7 2.53 3.61 2.28 2.38 2.98 2.80 1.89 1.49 3.79 3.68 3.86 1.78 3.50 2.46 2.75 30.22
8 2.05 2.75 3.17 2.51 2.56 2.38 2.11 1.92 4.25 3.57 3.28 1.69 2.44 3.06 2.35 25.01
9 2.48 2.84 2.84 2.50 2.40 2.48 1.67 1.92 4.55 3.96 3.16 1.79 2.51 3.36 1.89 23.55
10 2.49 2.72 2.76 2.03 2.51 2.64 1.80 2.12 4.33 3.58 3.48 1.87 2.55 3.21 1.97 24.04
* 1 1 5 2 1 6 1 7 5 4 1 2 1 5 1

This procedure ends when the GA finds the best combination of facial features
which convey a sought profile of social traits. Let’s consider that iteration
shown in Table 3.4 is the last one. Then, the solution obtained for the desired
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social trait profile is the one with FV = 16.74. Then, chromosome number 4
is used to build the face. Table 3.5 shows chromosome number 4. These values
are the input to the face generation stage.

Table 3.5: Example of a face definition. DEB, DE, DN, DM and DEE stand for the
distances from the lowermost point of the jawline to the eyebrow, to the eye, to the nose
and to the mouth and the distance between eyes, respectively.

Eyebrow Eye Nose Mouth Jawline DEB DE DN DM DEE
1 3 4 1 8 9 1 5 1 4

Facial surgery

In order to achieve a realistic face it is important to use a seamless fusion
method, which further adapts the illumination and tone of the different patches
being sewed. The algorithm used in this work to achieve this task is the one
described by Pérez et al. (2003), that is, the Poisson Image Editing method. As
explained in subsection 3.2.2, this algorithm makes use of the Poisson Equation
and information of the gradient of the images in order to achieve a seamless
fusion.

The first step is to look for the base face corresponding to the jawline indicated
by the definition given by the GA. With the base face selected, the next stage
requires the donor features, that is, the features to be pasted onto the patient
(base) face in order to configure the new face.

On the other hand, the distances given by the GA are also taken into account
and internal features are pasted into the patient face in the positions indicated
by these distances. Following with the example face definitions showed above,
Figure 3.18 shows the process of the facial surgery, in which facial features are
pasted one at a time starting with the left eyebrow, and finalizing with the
mouth. The first row of the figure shows the donor ’s face, which appears twice
in the case of eyebrows and eyes due to the symmetry assumed. The second
row shows the masks indicating the region of the donor face to be extracted
and pasted into the patient face. Finally, the third row shows the patient face
after each feature insertion.
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Donor faces

Donor masks

Patient face after surgeries.

Figure 3.18: Facial surgery progress.

3.4 Results

3.4.1 The social trait model

The implemented evaluation function, by means of the optimized weights, is
able to predict a set of social trait scores for any combination of facial features.
In this section, the fitting achieved for the existent CFD faces is shown as a
measure of what social traits does the model predict better. Table 3.6 shows
these results for White ethnicity without and with dispersion. As was explained
in subsection 3.3.2, the global face scores (GFS) obtained with the evaluating
function need to be transformed (i.e. add dispersion removed when doing the
cluster mean scores) in order to better reproduce the variation present in CFD
scores. Correlations are the same in both cases due to the linearity of the
operations performed to add the lost dispersion to the GFS. Three metrics
are shown, the correlation (with its corresponding p-value), the coefficient of
determination (r2), and the mean squared error (MSE).

115



Chapter 3. Generation of facial social impressions

Table 3.6: Results of the implemented social traits model for each social impression.

Correlation p-value r2
MSE

Without dispersion With dispersion
Afraid 0.7018 3.28e-15 0.4925 0.1088 0.1013
Angry 0.7274 1.01e-16 0.5292 0.2745 0.1872
Attractive 0.7661 2.35e-19 0.5869 0.2540 0.1923
Babyface 0.8124 2.86e-23 0.6600 0.3486 0.1661
Disgusted 0.7008 3.71e-15 0.4912 0.1303 0.0841
Dominant 0.7429 1.01e-17 0.5519 0.3461 0.2480
Feminine 0.8086 6.56e-23 0.6538 0.1014 0.0528
Happy 0.7551 1.47e-18 0.5702 0.1966 0.1222
Masculine 0.7927 1.76e-21 0.6283 0.2023 0.1051
Prototypical 0.8208 4.26e-24 0.6737 0.4139 0.7067
Sad 0.7273 1.02e-16 0.5290 0.2486 0.2183
Surprised 0.7755 4.43e-20 0.6015 0.0403 0.0220
Threatening 0.7559 1.30e-18 0.5713 0.2684 0.1730
Trustworthy 0.7492 3.83e-18 0.5612 0.0901 0.0633
Unusual 0.7536 1.87e-18 0.5680 0.2260 0.1896
Mean 0.7593 4.82e-16 0.5779 0.2167 0.1755

3.4.2 How facial features affect social impressions

In the following lines, the results for each ethnicity are presented. In order
to understand the results, the term facial feature group needs to be defined.
A facial feature group is a group of the internal facial feature with its corre-
sponding distance(s). For example, eyebrow group includes the eyebrow and
the distance from the jawline to the eyebrow (deb). Similarly, eye group accu-
mulates the importance of the eye, the distance from the jawline to the eyes
(de) and the distance between eyes (dee). The rest of the groups are formed in
the same manner.

Two kind of graphs are shown in the results: a pie chart and a stacked bars
chart. The former shows the mean of each facial feature weight and the mean
of each facial feature group on each impression. The latter shows the same
data broken down into each impression.

Asian

In general, eyes and nose are the most important facial features in Asian eth-
nicity regarding impression formation. In fact, just eyes and nose account
for 45.39% of the importance (Figure 3.19 (a)), and these numbers increase
to 67.65% if their groups are considered (Figure 3.19 (b)). It is important to
note the importance of the distance between eyes, with 12.40%. Jaw (12.18%),
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Figure 3.19: Overall importance of each facial feature (a) and facial feature group (b) in
impression formation for Asian ethnicity.

eyebrows (11.12%) and mouth (9.06%) complete the distribution of weights of
facial feature groups for facial impression formation for Asian ethnicity.
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Figure 3.20: Importance of each facial feature in the formation of each impression for Asian
ethnicity.

This is the mean trend, however, each impression is different. For example,
considering eyes alone, they are very important for Afraid, Masculine and Pro-
totypical, whilst they are less for Angry, Threatening or Unusual (Figure 3.20).
However, if the eye group is considered, it is very important for Angry and
Threatening (Figure 3.21). This is due to the importance of the eye distances
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Figure 3.21: Importance of each facial feature group in the formation of each impression
for Asian ethnicity.

(de and dee) for these impressions. Therefore, it is evident that not only the
facial features themselves are important, but also their positions are.

On the other hand, noses keep a similar importance among all impressions,
whilst mouths show very few importance in general. Only in Angry, Babyface
and Happy mouths have a notable contribution. Nevertheless, if distances
are included, nose importance increases significantly for Surprised and mouths
achieve a considerable amount of importance in most impressions. Jaw and
hair do not have any associated distance, thus, they do not vary between
features alone and feature groups. Jaw reaches its highest importance for
Afraid, Dominant, Feminine and Surprised.

Finally, it is also important to note how eyebrows alone are not very important
in facial trait impression formation, but the eyebrows distance to the jawline
(deb) is.

Black

As for Asian, for Black ethnicity eyes and nose are the most important facial
features as well regarding impression formation. In fact, just eyes and nose
account for 45.20% of the importance (Figure 3.22 (a)), and these numbers
increase to 67.62% if their groups are considered (Figure 3.22 (b)). It is im-
portant to note the importance of the distance between eyes, with 12.41%.
Jaw (12.29%), eyebrows (11.22%), and mouth (8.88%) complete the distribu-
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Figure 3.22: Overall importance of each facial feature (a) and facial feature group (b) in
impression formation for Black ethnicity.

tion of weights of facial feature groups for facial impression formation for Black
ethnicity.
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Figure 3.23: Importance of each facial feature in the formation of each impression for Black
ethnicity.

Again, this is the mean trend, but there exist differences among impressions.
For example, for this ethnicity, eyes alone are very important for Afraid,
Dominant, Masculine and Prototypical; and less for Angry and Unusual (Fig-
ure 3.23). However, if distances are included, eyes account for more than 50%
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Figure 3.24: Importance of each facial feature group in the formation of each impression
for Black ethnicity.

of the importance for Disgusted, Dominant, Threatening and Unusual (Fig-
ure 3.24).

In this case, for Black ethnicity, and considering distances, eyebrows account
for one fifth of the total importance for Attractive and Prototypical, and less
than 5% for Dominant and Trustworthy; noses play an important role in Sur-
prised, Trustworthy and Masculine, with more than 25% of importance; whilst
jaw and mouth do not achieve more than 20% of importance for any impression.

Finally, as for Asian ethnicity, it is also important to note how eyebrows dis-
tance to the jawline (deb) has an important weight in most impression forma-
tion.

Latino

Similarly to Asian and Black, eyes and nose are the most important facial
features as well regarding impression formation for Latino ethnicity. In fact,
just eyes and nose account for 45.31% of the importance (Figure 3.25 (a)), and
these numbers increase to 67.46% if their groups are considered (Figure 3.25
(b)). It is important to note the importance of the distance between eyes, with
12.36%. Jaw (12.24%), eyebrows (11.46%), and mouth (8.83%) complete the
distribution of weights of facial feature groups for facial impression formation
for Latino ethnicity.
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Figure 3.25: Overall importance of each facial feature (a) and facial feature group (b) in
impression formation for Latino ethnicity.
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Figure 3.26: Importance of each facial feature in the formation of each impression for
Latino ethnicity.

For Latino ethnicity, eyes achieve their maximum importance in the definition
of Afraid, Dominant, Masculine and Prototypical; and the minimum for Angry
and Unusual (Figure 3.26). However, when distances are also considered, the
eye group achieves its maximum importance for Disgusted, Dominant, Threat-
ening and Trustworthy (Figure 3.27). This implies that eye distances are very
important for Disgusted, Threatening and Trustworthy.
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Figure 3.27: Importance of each facial feature group in the formation of each impression
for Latino ethnicity.

Noses, on the other hand, have a more regular influence in the definition of the
different impressions, without very large changes among them. Furthermore,
the nose distance is very important for Surprised. Mouths alone do not obtain
more than 10% of importance in any of the studied impressions, but they
do if their distance is also considered for Afraid, Angry, Babyface, Disgusted
and Happy. This is due to the importance of the mouth distance (dm) for
these impressions. Jaw reaches its highest importance for Afraid, Dominant,
Feminine and Surprised.

Finally, eyebrow group obtains a high importance for the definition of Attrac-
tive, Prototypical and Unusual; whilst eyebrows alone do so for Afraid and
Prototypical.

White

Finally, White ethnicity behaves similarly to all the previous ones. Eyes and
nose are the most important facial features as well regarding impression for-
mation, with just eyes and nose accounting for 45.40% of the importance (Fig-
ure 3.28 (a)), and 67.65% if their groups are considered (Figure 3.28 (b)). It is
important to note the importance of the distance between eyes, with 12.34%.
Jaw (12.14%), eyebrows (11.21%), and mouth (9.00%) complete the distri-
bution of weights of facial feature groups for facial impression formation for
White ethnicity.
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Figure 3.28: Overall importance of each facial feature (a) and facial feature group (b) in
impression formation for White ethnicity.
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Figure 3.29: Importance of each facial feature in the formation of each impression for
White ethnicity.

As for the other ethnicities, White obtains differences among impressions as
well. For example, eyes alone are very important for the definition of Afraid,
Dominant, Masculine and Prototypical; but very few for Angry (Figure 3.29).
Nevertheless, when distances are considered as well, the maximum impor-
tance is obtained for Disgusted, Dominant, Threatening and Trustworthy (Fig-
ure 3.30). This implies a high importance of the eye distances for Disgusted,
Threatening and Trustworthy.
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Figure 3.30: Importance of each facial feature group in the formation of each impression
for White ethnicity.

On the other hand, nose importance is higher for Masculine, Sad and Surprised,
and lower for Babyface and Unusual. Mouth is very few important for every
impression, obtaining its maximum for Babyface, with less than 10%. Jaw
reaches its highest importance for Afraid, Dominant, Feminine and Surprised.

Finally, it is also important to note how distances are very important, obtaining
near 50% of importance for several impressions.

3.4.3 Generation of faces that convey certain social impressions

Ten different faces were created and are shown along their respective social trait
profiles in Table 3.7. These results were obtained only for White ethnicity due
to time limitations, as the procedure required for the creation of the base faces
was time consuming and for validation reasons that will be explained later in
this chapter.
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Table 3.7: Generated faces for white ethnicity.
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3.5 Validation of the face generator

The described methodology proposes an automatic method to generate faces
able to convey certain social traits to the observer. This task has the inherent
difficulty of the existent subjectivity and the inter-observer and intra-observer
variability produced when assessing social traits (Sutherland, A. W. Young,
et al., 2017; Todorov and J. M. Porter, 2014).

Some works employ emotional classifiers in order to evaluate how good their
predictions are (Said, Sebe, et al., 2009). By doing this, they remove this inter-
observer and intra-observer variability. However, this kind of validation lacks
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Figure 3.31: Platform used to validate the face generation system.

strength, as the goal is to match what people feel when they see the generated
faces, and this approach looks for emotions in the face instead of impressions.
Moreover, to the best of our knowledge, there is no classifier trained to work
with all the impressions employed in this work. Another possible method for
validating this work would be to show people two faces and ask them to decide
which one is more extreme with respect to each trait (Walker and Vetter, 2009).
However, this kind of validation would allow us to assert that our system is
able to tell if a face is better or worst at eliciting a certain impression, and
thus, to sort the generated faces, but it would not permit us to obtain a profile
of scores for a set of social traits for a given face. Therefore, we decided to ask
people to assess our created faces using the same scale as the CFD database
(1-7 Likert) in order to compare the profile obtained with our system and the
profile extracted from people assessments. To do so, a web page was created
in which the 10 generated faces where shown once for each impression, and the
user had to assess them. To avoid the effect of learning the faces, impression
and face order was randomized for each user. Figure 3.31 shows the interface
of the implemented tool.
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35 people participated in the validation, 16 men and 19 women. The ages of
the participants were comprised between 71 and 18 years old, with a mean of
37.

The validation is presented in two ways. First, the ability of the system to
elicit the social traits available is shown. Then, the accuracy of the system at
creating faces with certain profiles of social traits is described.

3.5.1 Social trait validation

Table 3.8 shows correlation (with its corresponding p-value), the coefficient
of determination (r2), and the MSE of our system working on the CFD faces
versus the new faces generated by our system. This means that we compared
the scores given by our system with those given by people during the valida-
tion for the new created faces. It must be noted that while the “CFD faces”
related metrics are computed with 93 faces, the “Generated faces” metrics are
computed with only 10 faces (the generated ones). In addition, last row of
the table shows the mean taking only correlations statistically significant with
p < 0.05.

Table 3.8: Comparison of the metrics obtained by the developed model for existent CFD
faces and for the generated with the implemented system. In blue, correlations statistically
significant (p < 0.05).

CFD faces Generated faces
Corr. p-value r2 MSE Corr. p-value r2 MSE

Afraid 0.7018 3.29e-15 0.4925 0.1013 0.6922 0.0266 0.4791 0.2894
Angry 0.7274 1.01e-16 0.5292 0.1872 0.5005 0.1407 0.2505 0.5222
Attractive 0.7661 2.35e-19 0.5869 0.1923 0.5131 0.1294 0.2632 0.4603
Babyface 0.8124 2.87e-23 0.6600 0.1661 0.7226 0.0182 0.5222 0.4023
Disgusted 0.7008 3.72e-15 0.4912 0.0841 0.2980 0.4030 0.0888 0.3737
Dominant 0.7429 1.02e-17 0.5519 0.2480 0.7391 0.0146 0.5462 0.5489
Feminine 0.8086 6.57e-23 0.6538 0.0528 0.7556 0.0115 0.5710 0.1476
Happy 0.7551 1.47e-18 0.5702 0.1222 0.3586 0.3088 0.1286 0.6217
Masculine 0.7927 1.76e-21 0.6283 0.1051 0.8320 0.0028 0.6923 0.1440
Prototypical 0.8208 4.27e-24 0.6737 0.7067 0.1689 0.6410 0.0285 0.7503
Sad 0.7273 1.03e-16 0.5290 0.2183 0.6878 0.0279 0.4731 0.1986
Surprised 0.7755 4.44e-20 0.6015 0.0220 0.5767 0.0810 0.3325 0.6020
Threatening 0.7559 1.30e-18 0.5713 0.1730 0.5983 0.0676 0.3580 0.5347
Trustworthy 0.7492 3.83e-18 0.5612 0.0633 0.3142 0.3766 0.0987 0.6062
Unusual 0.7536 1.87e-18 0.5680 0.1896 0.7579 0.0111 0.5743 0.1377
Mean 0.7593 4.82e-16 0.5779 0.1755 0.5677 0.1507 0.3605 0.4226
Mean (p < .05) 0.7593 4.82e-16 0.5779 0.1755 0.7410 0.0161 0.5512 0.2669
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As is shown in Table 3.8, our system obtains high statistically significant
(p < 0.05) correlations with low error (MSE < 0.3, except for Babyface and
Dominant) for 7 of the social traits studied, namely Afraid, Babyface, Domi-
nant, Feminine, Masculine, Sad and Unusual. Furthermore, according to the
coefficient of determination, our model is able to explain at least 47.31% of the
mentioned impressions, reaching a 69.23% for Masculine. The last row of the
table shows the mean of these impression metrics. Moreover, we also obtained
good correlation for Surprised and Threatening, with p < 0.1, although the
error in this case is higher (MSE > 0.5) and r2 is lower (r < 0.4). On the
other hand, impressions as Angry and Attractive obtain a correlation near 50%
with p < 0.2 and acceptable errors. Finally, our model does not work well with
Disgusted, Happy, Prototypical and Trustworthy.

Table 3.9 shows how well the developed model is able to shape each impression.

Table 3.9: Validation results of the implemented social traits generation model. In blue,
score of our model for each of the faces generated. In orange, the mean of the people
assessments with one standard deviation (±σ) in gray.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Afraid

Implemented system People assessments

131



Chapter 3. Generation of facial social impressions

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Angry

Implemented system People assessments

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Attractive

Implemented system People assessments

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Babyface

Implemented system People assessments

132



3.5 Validation of the face generator

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Disgusted

Implemented system People assessments

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Dominant

Implemented system People assessments

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Feminine

Implemented system People assessments

133



Chapter 3. Generation of facial social impressions

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Happy

Implemented system People assessments

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Masculine

Implemented system People assessments

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Prototypical

Implemented system People assessments

134



3.5 Validation of the face generator

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Sad

Implemented system People assessments

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Surprised

Implemented system People assessments

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Threatening

Implemented system People assessments

135



Chapter 3. Generation of facial social impressions

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Trustworthy

Implemented system People assessments

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Unusual

Implemented system People assessments

3.5.2 Face validation

In this section, the accuracy at creating faces with a desired social trait profile
is shown. Table 3.10 shows the correlation, the MSE, and the coefficient of
determination (r2) of the profiles obtained by our system versus the people’s
opinion for each generated face. In addition, last row of the table shows the
mean taking only correlations statistically significant with p < 0.05.

As is shown in Table 3.10, our model is able to create faces with a desired
profile of trait impressions with a correlation r > 0.65 with p < 0.05 for 8
out of the 10 generated faces. Furthermore, for two of the generated faces,
the correlation obtained is higher than 0.9, explaining more than 85% of the
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Table 3.10: Metrics of the validation of the implemented system for faces.

Correlation p-value r2 MSE
1 0.9778 1.03e-06 0.9561 0.0378
2 0.7535 0.0118 0.5678 0.4620
3 0.3373 0.3405 0.1137 0.6799
4 0.7975 0.0057 0.6360 0.2950
5 0.7104 0.0213 0.5047 0.3609
6 0.4971 0.1437 0.2471 0.5637
7 0.6670 0.0351 0.4449 0.3598
8 0.9229 0.0001 0.8517 0.1356
9 0.8206 0.0036 0.6735 0.7261
10 0.6597 0.0379 0.4352 0.6054
Mean 0.7144 0.0600 0.5431 0.4226
Mean (p < .05) 0.7887 0.0145 0.6337 0.3728

variation present in the social trait profile, with a MSE lower than 0.15. If
only correlations statistically significant with p < 0.05 are taken, the mean
correlation achieved is 0.7887, with a MSE of 0.3728 and a p-value of 0.0145.

Table 3.11 shows the generated faces along with their social trait profiles. The
best results are obtained by faces 1 and 8, with 4 and 9 being very good as
well; whilst faces 3 and 6 obtained the worst results.

Table 3.11: Validation results of the generated faces. In blue, the social trait profile
obtained by our model. In orange, the mean of the people assessments. Finally, it is shown
one standard deviation of people assessments (±σ).
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3.6 Conclusions

In this chapter, a new approach to model social traits in faces has been pre-
sented. This method employs the previously clustered facial features (see chap-
ter 2) to form new faces with a desired social trait profile. The novelty in this
work lies in the use of real facial feature traits to form new realistic faces able
to elicit up to 15 different impressions.

Even though there already exist different works on this topic, it is difficult to
find one which allows to create realistic faces, and even more if it is desired to
convey more than one social trait at a time. In fact, the closest work to the
described objective is the one of Walker and Vetter (2009), which is capable of
crating realistic faces expressing one social trait at a time. Therefore, to the
best of our knowledge, this thesis is the first work which allows to create a face
with a specific social trait profile.

Moreover, results obtained give important insights on how important facial
features are in the formation of each impression. This is a very interesting
result, as it reveals where do we need to focus if we seek to convey a certain
set of impressions.

On the other hand, very few works have achieved to generate realistic faces,
even if only one impression was to be elicited. In contrast, our model obtains
good results for 7 of the 15 social traits employed, namely Afraid, Babyface,
Dominant, Feminine, Masculine, Sad and Unusual; with correlations higher
than 0.65 and MSEs lower than 0.7.

It is also important to note that our model achieves very similar results with the
existent CFD faces and with the generated ones. This means that the model is
able to capture and reproduce these impressions. However, cases as Disgusted,
Happy and Trustworthy suffer a great diminution, showing how the model is
not able to properly mimic these impressions. In the case of Prototypical, its
correlation falls from 0.8208 to 0.1689. After carefully reviewing the results and
talking with people who did the validation, the most plausible reason for this
is that there was a misunderstanding regarding what “Prototypical” meant.

Moreover, the results presented until now talk about how well our model is
able to mimic certain impressions. However, the main objective of this thesis
is to generate faces that elicit a certain set of impressions on most observers.
Therefore, how the model performs on each impression separately is not as
important as how it performs on generating a face with a desired set of im-
pressions. In this case, our model is able to generate faces with a desired set
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of impressions with correlations higher than 0.65 (p < 0.05) for 8 of the 10
generated faces and MSEs lower than 0.61 for 7 of the 10 generated faces.

Nevertheless, this model has some important limitations, as the absence of
hair modeling, the assumption of face symmetry or the absence of a female
model. In addition, interactions between features are disregarded, which could
vastly improve the performance of the model. However, we did not dispose
of enough photographs as to consider these inter-relationships. Thus, the low
quantity of faces available has been a limiting factor as well. In future works,
more images should be gathered and labeled, and the face model should include
hair, asymmetry and features inter-relationships. Furthermore, a female model
should also be created.

To sum up, considering the great subjectivity and variability present in social
trait impressions, we consider that the developed model is a step forward in the
understanding of how these impressions are produced and how to reproduce
them.
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Conclusions

As was indicated in chapter 1, the main objective of this thesis was to develop
a system with the capability of creating avatar faces able to convey a desired
set of impressions to most observers.

In order to achieve this main objective, the first step was to develop an au-
tomatic method to group facial features by similarity. Facial features are not
independent one from another, that is, an eye may give a completely different
impression depending on which mouth is chosen, for example. Therefore, the
best way to model these relationships among features would be to find 2nd,
3rd, . . . , (nfeatures-1)th order relationships. The problem is the amount of data
needed in order to accomplish this task. We only had 290 images to work
with, what was not enough even to find significant 2nd order relationships.
To overcome this limitation to the extent possible, we decided to perform a
clustering with the facial features and thus account for the variance present
within the cluster. Thus, taking as example the eyes, a score computed for a
cluster including 10 eyes extracted from 10 different faces would also account
for the influence of the different eyebrows, noses, mouths, etc., present in these
faces. While this is not the best approach, it turned out to be enough to obtain
reasonable results. Gathering more images in order to be able to model 2nd

and higher order relationships remains as future work.
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The clustering method developed in chapter 2 of this thesis follows a holistic
approach which allows to objectively and automatically group the available
facial features by appearance. This automatic clustering method further al-
lows to codify faces in a standardized manner, which helps to define faces in
a consistent way. Furthermore, we obtained an objective, appearance-based
facial feature taxonomy which can be used in any domain of interest.

Chapter 3 shows how the extracted facial features grouped by similarity are
employed to build a model which allows to assess a given face and give it a
social trait profile. To perform this step, a set of weights was optimized which,
in turn, allows to explain how much each facial feature affects the formation
of each impression. This optimization is needed and cannot be avoided, as
literature shows that not all facial features have the same importance when
inferring social attributes (Santos and A. W. Young, 2011).

Using this model, we can generate new definitions of faces with a certain social
trait profile. On the one hand, when dealing with social traits, this approach
allowed us to obtain a model which achieves correlations higher than 0.68 and
MSEs lower than 0.55 for 7 of the 15 social traits employed (Afraid, Babyface,
Dominant, Feminine, Masculine, Sad and Unusual). On the other hand, our
model is able to generate faces expressing a desired set of impressions with
correlations higher than 0.65 for 8 of the 10 generated faces and MSEs lower
than 0.61 for 7 of the 10 generated faces. We consider this a significant break-
through and an important contribution to the state-of-the-art, as we have been
unable to find any other previous work able to model so many trait dimensions
on realistic face images.

Furthermore, we implemented the image fusion method developed by Pérez
et al. (2003), which combined with our model, allowed us to combine different
facial features and form a realistic face seamlessly. We are then capable of
creating a realistic face from just a face definition as input which, in addition,
conveys a sought social trait profile to most observers.

Nevertheless, the work has some limitations. The first and most important one
is that we focused on male faces, leaving female gender unattended. We made
this decision as it was easier to extract the facial features from male subjects
rather than from female ones due to their hair, and because of time limitations.

It is also important to note that no 2nd and higher order relationships among
facial features have been accounted for in this model. This is a very impor-
tant limitation to bear in mind and it will be mitigated in following versions.
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However, as gathering a sufficient quantity of face images and rating them is
a very time-consuming task, it is not possible to include it in this thesis.

Another important limitation is the absence of hair and asymmetry in the
model. Human faces are not completely symmetric, and small displacements
of facial features could play an important role in the final perception of the face.
Then, a model which could account for these displacements and asymmetries
would most likely perform better. Finally, a better and more robust model
could have been obtained if more evaluated face images had been available.

Therefore, in future works, a model should be developed for female gender.
More images should be gathered and evaluated by humans so higher order
relationships among features could also be modeled and included within the
model. Finally, hair, asymmetry and feature displacements would also need to
be included in the model in order to better characterize the human face.
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(a)

(b) (c)

(d) (e)

Figure A.1: Asian eyebrows clustering metrics. (a) shows the data employed in order to
chose k. (b) and (c) represent the inter-cluster distances and the distances of every instance
within a cluster to its centroid and all other cluster centroids. (d) shows the representation
of the clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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(b) (c)

(d) (e)

Figure A.2: Asian eyes clustering metrics. (a) shows the data employed in order to chose
k. (b) and (c) represent the inter-cluster distances and the distances of every instance within
a cluster to its centroid and all other cluster centroids. (d) shows the representation of the
clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Figure A.3: Asian noses clustering metrics. (a) shows the data employed in order to chose
k. (b) and (c) represent the inter-cluster distances and the distances of every instance within
a cluster to its centroid and all other cluster centroids. (d) shows the representation of the
clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Figure A.4: Asian mouths clustering metrics. (a) shows the data employed in order to
chose k. (b) and (c) represent the inter-cluster distances and the distances of every instance
within a cluster to its centroid and all other cluster centroids. (d) shows the representation
of the clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Figure A.5: Asian jawlines clustering metrics. (a) shows the data employed in order to
chose k. (b) and (c) represent the inter-cluster distances and the distances of every instance
within a cluster to its centroid and all other cluster centroids. (d) shows the representation
of the clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Figure A.6: Black eyebrows clustering metrics. (a) shows the data employed in order to
chose k. (b) and (c) represent the inter-cluster distances and the distances of every instance
within a cluster to its centroid and all other cluster centroids. (d) shows the representation
of the clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Figure A.7: Black eyes clustering metrics. (a) shows the data employed in order to chose
k. (b) and (c) represent the inter-cluster distances and the distances of every instance within
a cluster to its centroid and all other cluster centroids. (d) shows the representation of the
clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Figure A.8: Black noses clustering metrics. (a) shows the data employed in order to chose
k. (b) and (c) represent the inter-cluster distances and the distances of every instance within
a cluster to its centroid and all other cluster centroids. (d) shows the representation of the
clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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(a)

(b) (c)
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Figure A.9: Black mouths clustering metrics. (a) shows the data employed in order to
chose k. (b) and (c) represent the inter-cluster distances and the distances of every instance
within a cluster to its centroid and all other cluster centroids. (d) shows the representation
of the clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Figure A.10: Black jawlines clustering metrics. (a) shows the data employed in order to
chose k. (b) and (c) represent the inter-cluster distances and the distances of every instance
within a cluster to its centroid and all other cluster centroids. (d) shows the representation
of the clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Figure A.11: Latino eyebrows clustering metrics. (a) shows the data employed in order to
chose k. (b) and (c) represent the inter-cluster distances and the distances of every instance
within a cluster to its centroid and all other cluster centroids. (d) shows the representation
of the clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Figure A.12: Latino eyes clustering metrics. (a) shows the data employed in order to chose
k. (b) and (c) represent the inter-cluster distances and the distances of every instance within
a cluster to its centroid and all other cluster centroids. (d) shows the representation of the
clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Figure A.13: Latino noses clustering metrics. (a) shows the data employed in order to
chose k. (b) and (c) represent the inter-cluster distances and the distances of every instance
within a cluster to its centroid and all other cluster centroids. (d) shows the representation
of the clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Figure A.14: Latino mouths clustering metrics. (a) shows the data employed in order to
chose k. (b) and (c) represent the inter-cluster distances and the distances of every instance
within a cluster to its centroid and all other cluster centroids. (d) shows the representation
of the clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Figure A.15: Latino jawlines clustering metrics. (a) shows the data employed in order to
chose k. (b) and (c) represent the inter-cluster distances and the distances of every instance
within a cluster to its centroid and all other cluster centroids. (d) shows the representation
of the clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Figure A.16: White eyebrows clustering metrics. (a) shows the data employed in order to
chose k. (b) and (c) represent the inter-cluster distances and the distances of every instance
within a cluster to its centroid and all other cluster centroids. (d) shows the representation
of the clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Figure A.17: White eyes clustering metrics. (a) shows the data employed in order to chose
k. (b) and (c) represent the inter-cluster distances and the distances of every instance within
a cluster to its centroid and all other cluster centroids. (d) shows the representation of the
clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Figure A.18: White noses clustering metrics. (a) shows the data employed in order to
chose k. (b) and (c) represent the inter-cluster distances and the distances of every instance
within a cluster to its centroid and all other cluster centroids. (d) shows the representation
of the clustering in a two-dimensional space. (e) presents the silhouette of the clustering.

169



Appendix A. Clustering results
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Figure A.19: White mouths clustering metrics. (a) shows the data employed in order to
chose k. (b) and (c) represent the inter-cluster distances and the distances of every instance
within a cluster to its centroid and all other cluster centroids. (d) shows the representation
of the clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Figure A.20: White jawlines clustering metrics. (a) shows the data employed in order to
chose k. (b) and (c) represent the inter-cluster distances and the distances of every instance
within a cluster to its centroid and all other cluster centroids. (d) shows the representation
of the clustering in a two-dimensional space. (e) presents the silhouette of the clustering.
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Taxonomies

B.1 Asian taxonomy

Figure B.1: Asian eyebrows clustering example 1.
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Figure B.2: Asian eyebrows clustering example 2.

Figure B.3: Asian eyebrows clustering example 3.
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B.1 Asian taxonomy

Figure B.4: Asian eyes clustering example 1.

Figure B.5: Asian eyes clustering example 2.
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Figure B.6: Asian eyes clustering example 3.

Figure B.7: Asian noses clustering example 1.
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B.1 Asian taxonomy

Figure B.8: Asian noses clustering example 2.

Figure B.9: Asian noses clustering example 3.

Figure B.10: Asian mouths clustering example 1.
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Figure B.11: Asian mouths clustering example 2.

Figure B.12: Asian mouths clustering example 3.
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B.1 Asian taxonomy

Figure B.13: Asian jawlines clustering example 1.
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Figure B.14: Asian jawlines clustering example 2.
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B.1 Asian taxonomy

Figure B.15: Asian jawlines clustering example 3.
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B.2 Black taxonomy

Figure B.16: Black eyebrows clustering example 1.

Figure B.17: Black eyebrows clustering example 2.
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B.2 Black taxonomy

Figure B.18: Black eyebrows clustering example 3.

Figure B.19: Black eyes clustering example 1.

Figure B.20: Black eyes clustering example 2.
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Figure B.21: Black eyes clustering example 3.

Figure B.22: Black noses clustering example 1.
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B.2 Black taxonomy

Figure B.23: Black noses clustering example 2.

Figure B.24: Black noses clustering example 3.

Figure B.25: Black mouths clustering example 1.
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Figure B.26: Black mouths clustering example 2.

Figure B.27: Black mouths clustering example 3.
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B.2 Black taxonomy

Figure B.28: Black jawlines clustering example 1.
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Figure B.29: Black jawlines clustering example 2.
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B.2 Black taxonomy

Figure B.30: Black jawlines clustering example 3.
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B.3 Latino taxonomy

Figure B.31: Latino eyebrows clustering example 1.

Figure B.32: Latino eyebrows clustering example 2.
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B.3 Latino taxonomy

Figure B.33: Latino eyebrows clustering example 3.

Figure B.34: Latino eyes clustering example 1.

Figure B.35: Latino eyes clustering example 2.
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Figure B.36: Latino eyes clustering example 3.

Figure B.37: Latino noses clustering example 1.

Figure B.38: Latino noses clustering example 2.
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B.3 Latino taxonomy

Figure B.39: Latino noses clustering example 3.

Figure B.40: Latino mouths clustering example 1.
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Figure B.41: Latino mouths clustering example 2.

Figure B.42: Latino mouths clustering example 3.
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B.3 Latino taxonomy

Figure B.43: Latino jawlines clustering example 1.
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Figure B.44: Latino jawlines clustering example 2.
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B.3 Latino taxonomy

Figure B.45: Latino jawlines clustering example 3.
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B.4 White taxonomy

Figure B.46: White eyebrows clustering example 1.

Figure B.47: White eyebrows clustering example 2.
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B.4 White taxonomy

Figure B.48: White eyebrows clustering example 3.

Figure B.49: White eyes clustering example 1.

199



Appendix B. Taxonomies

Figure B.50: White eyes clustering example 2.

Figure B.51: White eyes clustering example 3.

Figure B.52: White noses clustering example 1.
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B.4 White taxonomy

Figure B.53: White noses clustering example 2.

Figure B.54: White noses clustering example 3.
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Figure B.55: White mouths clustering example 1.

Figure B.56: White mouths clustering example 2.
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B.4 White taxonomy

Figure B.57: White mouths clustering example 3.

Figure B.58: White jawlines clustering example 1.
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Figure B.59: White jawlines clustering example 2.
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B.4 White taxonomy

Figure B.60: White jawlines clustering example 3.
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