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Abstract: This work describes an application of Multivariate Statistical Process Control 

to monitor soybean oil transesterification. For the development of multivariate control 

charts, near infrared spectra were acquired in-line during the evolution of ten batches 

under Normal Operating Conditions. They were then organized in a three-way array 

(batch×spectral variable×time). This structure was analysed by the two most commonly 

used approaches to develop batch monitoring schemes for handling such kind of data, 

referred to as Nomikos-MacGregor (NM) and Wold-Kettaneh-Friden-Holmberg 

(WKFH), respectively. To assess the performance of the approaches, eight test batches, 

during which specific interferences were induced, were manufactured. When applied for 

off-line monitoring, both NM and WKFH correctly pointed out such intentionally 

produced failures. On the other hand, concerning on-line monitoring, NM exhibited a 

better fault detection capability than WKFH. Contribution plots were found to highlight 

the spectral region mostly affected by the disturbances regardless of the modelling 

strategy resorted to. 

 

Keywords: biodiesel; batch process monitoring; Near Infrared Spectroscopy (NIRS); 

Multivariate Statistical Process Control (MSPC); soybean oil methanolysis. 
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1. Introduction 

 

 Research into biofuels, which can be used as alternative energy sources to fossil 

fuels, has recently been encouraged by concerns about levels of pollution, 

environmental safety and oil supply. Among biofuels, biodiesel is a potential substitute 

for petroleum fuels, showing also high biodegradability, low toxicity and capacity to 

low emission of sulfates, aromatic compounds and other hazardous products. Moreover, 

it has replaced mineral diesel in numerous applications, e.g. in combustion engines 

(Arias et al., 2012; Atabani et al., 2012). 

In general, biodiesel, composed of fatty acid alkyl esters, is produced by 

transesterification of triacylglycerols with an alcohol, most commonly methanol. 

Renewable raw materials such as animal fats and vegetable oils are frequently used as 

feedstock. The methanol-mediated transesterification reaction (methanolysis) proceeds 

via three reversible and consecutive steps: diacylglycerols and methyl esters are 

obtained from triacylglycerols (Eq. 1); monoacylglycerols and methyl esters are 

obtained from diacylglycerols (Eq. 2); monoacylglycerols are converted to methyl esters 

and glycerol (Eq. 3). Their reversibility motivates the use of methanol in excess with 

respect to the initial amount of triacylglycerols. In addition, a catalyst is always resorted 

to for ensuring the rapid achievement of the maximum conversion rate (Tubino et al., 

2014).  

 

 

 

 

(1) 

(2) 

(3) 
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At the beginning of the methanolysis process, the reaction system consists of 

two highly immiscible phases: the oil phase, rich in triacylglycerols, and the methanol 

phase. With the progress of the reaction, methyl ester formation increases the solubility 

of triacylglycerols in methanol as well as the overall mass transfer rate, intensifying the 

reactant mixing. After few minutes, the mixture appears as an emulsion in which small 

droplets of triacylglycerols are in the methanol phase. In this step, an acceleration in the 

methyl ester production can be observed (Csernica and Hsu, 2012). Afterwards, the 

reaction reaches the equilibrium. In general, transesterification reactions present a fast 

conversion and, under certain conditions, e.g. high temperatures, the initial stage is 

shortened and the acceleration in the methyl ester production is achieved sooner 

(Tubino et al., 2014).  

Transesterification reactions for biodiesel production are usually carried out in 

batch reactors. The process variables mostly affecting these reactions are temperature, 

catalyst concentration and type, stirring speed, reactant purity, feedstock variability and 

free fatty acid content (Arias et al., 2012; Atabani et al., 2012; Csernica and Hsu, 2012), 

whose setting and monitoring is of utmost importance to ensure biodiesel quality 

uniformity and fulfil its commercialization requirements (Killner et al., 2011). 

A number of analytical techniques like chromatography are commonly applied 

for monitoring transesterification reactions. However, these methods are not suitable for 

real time process monitoring, which could be extremely useful in such circumstances 

owing to the usually observed fast conversion rate (Torrisi and Sabino, 2013; Tubino et 

al., 2014). Due to the recent development of new analytical technologies, a high number 

of tools can be exploited for process monitoring purposes. Among them, Near Infrared 

Spectroscopy (NIRS) has a wide applicability. It is commonly used for in-line, at-line, 

on-line or off-line process parameter control and product attribute determination. 

Moreover, NIRS is a rapid and non-destructive technique and does not require labour-

intensive sample treatments, saving time and effort. Consequently, it can play an 

important role, especially for real-time applications (Huang and Qu, 2011; Kona et al., 

2013).  

NIRS is a well-established spectroscopic technique that can provide qualitative 

and quantitative information for a wide range of organic compounds. NIR spectra show 

bands (mainly overtones and combinations bands) related to transitions between the 

levels of vibrational energy of a molecule. The information present in the NIR spectra 

can be used to determine the composition of either a sample or a bulk or its physical 
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properties (such as density, viscosity, refractive index, particle size, temperature, 

homogeneity etc.) when these have some effect on the intensity and/or on the shape of 

the recorded signal (Pasquini, 2003; Shao et al., 2010; Workman and Weyer, 2007). 

Such features have recently motivated the application of this technique for process 

monitoring purposes in different fields of application (Li et al., 2016; Lima et al., 2014; 

Richard et al., 2013; Killner et al, 2011; Kona et al., 2013).  

Several studies describing the use of NIRS in the biodiesel field have recently 

been published. Research works have demonstrated its effectiveness for the 

development of multivariate calibration models and the estimation of biodiesel content 

in diesel fuel blends (Alves and Poppi, 2013; Pimentel et al., 2006) or to determine 

specific chemical products throughout the biodiesel production (Lima et al., 2014; 

Richard et al., 2011; Richard et al., 2013). Applications of NIRS to predict biodiesel and 

diesel-biodiesel blend properties, such as oxidative stability and density, and quality 

have also been described (Lira et al., 2010; Oliveira et al., 2009). 

 Concerning the application of NIRS for on- and in-line monitoring of biodiesel 

production, this technique is well established when associated with Partial Least 

Squares (PLS) regression models to determine the composition of the reaction mixture 

(Killner et al., 2011; Lima et al., 2014; Richard et al. 2011; Richard et al., 2013). In 

general, such studies satisfactorily described the use of PLS calibration models to 

estimate the content of alkyl ester and glycerides as well as the conversion ratio of 

glycerides during transesterification reactions.  

 Apart from biodiesel property determination, NIRS can also be applied in 

combination with Multivariate Statistical Process Control (MSPC) methods based on 

projection techniques for monitoring both continuous and batch processes. However, as 

far as the authors are concerned, no application of batch MSPC approaches to the 

biodiesel field is detailed in the scientific literature. For this reason, in the present work, 

methanol-mediated soybean oil transesterification was chosen as an example to 

illustrate the effectiveness of coupling NIRS and batch MSPC to monitor biodiesel 

production. NIRS-based multivariate control charts were developed applying the two 

most commonly used approaches for dealing with such kind of data, referred to as 

Nomikos-MacGregor (NM) and Wold-Kettaneh-Friden-Holmberg (WKFH), 

respectively, to a set of data collected during ten batches evolving under Normal 

Operating Conditions (NOC). Eight out-of-control runs, affected by disturbances in the 

temperature and stirring conditions as well as in the catalyst content, were manufactured 
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to assess the off-line and on-line fault detection capability of the resulting monitoring 

schemes. Classical contribution plots (Kourti and MacGregor, 1996) were additionally 

resorted to for enabling fault diagnosis, i.e. the identification of the nature of each 

failure.  

Therefore, this work aims to explore the potential of NIRS associated with batch 

MSPC to establish monitoring schemes for biodiesel production. As mentioned above, 

an advantage of this method is its fast measurements that allows real time process 

monitoring, which is meaningfully important to the industrial production. In addition, it 

provides chemical and physical information about the system under study. In this way, 

the present work presents a comprehensive comparison for off-line and on-line process 

monitoring of NM and WKFH approaches. To the best of the author’s knowledge, this 

kind of comparison was only presented by Aguado et al. (2007). Nevertheless, the 

authors described the development of control charts based on process variables and 

applied them for a completely different application (wastewater treatment).  

 

2. Multivariate statistical monitoring of batch processes 

 

Batch processes show strong dynamic nature and high variability among 

different runs, thus their monitoring is essential to always guarantee on-specification 

products are manufactured. To address batch process monitoring by spectroscopic 

techniques like NIRS, projection methods, namely Principal Component Analysis 

(PCA) or Partial Least Squares regression (PLS), are required. These multivariate 

statistical tools project the information carried by the extremely correlated spectral 

channels onto low-dimensional subspaces defined by few orthogonal Latent Variables 

(LVs), easing the analysis of very large, ill-conditioned datasets. PCA works by 

defining a small set of uncorrelated factors (principal components), which are linear 

combination of the original variables and explain most of their variability. On the other 

hand, PLS addresses this dimensionality reduction by maximising the covariance 

between the original data matrix and an array containing the values of particular 

response variables (Bersimis et al., 2007; Ferrer, 2007; Kerkhof et al., 2012; Kourti, 

2003; Li et al, 2016). 

Constructing a batch process monitoring scheme can be specifically looked at as 

a three-step procedure: i) collecting and modelling data associated to NOC; ii) detecting 

possible faults (by checking whether new observations are consistent with the NOC 
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data); iii) diagnosing detected faults that is identifying which ones of the measured 

variables are responsible for them (by tools like contribution plots). In this respect, it is 

important to highlight that monitoring schemes are quite different from classical control 

schemes, in which the process is regulated to automatically recover NOC (Nomikos and 

MacGregor, 1995; Wold et al., 1998).  

In general, batch process data can be organized in a three-dimensional array with 

dimensions (I×J×K), where I equals the number of analysed batches, during which J 

variables are measured at K time points. In order to develop PCA- or PLS-based 

multivariate control charts, first, such three-way array needs to be unfolded into a 

matrix. Among the various techniques to develop batch monitoring schemes, Nomikos-

MacGregor (NM) (Nomikos and MacGregor, 1995) and Wold-Kettaneh-Friden-

Holmberg (WKFH) (Wold et al., 1998) approaches are extensively applied and 

available in commercial software packages. The former unfolds the data batch-wise, so 

that each row of the resulting matrix contains all the information related to one batch 

(Fig. 1a). The final I×JK two-way array is then centred and subjected to PCA. NM 

permits to capture both the linear dynamics of the analysed process and possible 

changing relationships among process variables. Furthermore, data centring removes the 

strongly non-linear trend of their evolution, which allows their variation about their 

average trajectory to be modelled, reducing the process analysis to a stationary problem.  

On the other hand, WKFH unfolds the data variable-wise, by rearranging the 

single sub-matrices associated to the evolution of each batch preserving the variable 

direction. WKFH leads to a new array with dimensions IK×J (Fig. 1b). Such array is 

then centred and used to build a PLS regression model with a single response variable: 

the local batch time, a measure of the batch maturity index. At this step, WKFH does 

not take into account the dynamics of the process under study and has been found to be 

a valid strategy only when its correlation structure is more or less constant along the 

batch run. Data centring does not remove the average variable trajectories, thus 

differences among batches are initially overlooked. In a second modelling stage, the 

batch level, the resulting PLS-scores are unfolded batch-wise, re-centred and analysed 

by PCA. A good critical discussion on these methods can be found in Aguado et al. 

(2007), Camacho et al. (2008) and Wold et al. (2009). 

 

INSERT FIGURE 1 
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NM and WKFH can be used for both off-line and on-line monitoring of batch 

processes. Concerning the former, once NOC models have been constructed, new 

complete batches are classified as normal or faulty. For their methodological principles, 

NM can directly address this task, while WKFH requires the aforementioned batch 

level, which may be particularly useful in case huge numbers of variables have to be 

preliminarily compressed for being subsequently analysed (e.g. in spectroscopic or 

chromatographic case-studies). Regarding on-line monitoring, the evolution of new 

batches is assessed in real time, allowing abnormal behaviours to be possibly corrected 

before the batch completion, thus preventing the manufacturing of out of specification 

products. Here, NM needs at each consecutive time instant the imputation of future 

unknown observations to always deal with complete data matrices. This imputation can 

be carried out in many distinct ways. For the purposes of this article, the Single 

Component Projection (SCP) approach proposed in Nelson et al. (1996) was appealed 

to. Conversely, WKFH does not necessitate any imputation (Wold et al., 2009). 

However, this implies assuming all the batches under study feature the same evolution 

pace, which is rather uncommon in practical cases. In such circumstances, WKFH may 

exhibit the critical limitations already comprehensively detailed in González-Martínez 

et al. (2014). 

 

3. Materials and methods 

 

3.1 Transesterification reactions 

 

Transesterifications were carried out in a Mettler Toledo OptiMax synthesis 

workstation, provided with a 1000 mL glass reactor. The OptiMax system enabled an 

accurate control of the agitation speed and reaction temperature, which also allowed 

specific disturbances to be properly induced. Fig. 2 shows a schematic representation of 

the described equipment.  

 For the development of multivariate control charts, ten NOC batches (ID 

number: 1-10) were produced. The normal operating conditions (0.75 w/w% of catalyst 

with respect to the amount of oil, temperature of 55ºC and stirring speed of 500 rpm) 

were set based on Lima et al. (2014). For each batch, 400 g of commercial soybean oil 

(Liza) were transferred to the reactor and stirred until the temperature of 55°C was 

reached. A mixture of methanol (Dinâmica) and catalyst (Sodium Hydroxide, 
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Dinâmica) was then added so that the molar ratio between methanol and soybean oil 

was equal to 6:1. At the same time, the NIR spectra acquisition was started. All the 

batches were monitored for sixty minutes.  

 

INSERT FIGURE 2 

  

Eight new batches (ID number: 11-18) were then manufactured following the 

same experimental procedure, but varying the reaction conditions (catalyst 

concentration, temperature and agitation speed). Specifically, except for batch 18, they 

were subjected to interferences intentionally generated approximately 90s after their 

starting point (see Table 1 for details about the nature of the various disturbances). 

 

INSERT TABLE 1 

 

3.2 NIR data acquisition 

 

A fiber-optic transflectance probe (Solvias) connected to a FTLA 2000-160 

FTIR spectrometer (ABB Bomem) was used for NIR data collection. The profiles, 

recorded as average of 64 scans at 20-second time intervals in the wavenumber range 

within 14000 and 3800 cm−1 with an optical path length of 5 mm and a spectral 

resolution of 16 cm-1, were acquired by the software GRAMS/AI (Thermo Scientific). 

Background signal was measured by placing the probe into the empty reactor. 

 

3.3 Multivariate control charts development 

 

Multivariate control charts were constructed from in-control NIR spectra 

collected in-line during soybean oil methanolysis. For each reaction, 587 variables 

(absorbance values at specific wavenumbers) were acquired at 166 time points. As ten 

NOC batches were produced, a training three-way array of dimensions (10×587×166) 

was obtained.  

Before the modelling phase, different preprocessing algorithms for spectral data 

were tested: Standard Normal Variate (SNV) (Barnes et al., 1989), Multiplicative 

Scatter Correction (MSC) (Martens et a., 1983; Geladi et al., 1985), and first and second 

derivative with Savitzky–Golay smoothing (Savitzky and Golay, 1964) (adopting a 
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second order polynomial function and an 11-point window). The three-dimensional 

structures were then analysed by using either NM or WKFH for comparison purposes. 

Unfolding and preprocessing were performed by Matlab® R2010a 1997.10.0.499 

(Mathworks), while multivariate control charts were developed using the software 

SIMCA 13.0.3 (Umetrics) and ProSensus MultiVariate 15.08 (ProSensus).  

Once built both the off-line and on-line monitoring schemes, the data related to 

the eight faulty process runs (ID number: 11-18), organized in a test set of dimensions 

(8×587×166), were used in order to assess their performance. The quality of these runs 

was evaluated resorting to the Squared Prediction Error (SPE)/Distance to the Model 

(DModX) and the Hotelling’s T2statistics, considered as process wellness indices.  

The SPE and DModX values associated to the n-th row vector, 𝐱!!, of a generic 

(N×M) data matrix, X, can be obtained by Eq. (4) and (5), respectively: 

 

𝑆𝑃𝐸! = 𝐱! − 𝐱!∗ ! 𝐱! − 𝐱!∗                                                                                        (4) 

 

𝐷𝑀𝑜𝑑𝑋! = 𝑐 !"#!
!!!

                                                                                                         (5) 

 

where 𝐱!∗  is the reconstruction  𝐱! returned by the model, A represents the number of 

extracted latent variables and 𝑐 is a correction factor, which is a function of N and A 

(Ferrer, 2007; Eriksson, 2013). 

Clearly, DModX (provided by SIMCA 13.0.3) and SPE (provided by ProSensus 

MultiVariate) can be interpreted in a similar fashion. In fact, out-of-control signals in 

their corresponding control charts point out a breakage in the correlation structure of the 

original measured variables, usually highlighting the occurrence of an actual fault. 

The Hotelling’s T2statistic is instead derived for 𝐱!! as: 

 

𝑇!! = 𝒕!!𝑺!!𝒕!                                                                                                                  (6) 

 

Where 𝒕!!  corresponds to the row vector containing the projection coordinates of 𝐱!! on 

the A latent variable of the constructed model, while S denotes the covariance matrix of 

the respective PCA- or PLS-scores. Unusual Hotelling’s T2 values are generally due to 

abnormal deviations within the model space (e.g. changes in the standard operational 

conditions), not affecting the aforementioned variable correlation structure. 
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4. Results and discussion 

 

4.1 Spectroscopic data 

 

Fig. 3a shows the raw spectra collected during a typical batch evolved under 

NOC. Since wavenumber regions below 9003 and above 4482 cm-1 were characterized 

by saturated signals and missing information, they were discarded before the data 

modelling. Furthermore, also the first three spectra of each batch, recorded during the 

reactant mixing step, were not taken into account when building the monitoring 

schemes. 

The main differences observed in the registered profiles are evidently related to 

baseline shifts. This effect occurs because of the complex nature of the two-phase 

reaction mixture, whose properties such as viscosity and refractive index change as the 

transesterification progresses (Tubino et al., 2014; Torrisi and Sabino, 2013). In such 

circumstances, the application of an appropriate preprocessing is fundamental to assess 

the chemical information present in the NIR data. To this end, the aforementioned 

pretreatment algorithms were exploited. The most powerful monitoring schemes (in 

terms of fault detection capability) were obtained by applying a MSC filter (Fig. 3b) for 

WKFH and a first derivative Savitzky-Golay filter (Fig. 3c) for NM. 

 

INSERT FIGURE 3  

 

Only very slight time variations were detected for each spectral variable among 

runs and the paces of all the different batches were found to be pretty similar (results 

not shown). For this reason, no previous synchronization was required. 

Finally, the pre-processed data were centred for in-control model calibration.  

 

4.2 Reference models 

 

Table 2 displays an overview of the parameters of the reference models 

constructed by NM and WKFH, for both off-line and on-line process monitoring. R² 

(cum) represents the portion of so-called explained data variance. It gives an idea of 

how well each model fits the experimental data. Regarding the WKFH-based off-line 
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monitoring scheme, mind that R² (cum) relates to the PLS-scores rearranged batch-wise 

in the batch level (Aguado et al., 2007).  

 

INSERT TABLE 2 

  

Clearly, both the approaches are able to properly describe the batch data, with R² 

(cum) values pretty close to 1.  

 

4.3 Off-line monitoring 

 

In the off-line monitoring, data from completed batches are available. Therefore, 

the new batches (ID number: 11-18) can be classified as normal or faulty using the 

models based on NOC behavior. For WKFH approach, the off-line analysis is evaluated 

by rearranging the PLS-scores in batch-wise and performing a PCA in the resulting 

matrix (batch level).  

Fig. 4 shows the NM- and WKFH-based SPE/DModX and Hotelling’s T² control 

charts for NM and WKFH approaches for the eight new test batches process runs. 

Regarding the SPE control charts for NM (Fig. 4a) and DModX control chart for WKFH 

(Fig. 4c), batches 12-18 were correctly identified as faulty by both the approaches. 

Therefore, the SPE/DModX statistic permitted to point out particular deviations from 

NOC related to stirring speed, temperature and catalyst content changes. 

Concerning the Hotelling’s T² control chart for NM (Fig. 4b), the eight test 

batches did not exceed the corresponding control limit. For WKFH approach (Fig. 4d), 

only batches 15 and 18 were found to be beyond the corresponding 95% confidence 

limit. Therefore, Hotelling’s T² was barely able to identify dramatic failures due to 

modifications in the agitation speed (interruption of agitation for 10 min) and to the 

change in the catalyst content. 

 

INSERT FIGURE 4 

 

It can be then concluded that both the off-line monitoring schemes adequately 

detected most of the induced faults. In general, they generated a breakage in the 

covariance structure of the measured variables, leading to out-of-control signals in the 

SPE/DModX control chart. Furthermore, an increasing trend of the values of this 
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statistic depending on the magnitude of the various failures (see Table 1 and Fig. 4a and 

4c) was clearly observed. Conversely, the disturbances in the agitation speed produced 

during batch 11 were probably not strong enough to be properly highlighted by either 

the SPE/DModX or the Hotelling’s T2 control chart. 

For off-line monitoring, both the approaches presented similar results. This is a 

consequence of the fact that WKFH (encompassing the batch level) is here able to 

capture the process dynamics as NM.  

 

4.4 On-line monitoring 

 

Fig. 5 shows the on-line DModX and Hotelling’s T² control charts resulting from 

WKFH for the 8 test batches. The process deviations intentionally produced in batches 

11, 12 and 13 were not detected by either of them, probably because these runs were 

subjected to only slight interferences in the agitation speed for a short period of time 

(Fig. 5a and 5b). Batch 11 just displayed some out-of-control signals that are 

presumably not related with the disturbance, since it was induced at the beginning of the 

reaction. The spikes in the DModX control chart (Fig. 5a) are probably due to the 

presence of air bubbles in the reaction system, which generated particular NIR signal 

distortions. 

In batch 14, the agitation speed was reduced to 100 rpm for 15 min. As result of 

this more pronounced fault, both control charts displayed an out-of-control signal. 

DModX (Fig. 5c) and Hotelling’s T2 (Fig. 5d) started to exceed their corresponding 

control limit approximately 8 and 10 minutes after the disturbance was produced, 

respectively. Thus, a lag between the induction of the disturbance and the time point at 

which the process deviation was detected was observed. This time lag occurs due to the 

time taken to break the stable emulsion formed between oil and methanol when the 

agitation speed is sharply reduced. In contrast, when the agitation speed returned to a 

normal value (500 rpm), DModX and Hotelling’s T2 assumed again in-control values. 

This could be probably due to the fact that the disturbance induced during batch 14 was 

not sufficiently strong to modify significantly the methanolysis reaction rate. NIRS was 

then able to temporarily detect such fault because of the local changes in the physical 

properties of the reaction mixture. 

In batch 15, then agitation was stopped for about 10 min. Also in this case, the 

fault was clearly and instantaneously detected by both control charts (Fig. 5c and 5d). 
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Even after the stirring speed was set again to 500 rpm, the DModX statistic continued 

fluctuating around its control limit, while the Hotelling’s T² values were all found to be 

back in-control. Here, the induced failure may have appreciably affected the reaction 

rate and, therefore, the DModX values for this batch did not return below the 

corresponding control limit. Furthermore, due to the relatively high magnitude of the 

disturbance, a lag between its induction and the time point at which the process 

deviation was detected was not observed for this batch.  

During batches 16 and 17, the reaction temperature was temporarily reduced to 

50 and 45°C, respectively. In both cases, the DModX and Hotelling’s T² statistic values 

started to slowly increase almost at the same time at which the disturbance was induced. 

Nevertheless, the first out-of control signals were observed only slightly later. For the 

former, only the DModX statistic slightly exceeded its corresponding control limit (Fig. 

5e); for the latter, the fault was clearly detected by both control charts. Specifically, 

DModX was always found to be beyond its control limit, while Hotelling’s T² (Fig. 5f) 

assumed again in-control values when the temperature returned to a normal value 

(55°C). 

Batches 16 and 17 were successfully detected as outliers mainly because NIRS 

is particularly sensitive to temperature changes. In fact, NIR spectra show features 

related to the molecular structure of the samples under study, as well as absorbance 

bands associated to inter- or intra-molecular interactions (e.g. hydrogen bonds), whose 

shape and intensity are affected by the temperature conditions (Shao et al., 2010; 

Workman and Weyer, 2007). Probably, for batch 17, the change in the reaction 

temperature also generated a reduction in the conversion rate, which affected the 

composition of the reaction mixture and led to out-of-control DModX statistic values 

albeit the normal temperature conditions were restored (Noriega et al., 2014). 

Lastly, batch 18, manufactured to check how variations in the catalyst 

concentration could influence the process evolution, was clearly detected as outlier by 

the DModX control chart (Fig. 5e). As detailed in the scientific literature, a decrease in 

the catalyst concentration reduces the methanolysis reaction rate (Noriega et al., 2014). 

This probably influenced the composition of the reaction mixture, which allowed NIRS 

to capture this kinetic phenomenon.  

 

INSERT FIGURE 5 
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 On the other hand, Fig. 6 shows the on-line SPE and Hotelling’s T² control 

charts resulting from NM for the 8 test batches. As they can be interpreted similarly to 

the WKFH-based control charts, the discussion will be simply focused on the 

differences between the outcomes obtained by the two approaches under study. In 

contrast to WKFH, the process deviations intentionally produced in batches 12 and 13 

were clearly detected by the SPE control chart (Fig. 5a). Batch 11 presented some out-

of-control signals in the SPE control chart that are probably not associated with the 

deviation intentionally induced along the process. These out-of-control signals, also 

detected for WKFH, are probably related to the position of the probe in relation to the 

stirrer for this batch. Nevertheless, no out-of-control signal was displayed by the 

Hotelling’s T² control chart. 

 For batches 14 and 15, the SPE statistic values were found to be above the 

respective control limit all along the run evolution. For batch 15, Hotelling’s T2 

exceeded its confidence limit for a certain time period but returned below it slightly 

after the agitation speed was set again to 500 rpm. 

 Batches 16, 17 and 18 were detected as faulty by the SPE control chart. The 

Hotelling’s T² control chart instead pointed out an out-of-control situation only at the 

beginning of batches 17 and 18. There is a clear difference between faults 11-17 and 

fault 18. The first batches are characterised by a distinct evolution over time from the 

beginning of the runs (mainly SPE continuously increases till exceeding its control 

limit), while for fault 18 all the observations have high and approximately constant SPE 

values, which may be due to the fact that the interference was induced before starting 

the batch. It could be also realized for WKFH approach.  

 

INSERT FIGURE 6 

 

In this specific on-line monitoring case-study, NM showed a better performance 

than WKFH, as it enabled a correct detection of all the failures intentionally produced 

during the test batch runs. This is probably associated to the fact that, unlike WKFH 

(not including the aforementioned batch level), NM is able to capture the dynamics of 

the transesterification process.  

In contrast, the NM-based control charts tended to spot deviations from NOC 

even after the induced disturbances were interrupted. This effect is typical of this kind 
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of monitoring schemes and is due to the strong effect of the auto-correlation on the SPE 

and/or Hotelling’s T2 statistic (Camacho and Picó, 2006; Camacho et al., 2009). 

 

4.5 Contribution plots 

 

Once a particular fault has been detected, its root causes can be highlighted by 

tools like contribution plots (Kourti and MacGregor, 1996). A contribution plot shows 

the contribution values of each original variable to the statistic used for monitoring 

purposes. Variables with a high contribution are those mainly related to the out-of-

control signal detected by the corresponding control chart (Kerkhof et al., 2012; 

Nomikos and MacGregor, 1995; Li Vigni et al., 2009).  

Although contribution plots for spectral data are not always easily interpretable 

and cannot precisely point out the root causes of the detected failures (there exist no 

univocal relation between the changes in the spectral profiles and the variation of the 

physical parameters leading to the fault), they can anyway be resorted to for 

highlighting which spectral regions are those most affected by the out-of-control 

situation, i.e. at which spectral regions the signal changes the most when the process is 

deviating from NOC. 

 

INSERT FIGURE 7 

 

In this section, as an example, the contribution plots resulting from the WKFH-

based on-line monitoring scheme and associated to the time instant at which the 

Hotelling’s T² and DModX statistic values were observed to be out of control for 

batches 14 and 17 (approximately 11 min after their starting point) are shown. Because 

of the huge number of spectral variables to be taken into account for each process run, 

contribution plots derived from the NM approach are not shown, but they enabled an 

equally correct fault diagnosis. 

Batches 14 and 17 were subjected to different types of disturbance. During the 

former, the stirring speed was reduced to 100 rpm for 15 min, while the temperature 

was temporarily decreased to 45°C 90 seconds after the beginning of the latter. As 

shown in Fig. 7 and Fig. 8, the spectral regions associated to the highest contribution 

values are: (I) 7324 – 7116 (aliphatic C-H combinations); (II) 6222 – 6099 cm-1 (first 

overtone of olefinic C-H stretching); (III) 5900 – 5580 cm-1 (first overtone of aliphatic 



17	
	

C-H stretching); (IV) 5244 – 5106 cm-1 (second overtone of C=O stretching in esters); 

(V) 4874 – 4744 (methanol O-H and C-O stretching and bending combinations). The 

band attribution was carried out according to Workman and Weyer (2007). 

In particular, for batch 14 (Fig. 7), the absorption bands related to methanol O-H 

and C-O stretching and bending combinations (region V) are characterized by negative 

contributions to both monitoring statistics. The bands related to the first overtone of 

olefinic C-H stretching (region II), which are proper of soybean oil composition, exhibit 

negative contributions to Hotelling’s T². On the other hand, the aliphatic C-H 

combination bands (region I) show a slightly positive contribution to DModX. 

 

INSERT FIGURE 8 

 

For batch 17 (Fig. 8), the absorption bands related to the first overtone of 

olefinic C-H stretching (region II) are characterized by positive contributions to 

Hotelling’s T². The most negative contributions to DModX are possibly related to 

methanol O-H and C-O stretching and bending combination bands (region V). Also the 

aliphatic C-H combination spectral region (I) show a negative contribution to the 

DModX statistic, while the second overtone of C=O stretching in esters (region IV) 

contributed positively to it. 

One can clearly see that the disturbances affecting the reaction temperature and 

the stirring speed produced specific deviations in very similar spectral ranges. Methanol 

O-H and C-O combinations showed the most negative contributions to Hotelling’s T2 

and DModX for batch 14 and to DModX for batch 17. Aliphatic C-H bond-related 

absorption bands were found to be characterized by positive contributions to both 

statistics for batch 14 and negative contributions to DModX for batch 17. Finally, the 

spectral region related to the first overtone of olefinic C-H stretching contributed 

negatively for batch 14 and positively for batch 17 to Hotelling’s T2. 

For comparison purpose, contribution plots resulting from the NM-based on-line 

monitoring scheme for batches 14 and 17 were also analysed at the same time at which 

contribution plots from WKFH. Spectral regions similar to the aforementioned were 

mainly associated to the out-of-control signals in the SPE and Hotelling’s T² control 

charts. In addition, a spectral region (6900 – 6800cm-1), that is probably related to the 

first overtone of the hydroxyl group, showed the most positive contributions to 

Hotelling’s T2 and SPE for batch 17.  
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The reliability of the fault diagnosis was in any case confirmed by the original 

spectral data. In fact, the most evident changes in the NIR profiles (from in-control to 

faulty conditions) were actually observed in the wavelength regions identified by the 

contribution plots as the most affected by the induced disturbances (results not shown). 

 

5. Conclusions 

  

NIR-based MSPC was applied for batch monitoring of soybean oil methanolysis. 

Various reactions carried out in a batch system generated a three-way data array, which 

was analysed using two different approaches: NM and WKFH. The capability of the 

developed monitoring schemes of detecting specific disturbances induced during the 

evolution of 8 test batches was assessed and compared. 

The control charts resulting from both the modelling strategies showed a very 

similar performance in terms of off-line fault detection power. Concerning on-line 

monitoring, NM, unlike WKFH, allowed faults due to modifications in the stirring 

speed of the reaction mixture to be correctly pointed out. Contribution plots enabled a 

clear identification of the spectral region mostly affected by the faults when both the 

approaches were resorted to. 

In general, most of the failures associated to the reaction temperature, catalyst 

content and stirring speed were properly highlighted. However, the monitoring schemes 

proved to be much more sensitive to changes in the catalyst concentration and in the 

temperature conditions, probably owing to the fact that they were sufficiently strong to 

cause a significant modification in the reaction rate and, thus, in the composition of the 

reaction mixture.  

Such satisfactory results show the application of these MSPC tools can clearly 

enhance transesterification process understanding as well as the detection and diagnosis 

of faults occurring during soybean oil methanolysis and might possibly be extended to 

other branches of biodiesel production, in which different raw materials, catalysts and 

reaction conditions are involved. 
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FIGURE CAPTIONS 

Fig. 1: Schematic representation of (a) batch-wise and (b) variable-wise unfolding.  

 

Fig. 2: Schematic representation of the Optimax synthesis workstation (Mettler Toledo). 

 

Fig. 3: Raw spectra (a), MSC-preprocessed spectra (b) and first derivative spectra 

(c) collected during a typical batch evolved under NOC.  

 

Fig. 4: Off-line monitoring: SPE (a) and Hotelling’s T² (b) control charts resulting from 

NM for the eight faulty test batches. DModX (c) and Hotelling’s T² (d) control charts 

resulting from WKFH for the eight faulty test batches. Black dashed lines correspond to 

their respective 95% confidence limits. 

 

Fig. 5: WKFH-based on-line monitoring: DModX and Hotelling’s T2 control charts for 

batches 11-13 (a and b), 14-15 (c and d) and 16-18 (e and f). Red dashed lines 

correspond to their respective 95% confidence limits. 

 

Fig. 6: NM-based on-line monitoring: SPE and Hotelling’s T2 control charts for batches 

11-13 (a and b), 14-15 (c and d) and 16-18 (e and f). Red dashed lines correspond to 

their respective 95% confidence limits. 

 

Fig. 7: WKFH-based on-line monitoring: Hotelling’s T2 (a) and DModX (b) 

instantaneous contribution plots for batch 14 at 11 minutes after the beginning of the 

run, respectively. 

 

Fig. 8: WKFH-based on-line monitoring: Hotelling’s T2 (a) and DModX (b) 

instantaneous contribution plots for batch 17 at 11 minutes after the beginning of the 

run, respectively.	


