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ABSTRACT

Metastases in the liver frequently grow as scattered tumor nodules which neither can be removed by
surgical resection nor focally ablated. Previously, we have proposed a novel technique based on irreversible
electroporation which may be able to simultaneously treat all nodules in the liver while sparing healthy
tissue. The proposed technique requires increasing the electrical conductivity of healthy liver by injecting
a hypersaline solution through the portal vein. Aiming to assess the capability of increasing the global
conductivity of the liver by means of hypersaline fluids, here it is presented a mathematical model which
estimates the NaCl distribution within the liver and the resulting conductivity change. The model fuses well-
established compartmental pharmacokinetic models of the organ with saline injection models employed for
resuscitation treatments and it considers changes in sinusoidal blood viscosity due to the hypertonicity of the
solution. Here it is also described a pilot experimental study in pigs in which different volumes of NaCl 20%
(from 100 to 200 ml) were injected through the portal vein at different flow rates (from 53 to 171 ml/min).
The in vivo conductivity results fit those obtained by the model, both quantitatively and qualitatively, being
able to predict the maximum conductivity with a 14.6% average relative error. The maximum conductivity
value was 0.44 S/m which corresponds to increasing four times the mean basal conductivity (0.11 S/m). The
results suggest that the presented model is well suited for predicting on liver conductivity changes during
hypertonic saline injection.

KEY WORDS: Numerical modelling of organs, liver, hypertonic solutions, bioimpedance, electropora-
tion.
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1. INTRODUCTION

The liver has a distinctive blood supply in which blood comes from two different pathways. About

70% of blood comes from the portal vein whereas the remaining supply comes from the hepatic

artery [1]. Both afferent vessels branch into venules and arterioles, eventually draining into the

sinusoids, which are capillaries with fenestrations along their endothelial wall. These fenestrations

allow the passage of small particles from the sinusoids to the hepatocytes across the interstitial space

that surrounds the hepatocytes. Blood leaves the liver lobules through the central veins and it finally

drains into the cava vein [2].

The dual blood supply of the liver and the presence of fenestrations in the sinusoids increase the

likelihood of metastatic deposits in the liver [3]. Almost any primary cancer can spread to the liver

and, when that happens, tumors commonly grow as scattered nodules [4]. About half of the patients

with colorectal cancer develop hepatic metastases and less than 30% of those patients are suitable

for surgical resection [5], thus portending a poor prognosis.

In addition to surgical resection, the current medical armamentarium includes a set of loco

regional therapies for ablating malignant liver tissues which can be applied to patients who are

non-surgical candidates because of comorbidity or extensive disease. These focal liver ablation

techniques include percutaneous ethanol injection, radiofrequency ablation, high-intensity focused

ultrasound, microwave ablation and cryosurgery [6]. These techniques, however, because of their

focal nature, are not adequate for patients in which the number of scattered nodules is large (>3)

[7]. As an alternative, we have recently proposed a technique based on irreversible electroporation

which may be able to simultaneously treat all nodules in the liver while sparing healthy liver tissue

[8].

Electroporation is the phenomenon in which cell membrane permeability is increased by exposing

the cell to high electric field pulses [9]. If the pulses are very intense, the permeabilization causes

the cells to loss their homeostasis and die. This process is known as irreversible electroporation

(IRE). IRE was proposed a few years ago as a focal ablation technique [10] and it has been clinically

assayed [11]. Since electroporation does not involve thermal or chemical damage to the extracellular

matrix, it allows to retain the structural integrity of the blood vessels and the nerves [12]. This fact

allows treatment of tumors located close to critical structures which are unsuitable to be treated with

other focal ablation techniques based on high-temperature. However, while IRE shows promising

results treating non-resectable tumors [13], as a focal therapy, it is only recommended for treatment

of less than three nodules with relatively small dimensions (< 5 cm) [7].
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Interestingly, while healthy hepatocytes receive both arterial and venous blood, tumor nodules

have a disorganized vascular structure, lacking sinusoids, which implies they are almost only

supplied with arterial blood coming from the hepatic artery [14]. In view of the foregoing, we

propose to inject a hypertonic saline solution with high electrical conductivity through the portal

vein so that the overall conductivity of the healthy tissue increases whereas the conductivity in the

tumor nodules is kept constant. Then, by applying high voltage pulses across two large electrode

plates sandwiching the liver, a significantly larger field would be caused in the tumors than in the

rest of the tissue, as described in the previous theoretical study [8]. In this way, it would be possible

to cause electroporation of the tumor nodules while avoiding the effect in healthy parenchyma. This

approach would have some major advantages with respect to the focal ablation techniques used in

non-resectable tumor nodules. Namely, it would not be required to identify the exact position of the

tumor nodules during the intervention and it would be possible to treat several tumor nodules at the

same time making unnecessary to address them individually.

Prior to further development of the proposed technique, it is required to assess the capability to

increase the electrical conductivity of the liver. We deem that the proposed liver electroporation

technique will require increasing healthy liver conductivity by a minimum factor of 3 [8]. Here,

in order to elucidate the expected behavior of conductivity during the procedure, a comprehensive

mathematical model has been developed to predict both the temporal distribution of solute within

the liver and the resulting electrical conductivity of the tissue.

Several studies have performed mathematical models of the liver to computationally assess the

pharmacokinetic behavior of a defined drug or chemical agent [15, 16, 17, 18]. These studies usually

employed the so called physiologically based pharmacokinetic (PBPK) models which represent the

anatomical and physiological structure of the organ by using interconnected fluidic compartments.

However, as the employed drug concentrations are commonly low, these models neglected osmotic

effects which are relevant in our case. On the other hand, hypertonic saline infusions have been

used in fluid resuscitation for hemorrhagic patients [19] and some mathematical models have

been developed aiming to determine the distribution at systemic level [20]. Here we fuse both

modeling approaches in a novel model using the transport functions employed in the PBPK models

in combination with the osmotic formulation from resuscitation models.
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2. MATERIALS AND METHODS

2.1. Mathematical Model

2.1.1. Liver Conductivity The electrical conductivity of a tissue at low frequency mainly depends

on the extracellular solution conductivity and the structural morphology [21, 22] . Among the

chemical species that constitute the extracellular body fluids, sodium and chlorine are the main

contributors to the electrical conductivity. Consequently, here it was assumed that only sodium and

chlorine ions contribute to the conductivity of the extracellular plasma [23].

By injecting a hypertonic NaCl solution into the bloodstream, the NaCl concentration of the

plasma is altered. To determine the conductivity of plasma (σp) at different NaCl concentrations

(Cp), experimental data reported on NaCl solutions [24] was fitted with an exponential function

(R2 > 0.99):

The electrical conductivity of a tissue at low frequency mainly depends on the extracellular

solution conductivity and the structural morphology [21, 22] . Among the chemical species that

constitute the extracellular body fluids, sodium and chlorine are the main contributors to the

electrical conductivity. Consequently, here it was assumed that only sodium and chlorine ions

contribute to the conductivity of the extracellular plasma [23].

By injecting a hypertonic NaCl solution into the bloodstream, the NaCl concentration of the

plasma is altered. To determine the conductivity of plasma (σp) at different NaCl concentrations

(Cp), experimental data reported on NaCl solutions [24] was fitted with an exponential function

(R2 > 0.99):

σp = 30.22

(
1 − e

−Cp

3135 mol
m3

)
1.02(T−20

◦C) S

m
(1)

The reported experimental data were obtained at 20◦C, therefore, an additional term was added

for being able to assess the conductivity at body temperature (T = 37◦C) taking into account the

exponential conductivity grow of 2◦C experienced by ionic solutions [25].

Physiological blood conductivity (about 0.65 S/m) differs substantially from that of the plasma

(about 1.57 S/m). This difference is caused by the presence of red blood cells (RBCs) which, at low

frequencies, can be considered as non-conductive elements [26]. Archies law [27] is extensively

used in geology to assess the equivalent electric conductivity of composite materials [28]. Similarly,

Archies law has also been employed to determine the electrical conductivity of biological tissues

[26]. For a material composed by an aqueous medium with conductivity σsolv and non-conductive
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particles occupying a volume fraction (φp), the effective conductivity of the material (σeff ) can be

expressed as:

σeff = σsolv(1 − φp)
m (2)

where m is a factor dependent on the shape of particles. The blood is mainly a suspension

of non conductive RBCs in solvent (plasma). Therefore, according to Equation (2), the electrical

conductivity of blood in sinusoids (σs) depends on its plasma conductivity (σp,s) and the hematocrit

value (hs). According to the shape of erythrocytes, a value m = 1.46 has been reported [26], and

thus:

σs = σp,s(1 − hs)
1.46 (3)

The same can be employed to compute the conductivity of the whole liver parenchyma. Using

Equation (2) for the specific case of the liver parenchyma, the clusters of hepatic cells can be

considered as the non-conductive particles which occupy a certain volume (Vc,hp) of the parenchyma

volume (VP ). According to the cluster shape, the conductivity of the liver (σL) can be approximated

using a shape factor value (m) of 1.67 [26]:

σL = σsi(1 − Vc,hp
VP

)1.67 (4)

In this case the solvent conductivity (σsi) is assumed to be a mixture between the conductivities

of blood at sinusoids (σs) and the plasma at the interstitium (σp,hp). For a material composed by

n compounds with a specific electrical conductivity (σj) and volume fraction (φj), and randomly

oriented - which is the case of the parenchyma [29] - the effective conductivity can be expressed as

[28]:

σeff =

n∏
n=1

σ
φj

j (5)

Using Equation (5) it is possible to compute the effective conductivity of the composite material

consisting of the sinusoids and the interstitial liquid according with their respective volumes (Vs and

Vp,hp):

σsi = σ
Vs

Vs+Vp,hp
s σ

Vp,hp
Vs+Vp,hp

p,hp (6)
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2.1.2. Compartmental Model A mathematical model was developed aiming at assessing both

the fluid and solute movement within the liver. This model provides the parameters required to

estimate the electrical conductivity of the liver parenchyma according to the formulation previously

described.

Based on already reported models [15, 16, 30], a compartment model was implemented (see

Figure 1). The model has four macroscopic compartments. Two of them represent the intrahepatic

portal and arterial vasculature and the other two represent the hepatic parenchyma which consists of

sinusoids and hepatocellular plates.

Parenchyma

Hepatocellular plates

Sinusoids

Portal tree

Arterial tree

Plasma
Hepatocyte

Interstitium

Plasma

RBC

Plasma

RBC

RBC

(Chs)

(Cphys,  hphys)

(Cphys,  hphys)

Qhs(t)

Qpv

Qha Qhv(t)

Vc,pv(t),  Cc,pv(t)

Vp,pv(t),  Cp,pv(t)

Vc,ha(t),  Cc,ha(t)

Vp,ha(t),  Cp,ha(t)

Vc,s(t),  Cc,s(t)

Vp,s(t),  Cp,s(t)

Vp,hp(t),  Cp,hp(t)

Vc,hp(t),  Cc,hp(t)

Qc,pv(t)

Qc,ha(t) Qc,s(t)

Qc,hp(t)

Qf(t) Qr(t)

Figure 1. Representation of the compartmental model employed to simulate NaCl concentration. Composed
by 8 sub-compartments, each one of them characterized by a volume Vx,y and an equivalent NaCl
concentration Cx,y where x denotes the extracellular (p) or intracellular (c) liquid and y denotes the
macroscopic compartment (pv: Portal Vein, ha: Hepatic Artery, s: Sinusoids or hp: Hepatocellular Plates).
Black arrows represent blood flow (movement of plasma liquid and RBC) while grey arrows symbolize

liquid flow.

The model describes three supplying flows: one of these symbolizes the hypersaline infusion

and the other two represent the normal incoming blood flows. The hypersaline solution flow (Qhs),

directly contributing to extracellular liquid in the portal vasculature, is modeled as a square pulse

with a magnitude according to the flow employed during the experiments and with the corresponding

constant concentration (Chs). Moreover, the blood supplies are characterized by their constant

physiological flows (Qpv and Qha), concentration (Cphys) and hematocrit (hphys). Eventually blood

exits from the sinusoids through the hepatic vein (Qhv = Qhs +Qpv +Qha).

In the sinusoidal macroscopic compartment, plasma with concentration Cp,s, crosses, through the

capillary wall, into the interstitial space in the hepatocellular plates at filtration flow rate Qf and, at

Qr flow rate, interstitial fluid with concentration Cp,hp is reabsorbed by the sinusoids.

The filtration and reabsorption flows (Qf and Qr) between the sinusoids and the interstitial space

of the hepatocellular plates are commonly included in models as constant parameters. Here, in

contrast, are considered to be pressure dependent. It is well known that filtration flow in sinusoids
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is determined by the capillary filtration coefficient (Kf ) multiplied by the hydrostatic pressure

difference between capillary and interstitium [31]. At the beginning of the sinusoid, closer form

portal tract, sinusoidal pressure (Ps) is higher than the interstitial one (Pi) producing a filtration

flow from the sinusoid to the interstitium.

Qf (t) = Kf (Ps(t) − Pi(t)) (7)

Moreover, closer to the hepatic vein, the capillary pressure (Phv) is lower than interstitial

producing the reabsorption flow.

Qr(t) = Kf (Pi(t) − Phv) (8)

According to Eqs. (7), (8) and the mass conservation, the filtration flow must be the same than

the reabsorption flow, and this results in:

Qf (t) = Qr(t) = Kf (Ps(t) − Phv) (9)

For a defined capillary geometry and a constant blood flow, the resulting pressure at the entrance

of the capillaries depends proportionally on fluid viscosity [32]. However, an acute pressure increase

has been observed in the microvasculature when HS is injected into the blood stream [33]. This

increase of pressure is attributed to the HS effect on RBCs [34].

It has been also reported a dynamic viscosity almost linearly dependent with osmolality [35].

Linearizing this reported data (R2 > 0.99) at shear rate stress similar to the sinusoidal one (230

s−1) blood viscosity can be expressed as function of cellular NaCl concentration (Cc,s) as:

µs(t) = 4.59×10−5
N ms

mol
Cc,s(t) − 3.49×10−3

N s

m2
(10)

Although the increase of viscosity affects the whole liver vasculature, the apparent viscosity in

large vasculature (i.e. hepatic artery, portal vein and hepatic veins) does not increase as much as

in the sinusoids [35]. Therefore, here it is only considered the viscosity dependence effect over the

sinusoids.

This pressure can be estimated according to the hepatic vein vasculature pressure (Phv,phys), the

sinusoidal flow resistance (Rs,phys) and the viscosity (µphys) at physiological state, and along with
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the current blood flow through sinusoids (Qs = Qhv −Qr) and the instantaneous blood viscosity

(µs).

Rs,phys =
Ps,phys − Phv,phys

Qs,phys
(11)

Ps(t) = Phv,phys +Qs(t)Rs,phys
µs(t)

µphys
(12)

The amount of solute used in pharmacological studies is usually low. Therefore, the commonly

employed PBPK models of the liver do not consider osmotic flow between compartments. However,

as the HS osmolarity highly differs from the physiological one, the osmotic equilibrium plays

an important role in the case modeled here. Thus, each one of the macroscopic compartments is

divided into two sub-compartments, one of them representing the extracellular liquid and the other

representing the liquid confined within the cells. A difference in osmolarity between plasma and

cellular sub-compartments leads to the water movement across the cell membrane (Qc) trying to

reach equilibrium. According to mathematical models used in the resuscitation field [20], the flow

of water from cells to plasma (Qc) depends on its membrane hydraulic conductivity (Lc), the cells

plasma surface area (Sc) - considered as constant - and the osmotic pressure difference between

both compartments (∆Π).

Qc(t) = LcSc∆Π (13)

Although the ions within the cell differ from those found in the extracellular space, the osmolarity

of both compartments is kept at the same value (308 mol/m3). Therefore, for the sake of simplicity,

as no exchange of solutes is assumed across the cell membrane, here the intracellular concentration

is defined as a NaCl concentration although, in reality, the intracellular content differs from a NaCl

solution. In other words, Cc indicates the concentration of NaCl that would produce the same

osmolarity within the cell. Cc does not represent the actual concentration of intracellular species

but it is proportional to it. Such simplification is just used for computing the osmotic pressure.

∆Π = RT (2Cp − 2Cc) (14)
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The osmotic pressure difference (∆Π) between two compartments is defined in Equation (14) by

their osmolarity (two times the concentration in case of a NaCl solution), the temperature (T = 310

K) and the gas constant (R = 0.06236 m3·mmHg/(K·mol)).

The model computes the time course of the concentration in each sub-compartment. The liquid

and solute exchanges are formalized by the physiological parameters shown in Table I and by

the following differential equations derived from the conservation of mass. Runge-Kutta method

was employed (MatLab R2014b, MathWorks, Natick, MA, USA) to solve the resulting system of

equations:

Table I. Physiological parameters employed in the model.

Symbol Description Value Source

Cphys Physiological NaCl concentration 154 mol/m3 [20]
Qpv Flux of blood through portal vein 24.0 ml/(min·kg) [36]
Qha Flux of blood through hepatic artery 8.4 ml/(min·kg) [36]
Kf Filtration coefficient of sinusoids wall 3 ml/(min·mmHg·kg) [31]

Ps,phys Physiological pressure at sinusoids 4.4 mmHg [37]
Phv,phys Physiological pressure at the hepatic vein 1.5 mmHg [37]
hphys Physiological hematocrit 45% [38]
VL Liver volume 30.3 ml/kg [36]
Vpv Portal vasculature volume 13.3×10−2 VL See Appendix
Vha Hepatic artery vasculature volume 4.6×10−2 VL See Appendix
Vhv Hepatic vein vasculature volume 16.2×10−2 VL See Appendix
VP Parenchyma volume 65.9×10−2 VL VL − Vpv − Vha − Vhv

Vc,hp Hepatocyte volume at physiological state 77.8×10−2 VP [39]
Vp,hp Interstitial volume at physiological state 4.9×10−2 VP [39]
Vs Sinusoidal volume 10.6×10−2 VP [39]
ρL Liver density 1070 kg/m3 [40]
Sc,pv Portal RBC membrane surface 859.5 cm2/ml VL [20]hphys Vpv

Lc,pv Membrane hydraulic conductivity 7.2×10−7 ml/(min·mmHg·cm2) [20]
Sc,ha Arterial RBC membrane surface 297.3 cm2/ml VL [20]hphys Vha

Lc,ha Membrane hydraulic conductivity 7.2×10−7 ml/(min·mmHg·cm2) [20]
Sc,s RBC membrane surface in sinusoids 451.5 cm2/ml VL [20]hphys Vs

Lc,s Membrane hydraulic conductivity 7.2×10−7 ml/(min·mmHg·cm2) [20]
Sc,hp Hepatocyte-interstitium surface 337.9 cm2/ml VL See Appendix
Lc,hp Membrane hydraulic conductivity 1.3×10−6 ml/(min·mmHg·cm2) [20]

Vp,pv(t)
dCp,pv(t)

dt
= ChsQhs(t) + CphysQpv(1 − hphys)

− Cp,pv(t) ((Qhs(t) +Qpv)(1 − hpv(t)) +Qc,pv(t))

(15)

Vc,pv(t)
dCc,pv(t)

dt
= CphysQpvhphys − Cc,pv(t) ((Qhs(t) +Qpv)hpv(t) −Qc,pv(t)) (16)

Vp,ha(t)
dCp,ha(t)

dt
= CphysQha(1 − hphys) − Cp,ha(t) (Qha(1 − hha(t)) +Qc,ha(t)) (17)
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Vc,ha(t)
dCc,ha(t)

dt
= CphysQhahphys − Cp,ha(t) (Qhahha(t) −Qc,ha(t)) (18)

Vp,s(t)
dCp,s(t)

dt
= Cp,pv(t)(Qhs +Qpv)(1 − hpv) + Cp,ha(t)Qha(1 − hha(t))

+ Cp,hp(t)Qr(t) − Cp,s(t)Qf (t) − Cp,s(t) (Qhv(1 − hs(t)) +Qc,s(t))

(19)

Vc,s(t)
dCc,s(t)

dt
= Cc,pv(Qhs(t) +Qpv)hpv(t) + Cc,ha(t)Qhahha(t)

− Cc,s(t) (Qhvhs(t) −Qc,s(t))

(20)

Vp,hp(t)
dCp,hp(t)

dt
= Cp,s(t)Qf − Cp,hp(t) (Qr(t) +Qc,hp(t)) (21)

Vc,hp(t)
dCc,hp(t)

dt
= Cc,hp(t)Qc,hp (22)

dVp,x(t)

dt
= Qc,x (23)

dVc,x(t)

dt
= −Qc,x (24)

2.2. In Vivo Pilot Study

2.2.1. Animal Model All actions in this study were performed in accordance with the protocol

approved by the Ethical Commission of the Universitat Autònoma de Barcelona (authorization

number CEEAH 2205/ DMAH 7633) following the European Directive 2010/63/EU on the

protection of animals used for scientific purposes. A total of 5 procedures – one in each animal

– were performed under general anesthesia on Landrace pigs (mean weight 57 kg).

2.2.2. Procedure Preoperative care and anesthesia were provided by fully trained veterinary staff.

The anesthetic induction phase was performed with propofol (4 mg/kg I.V.) and maintained with

isoflurane from 1.5 to 2% and oxygen 100% mixture once the animal was endotracheally intubated.

Oxygen saturation, arterial blood pressure, heart rate and capnography were monitored using a

multiparametric monitor.
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By midline laparotomy, after dissection of the hepatoduodenal ligament, extrahepatic portal vein

catheterization was performed in order to deliver either a hypersaline solution (NaCl at 20%) or

an isotonic solution (NaCl 0.9%) in the control case. After exposure, the portal vein was dissected

free and cannulated through a purse-string suture placed just cranial (approximately 1 cm) to the

entry point of the cranial pancreaticoduodenal vein with a simple silastic catheter (dropper tube).

The catheter was advanced cranial to a point just proximal to the main portal division and secured

in place via the purse-string suture and a single stay suture. The solution volume employed in the

procedures was injected by using a dropper while infusion durations were measured with a stop

watch. Aiming to explore the conductivity dependence in both the amount of solution injected and

the flow rate, different values were employed (see Table II).

Table II. Injection parameters employed in animal experiments

Animal NaCl (%) Volume (ml) Duration (s) Flow (ml/min)

#1 20 100 113 53
#2 20 100 52 115
#3 20 120 60 120
#4 20 200 70 171
#5 0.9 500 120 250

Although the planned therapeutic technique involves hepatic vascular isolation, such strategy was

not employed during this pilot study aiming to simplify the experimental setup. However, since rapid

infusion of a high amount of HS could cause severe damage to the animal and a high disturbance of

the normal blood flow [41] which could distort the study, it was decided to adopt a relatively simple

approach to prevent those consequences. Specifically, in order to minimize the possible ionic and

osmotic imbalance at systemic level caused by the HS, as recommended to manage hypernatremia

[42], distilled water was simultaneously injected at the cava vein. Using an additional catheter

with the same cannulation technique immediately cranial to entry point of the right renal vein

and advanced cranial two centimeters. The amount of injected water was ten times the hypersaline

volume in order to restore the NaCl concentration in the systemic blood.

2.2.3. Conductivity Measurement It is possible to measure the impedance of a living tissue portion

by inducing a known current through a pair of electrodes while measuring the resulting voltage

drop across them. In the presented study, the electrode setup consisted of two printed circuit boards

(PCBs) including a circular gold coated electrode (20 mm diameter). The PCBs were mounted on a

pincer clip so that the electrodes were securely placed at opposite sides of a hepatic lobule forming

a fixed geometry. The electrodes were placed at a distal section of the lobule to avoid the potential
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influence of large intrahepatic blood vasculature. Electrical impedance was measured at a rate of

five sweeps per second. The spectrogram consisted of six frequencies from 10 to 100 kHz. The

excitation signal was a sinusoidal signal with 1 V amplitude applied to the tissue through a 2 kΩ

resistor in order to limit the peak current to a maximum of 500 µA. Both the injected current and the

voltage drop over the tissue were simultaneously collected to compute the real and imaginary parts

of the impedance using a data acquisition board (NI USB-6212, National Instruments, Austin, TX,

USA) controlled by a virtual instrument (Labview 8.1, National Instruments, Austin, TX, USA).

The Cole model for bioimpedance can be employed to characterize the measured impedance (Z(f))

spectrogram with only four parameters: the hypothetical resistance at infinite (R∞) and zero (R0)

frequencies, the characteristic time constant τ and the dimensionless parameter α [43].

Z(f) = R∞ +
R0 −R∞

1 + (j2πfτ)α
(25)

This equation was employed here to determine the hypothetical impedance magnitude at 0

Hz automatically fitting the equation (MatLab R2014b, MathWorks, Natick, MA, USA) to the

experimental data by minimizing the least squares error.

Once the impedance at 0 Hz was obtained in Equation (25), the conductivity at this frequency

(σ0) was calculated according to the geometric cell constant (K) of the measurement system as

computed by means of a model based on Finite Element Method [43].

σ0 =
1

R0K
(26)

3. RESULTS

According to the described formulation and the parameters of the Table I, the physiological electrical

conductivities at 37◦C of the plasma, blood and liver are 2.03 S/m, 0.85 S/m and 0.09 S/m

respectively.

Figure 2(a) shows the estimated evolution of the liver conductivity over the time. The simulation

results show a fast increase at the beginning of the infusion mainly due to the presence of high

conductivity medium in sinusoids (Figure 2(b)). Following that, the contribution of sinusoidal

medium remains constant while the interstitial contribution - due to the filtration process and

hepatocyte shrink - keeps growing until HS injection stops (Figure 2(c)). At this point, the rapid

decrease in liver conductivity can be attributed to the replacement of the high conductivity sinusoidal
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content by systemic blood. Meanwhile, the high conductivity plasma at the interstitial space is

arrested for a longer period of time, producing a remaining conductivity offset which requires longer

periods to return to the physiological values.
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Figure 2. Temporal evolution of the computed electrical conductivity. Assessment of conductivity of the
liver (a), the sinusoidal blood (b) and the interstitial liquid (c). Plots correspond with an injection of 2 ml/kg

of 20% NaCl at 2 ml/(min·kg).

For an injected saline concentration of 20%, the model has two independent input parameters

corresponding to the flow rate and the total amount of solution introduced. The effect of each of

those inputs over the temporal evolution of the conductivity is shown in Figure 3. It can be observed

that the maximum electrical conductivity achieved at the end of the HS injection highly depends on

both the flow and the volume.
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Figure 3. Effect of flow rate and volume of injected saline on the temporal evolution of electrical conductivity
in the liver. Plots of (a) correspond with a fixed volume of 2 ml/kg of 20% NaCl, while plots in (b) correspond

with a constant flow rate of 2 ml/(min·kg).

About the in vivo pilot study, it is important to note that only the electrical conductivity of the liver

can be measured with the employed setup. The baseline electrical conductivity of the liver was very

similar in all the animals (0.11 ± 0.02 S/m). As observed in computer simulations, conductivity

progress always peaked just at the end of the injection. The maximum peak value was 0.44 S/m

(animal #4) and corresponded with an injection of 3.8 ml/kg at 3.3 ml/(min·kg) (Figure 4(a)).

Injection of a highly concentrated NaCl solution through portal vein produced a rapid increase of

conductivity with time until the injection stops. At this point, a portion of the achieved conductivity
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increase slowly receded exponentially with time. However, the liver conductivity remained at a

higher value than the basal one. In the control animal (animal #5), in which physiological saline

solution (NaCl 0.9%) was injected, the conductivity of the liver did not show any variation,

remaining at basal level (Figure 4(b)).
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Figure 4. Temporal evolution of liver conductivity from simulations and experiments. (a): temporal evolution
in the case of an injection of 3.8 ml/kg (20% NaCl) at a flow rate of 3.3 ml/(min·kg). (b): temporal evolution

in case of injecting physiological saline solution (0.9% NaCl) which served as a control test.

Assessing with the model the resulting conductivity peak for a set of volumes and flows

combinations, it is possible to obtain tridimensional representation of the peak conductivity value

within a range of flow rates and volumes (Figure 5). Those values can be compared to the ones

obtained during the in vivo pilot study in order to assess the goodness of fit of the proposed model

in terms of relative error (Table III).

Table III. Conductivity values during experimental procedures and comparison with computer simulations.

Animal Volume
20% NaCl

(ml/kg)

Flow Rate
(ml/(min·kg))

Simulated Experimental Basal
Conductivity

Error (%)

Peak
Conductivity

Error (%)
Basal

Conductivity
(S/m)

Peak
Conductivity

(S/m)

Basal
Conductivity

(S/m)

Peak
Conductivity

(S/m)

#1 2.2 1.2 0.091 0.206 0.124 0.210 26.6 1.7
#2 1.9 2.2 0.091 0.266 0.109 0.178 16.5 49.7
#3 2.6 2.6 0.091 0.304 0.137 0.295 33.8 3.2
#4 3.8 3.3 0.091 0.373 0.093 0.444 2.5 15.8
#5 0.0* 2.7 0.091 0.096 0.089 0.094 2.0 2.6

* 5.5 ml/kg 0.9% NaCl

4. DISCUSSION

In this study, a mathematical model was developed aiming to assess the electrical conductivity of the

liver once hypertonic saline solution is introduced through portal vasculature. Our main purpose was

to formulate a mathematical model useful to continue with the development of a novel multi-nodule

ablation technique based on electroporation.
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Figure 5. Dependence of conductivity peak on volume and flow of injected saline (20% NaCl). The surface
represents the simulated values from the proposed mathematical model, while circles represent the five
experimental results from the in vivo model. Gray lines denote the absolute error value between the values

predicted by the model and those experimentally observed.

Hypertonic saline solution has been extensively used in resuscitation of patients with traumatic

brain injury [44]. Using 7.2% NaCl intravenously injected, it has been reported a safety dosage of

5 ml/kg of body weight without inducing hypernatremia [45]. Accordingly to this safety value,

the maximum dosage at 20% NaCl would be 1.8 ml/kg. This amount is slightly below the

maximum doses tried and proposed here for significantly increasing liver conductivity. Therefore,

some sort of countermeasure is required for safety in order to avoid severe pathophysiological

effects, such as hyperchloremic acidosis or dilated coagulopathy [46]. For the presented pilot study

parallel downstream administration of distilled water was a feasible and effective countermeasure

to avoid acute dysfunctions at systemic level that could distort our study. However, the proposed

electroporation technique should include a sort of liver isolation similar to the employed in the

isolated hepatic perfusion (IHP) therapies [47]. That is, we anticipate extracting the hypertonic

solution as it leaves the liver.

Besides systemic effects, another source of concern would be the potential tissue damage

produced on the liver tissue itself due to the hypersaline injection. Nevertheless, according to

literature, a direct intratisular injection of hypersaline solution at very high dosage (36.5% NaCl)

is required to produce small tissue damage [48]. And according to the presented model, at the

maximum dosage employed during the in vivo experiments, interstitial concentration hardly reaches

a concentration of 1% NaCl. Therefore hepatocellular damage due to portal injection of the

hypersaline solution is not anticipated.

The developed model accounts for the increased blood viscosity in the sinusoids due to the high

osmolarity of the HS. Such increase in viscosity raises the hydrostatic pressure in the sinusoids
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which in turn causes an excess of filtration/reabsorption flow thereby rapidly flushing out the

original interstitial fluid. This makes the presented modeling approach not only useful for the

particular case of portal HS injection but also for assessing the distribution of other hypertonic

solutions such as high concentration contrasts [49, 50].

According to the employed methodology, the physiological conductivity for blood would be

0.85 S/m, which is larger than the value commonly reported (about 0.65 S/m) [51] but close to

the reported value in other experimental studies (0.76 S/m) [52]. Physiological values for liver

conductivity at low frequency found in literature range widely from very low values (0.03 S/m)

[53] to larger values (0.126 S/m) [54]. The physiological conductivity predicted by the model is

0.09 S/m, which is close to the commonly reported value (0.075 S/m) [43] and within the range of

the basal conductivities, 0.11 ± 0.02 S/m (mean ± SD), obtained during the in vivo experiments

reported here.

In agreement with the results of the experimental study, the developed model is able to predict

the maximum conductivity with a 14.6% average relative error once HS is portally injected. These

results, together with the consistency of the basal conductivity results reported in the literature

(previous paragraph), indicate the goodness of the model for our purposes. However, we deem the

model could be further improved. In particular, we consider that a severe limitation of the model

is that it assumes constant macroscopic volumes. In contrast, it is known that the liver acts as

an expandable blood reservoir [55] and its compliance could hence play an important role. This

factor should be incorporated in future models in order to predict the expected conductivity even in

pathological states such as cirrhotic or fibrotic in which mechanical properties of the tissue differs

from the normal ones.

5. CONCLUSIONS

A mathematical model able to assess the resulting electrical conductivity of the liver when

hypertonic saline solution is portally injected is presented. The model is able to estimate the time-

space distribution of the solute within the different physiological compartments of the organ.

The results show that the developed model is able to predict with an average error of 14.6%

the maximum liver conductivity observed during the pilot in vivo study. The experiments were

conducted on pigs where liver electrical conductivity was measured during injection of NaCl at

20% through the portal vein at different volumes and flow rates. The goodness of the model would
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make it useful not only for the particular case of hypersaline injection but also for other non-isotonic

solutions injections such as high concentration contrasts.

Both mathematical modelization and pilot in vivo results show the feasibility of increasing up to

four times the conductivity of the healthy liver. These results encourage further development of the

multi-nodule ablation technique based on electroporation we have proposed.
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APPENDIX

Estimation of physiological parameters

Most of the parameters employed in the model (Table I) were extracted directly from the literature.

However, some of the required parameters could not be found in past experimental studies and had

to be estimated under some assumptions. In here it is described the processes for obtaining those

estimations.

First, the model requires the physiological volume of blood in each vascular tree (i.e. portal,

arterial and venous vasculature). Dimensional measurements of the intrahepatic vasculature were

reported in [56] by using casting resin. Based on these data - simplifying vessels as tubes - the total

volume of each tree was calculated (81.6 ml for the arterial tree, 236.7 ml for the portal tree and

288.0 ml for the venous tree). According to the liver weight employed in the experimental study

(1.9 kg) and the liver density (1070 kg/m3 [40]) the vasculature volume ratios with respect to the

total liver volume were calculated: 4.6% for the arterial tree, 13.3% for portal tree and 16.2% for

the venous tree.

Second, no data was found regarding the contact surface (Sc,hp) between the hepatocytes and

the interstitial space. Considering the sinusoids as tubes of radius rs (5 µm [37]), it was possible

to calculate the total length of the sinusoids per unit of liver volume (8.89×108 m/m3) required to

hold the sinusoidal blood (10.6% of parenchyma volume (VP ) [39]). The interstitial space was

then modeled as an annular region around the sinusoids with their same length. The width of

this region (1.05 µm) was determined by the physiological interstitial volume (Vp,hp) (4.9% of

parenchyma volume [39]). Finally, the interface between the hepatocytes and the interstitium per
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unit of liver volume was assumed to be the outer surface of the cylinder formed by the sinusoids and

the surrounding interstitial ring resulting in 337.9 cm2/ml.

Nomenclature

The mathematical model described in this work uses several parameters for its definition. The

employed nomenclature for this parameters follows the same structure. The main symbol (Table

A1) indicates the defined magnitude for the parameter, whereas the subscript or subscripts (Table

A2) indicate the anatomical location or state which is intended to be represented. Table A3 lists the

individual description for each of the parameters employed in the model.

Table A1. Description of magnitudes used in the model

Symbol Description

C Concentration of solute
h hematocrite
Kf Capillary filtration coefficient
Lc Membrane Hydraulic conductivity
P Hydrostatic pressure
Q Flow
R Flow resistance
Sc Surface area between cells and extracellular plasma
T Tempreature
V Volume
µ Blood viscosity
Π Osmotic pressure
ρ Density
σ Electrical Conductivity

Table A2. Description of subscripts used in the model

Subscript Description

L Liver
P Parenchyma
ha Hepatic artery
hp Hepatocellular plates
pv Portal vein
hv Hepatic vein
s Sinusoids
hs Hipertonic solution
c Cells
p Plasma
phys Physiological
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Table A3. Description of parameters used in the model

Symbol Description

Cc,ha Concentration in rbc at hepatic artery
Cc,hp Concentration in hepatocites at hepatocellular plate
Cc,pv Concentration in rbc at portal vein
Cc,s Concentration in rbc at sinusoids
Cc Concentration of solute at the cells
Chs Concentration of Hipertonic solution
Cp,ha Concentration of plasma at hepatic artery
Cp,hp Concentration of plasma at hepatocellular plate
Cp,pv Concentration of plasma at portal vein
Cp,s Concentration of plasma at sinusoids
Cp Concentration of solute in plasma
Cphys Physiological concentration
hha Hematocrite value at hepatic artery
hphys Hematocrite value at physiological state
hpv Hematocrite value at portal vein
hs Hematocrite value at sinusoids
Lc,ha Membrane hydraulic conductivity at hepatic artery
Lc,hp Membrane hydraulic conductivity at hepatocellular plates
Lc,pv Membrane hydraulic conductivity at portal vein
Lc,s Membrane hydraulic conductivity at sinusoids
Phv,phys Hydrostatic pressure at the beginning of the hepatic vein at physiological state
Phv Hydrostatic pressure at the beginning of the hepatic vein
Pi Hydrostatic pressure at the interstitial space
Ps,phys Hydrostatic pressure at the beginning of the sinusoids at physiological state
Ps Hydrostatic pressure at the beginning of the sinusoids
Qc,ha Flow of water leaving from cells at hepatic artery
Qc,hp Flow of water leaving from cells at hepatocellular plate
Qc,pv Flow of water leaving from cells at portal vein
Qc,s Flow of water leaving from cells at sinusoids
Qf Flow of filtration from sinusoids to interstitium
Qhs Flow of Hipertonic solution
Qhv Flow of blood at the hepatic vein
Qpv Flow of portal vein
Qr Flow of reabsortion from interstitium to sinusoids
Qs,phys Flow of blood through sinusoids at physiological state
Qs Flow of blood through sinusoids
Rs,phys Flow resistance of sinusoids at physiological state
Sc,ha Cellular membrane surface at hepatic artery
Sc,hp Cellular membrane surfac at hepatocellular plates
Sc,pv Cellular membrane surfac at portal vein
Sc,s Cellular membrane surfac at sinusoids
Vc,ha Volume of RBC at hepatic artery
Vc,hp Volume of hepatocytes at hepatocellular plate
Vc,pv Volume of RBC at portal vein
Vc,s Volume of RBC at sinusoids
Vp,ha Volume of plasma at hepatic artery
Vp,hp Volume of plasma at hepatocellular plate
Vp,pv Volume of plasma at portal vein
Vp,s Volume of plasma at sinusoids
VP Volume of the parenchyma
Vs Volume of the sinusoids
µphys Blood viscosity at physiological state
µs Blood viscosity at sinusoids
σeff Effective electrical conductivity
σL Electrical conductivity of liver
σp,hp Electrical conductivity of plasma at hepatocellular plates (interstitial liquid)
σp,s Electrical conductivity of sinusoidal plasma
σsi Electrical conductivity of sinusoids and interstitium liquid
σsolv Conductivity of the solvent
σp Electrical conductivity of plasma
σs Electrical conductivity of sinusoidal blood
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